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ABSTRACT A new strain of Streptomyces sp., strain RFCAC02, was isolated from the
gut of the Pacific chub mackerel Scomber japonicus peruanus. This strain produces a
variety of secondary metabolites. Further bioinformatic analysis revealed the pres-
ence of biosynthetic gene clusters putatively coding for compounds related to the
polycyclic tetramate macrolactams (PTMs).

The uncontrolled use of antibiotics has created conditions for the emergence of
multidrug-resistant pathogenic microorganisms, which is challenging health sys-

tems worldwide. Particularly relevant are clinical strains of the Enterococcus faecium,
Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas
aeruginosa, and Enterobacter species (ESKAPE) group (1). Aside from bacterial infections,
another risk to human health comes from invasive fungal diseases (IFDs), opportunistic
infections that overwhelm critically ill or immunosuppressed patients (2). Sources of
antifungal metabolites, e.g., terpenoid, phenolic compounds, and phytoalexins, are
mainly obtained from plants (3), although some others, such as echinocandins, origi-
nate from saprophytic fungal species (4). Additionally, some members of the genera
Bacillus, Pseudomonas, Proteus, Staphylococcus, and Streptomyces are well-known pro-
ducers of antifungal secondary metabolites (5, 6). Together with bacterial infections,
fungus-caused diseases have increased dramatically in the last decades (7). Therefore,
the search for novel antifungal metabolites derived from diverse sources is an urgent
need.

Strain RFCAC02 was isolated from the homogenized stomach contents of the marine
fish Scomber japonicus peruanus. Briefly, homogenates were incubated at 60°C for 25
minutes. Aliquots of the homogenate were serially diluted in sterile sodium chloride
solution (0.9%), inoculated on oatmeal ISP3 agar plates (8), and incubated for 7 days at
30°C. The resulting pure culture was identified as a member of the genus Streptomyces
by 16S rRNA gene sequence analysis. Strain RFCAC02 showed 97.5% similarity to
Streptomyces avicenniae strain MCCA 1A01535. Genomic DNA was extracted using a
phenol-chloroform method, according to Marmur (9); for this purpose, strain RFCAC02
was cultivated in liquid DSMZ 1159 medium containing glucose-yeast extract-malt
extract (GYM) supplemented with 10% NaCl for 7 days at 30°C and 200 rpm. Sequenc-
ing was accomplished using the single-molecule real-time (SMRT) technology (10) on a
PacBio RS II system (Pacific Biosciences, USA) by Macrogen, Inc., South Korea. The
number of polymerase reads obtained by the system was 43,556, with an average
length of 13,505 bp. De novo assembly was performed using the Hierarchical Genome
Assembly Process (HGAP) (11) (expected genome length set to 6,500,000 bp) within
SMRT Link (smrtlink-release_6.0.0.47841; Pacific Biosciences), using 81,365 subreads
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with an average length of 7,011 bp. A final genome of 6.15 Mbp in two scaffolds of
6,130,205 and 23,083 bp, with a G�C content of 73.5% and 76� sequence coverage
was obtained. The assembled sequence was annotated using the Rapid Annotations
using Subsystems Technology (RAST) v2.0 server (http://rast.nmpdr.org) (12), which
predicted 5,850 coding sequences, of which 2,549 encoded hypothetical proteins and
64 encoded noncoding RNAs.

Species circumscription of strain RFCAC02 was achieved using the online server
JSpeciesWS (13). Thus, pairwise genome comparison confirmed a close relationship
between strain RFCAC02 and S. avicenniae MCCC 1A01535, showing an average nucle-
otide identity (ANI) of 80.58%, a value below the accepted cutoff threshold for species
delimitation of 95% (14). Therefore, strain RFCAC02 might represent a new species
within the genus Streptomyces. An antiSMASH v4.0 search (15) revealed the presence of
20 putative biosynthetic gene clusters, including clusters coding for the production of
polycyclic tetramate macrolactams (PTMs). PTMs are a family of biomedically promising
natural products and merit further studies.

Data availability. This whole-genome shotgun project has been deposited at

DDBJ/ENA/GenBank under accession number SAUH00000000. The version described in
this paper is version SAUH01000000. The raw sequencing data are available in the
Sequence Read Archive (SRA) database under accession number SRX5604831.
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