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Abstract

The interchromosomal organization of a subset of human chromosomes (#1, 4, 11, 12, 16, 17, and 18) was examined in G1
and S phase of human WI38 lung fibroblast and MCF10A breast epithelial cells. Radial positioning of the chromosome
territories (CTs) was independent of gene density, but size dependent. While no changes in radial positioning during the cell
cycle were detected, there were stage-specific differences between cell types. Each CT was in close proximity (interaction)
with a similar number of other CT except the gene rich CT17 which had significantly more interactions. Furthermore, CT17
was a member of the highest pairwise CT combinations with multiple interactions. Major differences were detected in the
pairwise interaction profiles of MCF10A versus WI38 including cell cycle alterations from G1 to S. These alterations in
interaction profiles were subdivided into five types: overall increase, overall decrease, switching from 1 to $2 interactions,
vice versa, or no change. A global data mining program termed the chromatic median determined the most probable overall
association network for the entire subset of CT. This probabilistic interchromosomal network was nearly completely
different between the two cell lines. It was also strikingly altered across the cell cycle in MCF10A, but only slightly in WI38.
We conclude that CT undergo multiple and preferred interactions with other CT in the nucleus and form preferred -albeit
probabilistic- interchromosomal networks. This network of interactions is altered across the cell cycle and between cell
types. It is intriguing to consider the relationship of these alterations to the corresponding changes in the gene expression
program across the cell cycle and in different cell types.
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Introduction

At the highest structural level, chromosomes form discrete bodies

termed chromosome territories (CT) [1–6]. The three-dimensional

organization of these CT and the genes within them have been

implicated in genomic regulation [5–14]. Furthermore, interactions

between CT and other nuclear domains have been shown to impact

nuclear functioning [15]. For instance, chromosomes that contain the

nucleolar organizing regions preferentially interact with nucleoli

[16,17]. While many studies have revealed a probabilistic nonran-

dom radial organization of CT within the nucleus [18] for review],

fewer reports have investigated whether there are specific interchro-

mosomal arrangements [19–21] and whether these are altered in

different cell and tissue types [22–25] during cell differentiation and

development [26] and in cancer [27–29]. The predominant method

for studying CT organization has involved CT centers of gravity

which may or may not reflect interactions of these CT at their

borders. Also, due to technical limitations, the vast majority of these

studies have been limited to three or less CT pairs per nucleus.

Numerous investigations have demonstrated that large-scale chro-

matin arrangements within the nucleus are relatively stable [30–35]

and persist at least to some extent during the cell cycle stages of

interphase [36,37]. In contrast, analysis of in vivo labeled CT regions

indicated that CT centers of gravity are mobile relative to the nucleus

[38] and to each other [36]. While this is consistent with the prospect

that the CT may undergo reorganization during the cell cycle, these

investigations were not able to identify specific CT in their analyses

[36,38].

With this in mind we have analyzed the 3-D positioning and

interchromosomal associations of 7 CT (1,4,11,12,16,17,18) using

reFISH [24] in human WI38 lung fibroblasts and MCF10A (10A)

breast epithelial cells in the G1 and S cell cycle stages. Differences in

associations were found at both the cell type and cell cycle levels.

Using a newly developed data mining algorithm termed the

chromatic median [39], probabilistic network models were gener-

ated for the global patterns of interchromosomal interactions of all 7

chromosome pairs. The preferred arrangements were strikingly

different between 10A and WI38 in both G1 and S phases.

Our findings provide support for a probabilistic ‘‘chromosome

code’’ where the overall interactive network of CT is different

between cell types and may contribute to the global regulation of

gene expression [24,25,29]. We further report that this interaction
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network is altered across the cell cycle in a cell type specific

manner.

Results

In this study we combine the approaches of re-FISH, computer

imaging, computational geometric and data mining to investigate

chromosome territory interactions during the cell cycle (see

Materials and Methods). A subset of 7 chromosomes (CT1, 4,

11, 12, 16, 17, and 18) were selected which are representative of

the human genome by having a broad range in size and gene

density. The weighted average gene density of this CT subset was

6.5 compared to 6.7 for the entire genome. In brief, WI38 human

fibroblasts or MCF10A human epithelial breast cells were grown

on gridded coverslips and labeled with EdU (labels S phase [40]),

geminin (labels S and G2 [41]) and three rounds of chromosome

paints. The G1 and S stages of the cell cycle for each cell type were

then distinguished as described in Materials and Methods.

Representative images for EdU and the CT are displayed in

Figure 1A,B.

CT volumes and radial chromosome positioning in WI38
and MCF10A cells

In both cell types, there was an average total nuclear volume

increase of ,10–15% in S phase compared to G1 and comparable

increases in the CT volumes (Fig. S1). A correlation to

chromosome size to radial position was demonstrated with the

larger CT being more peripherally located (r2 = 0.72 to 0.92,

Fig. 1C, Fig. S1), but no correlation to gene density (Fig. 1D, Fig.

S1). Random simulations showed no correlation between chro-

mosome size or gene density and radial position (Fig. 1C,D, Fig.

S1). None of the radial positions were significantly altered from G1

to S phase in WI38, 10A, or random simulations. We did,

however, determine significant cell type differences (t test, p,0.05)

in radial positioning for CT1 in G1 and CT1, 11, and 17 in S

phase.

Pairwise CT interaction profiles are altered across the cell
cycle

Although CT centers provide some insight into the positions of

CT and organization of the genome (Fig. S2, S3), they do not

accurately predict whether a CT pair will be interacting at their

borders. We, therefore, determined the nearest border distances

between CT as a direct measurement of the nearest distance in 3-

D between all CT pairs. Using a maximum of 4 pixels (0.28 m) as a

threshold value for an interacting CT pair, we calculated the

number of interactions each CT has to the other CT in the subset.

An average of ,90% of the measured distances that were

determined as positive interactions (#4 pixels) were actually

separated by zero pixels and involved direct overlap (average of

,15% of the volume) of the two interacting CT. Based on these

measurements, each CT interacts on average with ,3 out of the

other 12 possible heterologs (Fig. 1E,F), with the gene rich CT17

displaying a significantly higher level of interactions (,3.5–3.7

CT; t test, p,.001; Fig. 1E,F, Fig. S4). These levels of interaction

are conserved in progression from G1 to S and are virtually

identical in WI38 and 10A cells. In random simulations, that

utilize the experimental CT volumes within the DAPI signal (see

Materials and Methods), we find significantly lower levels (p,

0.001) of interaction with an average of ,1.5 interactions per CT

(Fig. 1G).

Since a CT pair can interact up to four times within each

nucleus (eg. CT1a-CT2a,1a-2b,1b-2a, and 1b-2b), we determined

the percent of cells with 1 or more interactions ($1), only 1

interaction ( = 1), or greater than 2 ($2). If there was not a specific

overall pattern to the CT associations in the cell nucleus, each

pairwise interaction would be close to the average for all of the CT

pairs. While the overall patterns for $1 (Fig. S5) were not

significantly different from their averages in both WI38 and 10A

cells, significant differences were found when single and multiple

interactions were considered separately (chi squared, p,0.001,

Table S1). Moreover, differences were found in comparing the

single and multiple interaction profiles in the G1 and S phases of

these two cell lines (p,0.002, Table S2). Corresponding random

simulations do not show any significant differences across the cell

cycle (Table S2).

Of the 21 pairwise CT combinations in the $1 interaction

profiles of G1 versus S phase, only 2 were altered (based on a .

20% difference) in WI38 and 7 in 10A (Fig. S5). For cells with only

1 interaction, 8 of the 21 pairwise CT combinations were altered

from G1 to S phase in both WI38 and 10A (Fig. 2, Fig. 3) while 11

(WI38) and 13 (10A) of 21 were altered for multiple interactions ($

2). When considering both = 1 and $2 together, we found 5

pairwise CT interaction profiles that were altered from G1 to S

phase in Wi38 (Fig. 2B, Table S3), and 13 in 10A (chi-square, p,

0.05, Fig. 2D. Table S3). Corresponding random simulations

showed no significant differences (Fig. S6, S7). While the

experimental levels of interaction did not show any relation to

CT size, larger CT had higher amounts of interaction in random

simulations and ranged from a low of 32% for CT12–18 to 56%

for C1–17 (Fig. S6, S7). Homologous interactions were lower than

heterologous ones even when correcting for the fact that there is

only one possible homologous interaction (Table S4). In addition,

experimental homologous interactions are similar in range to

random simulations and do not change significantly across the cell

cycle.

Multiple interactions are typically less abundant than singular

interactions. 16–60% of cells that contain an interaction, however,

had multiple interactions (Fig. 2). This is far greater than random

simulations (7–28%, Fig. S6, S7). CT17 was represented in 83% of

the CT pairs that were in the top half of multiple interactions

Author Summary

During interphase, chromosomes occupy discrete bodies
within the cell nucleus termed chromosome territories
(CT). The organization of CT and the genes within them
have been implicated in genomic regulation. Numerous
reports suggest that specific interchromosomal interac-
tions enable distally located genes to cluster in close
proximity for coordinately regulated gene activity. Our
overall understanding of CT organization and their
interchromosomal interactions, however, is very limited.
We have addressed this issue by combining the ap-
proaches of 3D FISH (fluorescence in situ hybridization),
an extensive computational program that enables us to
obtain precise measurements of CT interactions in 3-D
and a novel global data mining program that evaluates
the overall arrangement of all the interacting CT. 7 CT
pairs ranging in size and gene density were examined in
two different human cell types. Our findings demonstrate
that: 1) there are preferred interchromosomal networks
that are altered across the cell cycle; 2) these alterations
are cell type specific; 3) all the CT interact with a similar
number of other CT with the exception of the gene rich
CT17 which interacts with significantly more CT; and 4)
multiple interactions in the four possible combinations
between CT pairs are far more common than in random
simulations.

Alterations in Interchromosomal Networks across the Cell Cycle
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compared to 42% for CT18. The highest multiple interacting pair

in WI38 was CT11–17 in G1 and CT12–17 in S (Fig. 2B) and

CT4–17 (G1) and CT11–17 (S) in 10A cells (Fig. 2D).

We found three distinct patterns when a CT pair interacts twice

(termed 2a, 2b, and 2c, Fig. 4A). In pattern 2a, one homolog of

each CT is a member of an independent pairwise interaction with

its heterologous partner CT. In pattern 2b, a triplet is formed

involving one copy of one CT and 2 copies of the other

heterologous CT (Fig. 4A). In pattern 2c, the opposite triplet is

formed (Fig. 4A). Out of the multiple combinations the percent of

cells with all four CT forming an alternating chain with 3

interacting CT (pattern 3, Fig. 4A) were typically less abundant

than the other multiple patterns but was the most abundant

pattern in 5 out of the 84 pairwise combinations studied (Fig. 4B).

Four interactions were rare (,0–5%) as they only occurred when

all four homologs of the two chromosomes were in close

apposition. Differences were found between G1 and S in the

overall patterns of these configurations for CT pairs (Fig. 4B). For

example, some pairwise combinations of CT are equally

distributed between 2A–2C patterns (e.g., CT1–11 in WI38 S),

while others are present predominantly in one configuration (e.g.,

CT12–18 in WI38 S). The patterns of these multiple interactions

are also different between 10A and WI38 (Fig. 4B).

Further analysis revealed dynamic alterations in interaction

profiles during the cell cycle (Fig. 3). Some CT pairs had an

overall increase in both single ( = 1) and multiple ($2) interactions

(type 1), while others decreased in both = 1 and $2 from G1 to S

phase (type 2). Still others switched from single to multiple

Figure 1. Multi-FISH labeling, radial positioning, and total interactions of CT during the cell cycle. 2-D projection images of: (A) 7 CT
(1,4,11,12, 16,17,18) and (B) EdU labeled replication sites and DAPI staining in 10A cells. (C–D) Radial positioning- The percent subtended radii (the
distance from the center of the nucleus to the CT center divided by the distance from the center of the nucleus through the CT center to the nuclear
periphery in 10A cells) is displayed against chromosome sequence length (C) and gene density (D). Blue is G1, red is S, and green is random
simulations. (E–F) Total pairwise CT interactions- The average number of CT within the subset of CT that each individual CT interacts with is shown for
WI38 (E), 10A (F), and random simulations (G). Blue is G1 and red is S. All experimental values were significant higher than random simulations. CT17
interacts with a significantly greater number of CT than any other CT in the subset. CT1 is significantly higher than the other CT in random
simulations. ***p,0.001.
doi:10.1371/journal.pcbi.1003857.g001

Alterations in Interchromosomal Networks across the Cell Cycle
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Figure 2. Interaction profiles of CT are altered across the cell cycle and cell types. Since each CT has two homologs there are four possible
interactions in each nucleus. (A–D) Differences across the cell cycle- The percent of cells with only 1 interaction (A) and the percent of cells that have
2 or more interactions (B) in WI38 are shown for each of the 21 pairwise combinations of CT (G1, n = 46; S, n = 47). The percentage with only 1 (C) and
2 or more (D) in 10A are shown (G1, n = 56; S, n = 54); blue bars are G1 and red are S. (E–H) differences between cell types- The percent of cells with
only 1 interaction (E) and the percent of cells that have 2 or more interactions (F) in G1 of WI38 and 10A are shown. The percent with only 1 (G) and 2
or more (H) in S of WI38 and 10A are shown, green bars are WI38 and black are 10A. error bars = SEM. Black asterisks indicate chi-square test, p,0.05,
while red indicate p,0.10. Full p values are presented in Tables S3,S6.
doi:10.1371/journal.pcbi.1003857.g002

Alterations in Interchromosomal Networks across the Cell Cycle
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interactions (type 3) or vice versa (type 4). Moreover, a significant

proportion of the CT pairs did not change in interaction from G1

to S (type 5). In 10A, CT18 is a member of all three CT pairs that

increased in overall interaction from G1 to S and CT12 is a

member of 5 of the 7 CT pairs that decrease overall in interaction.

CT1 switched to more cells with multiple interactions in 4 of the 6

possible pairwise interactions in 10A and 3 of 6 in WI38. These

observed altered chromosome interactions are represented within

the overall model of CT interactions (see chromatic median

section).

Cell type differences in interaction profiles across the cell
cycle

While the overall interaction profiles of 10A to WI38 in either

G1 or S phase were not significantly different for the percent of

cells with one or more interactions (Fig. S5, Table S5), significant

differences (chi squared, p,0.001, Table S5) were found for the

corresponding single and multiple interaction profiles (Fig. 2 E–H,

Table S5) and when considering singles and multiples together. In

comparing the 10A and WI38 single interaction profiles, 12 (G1)

and 9 (S) of the 21 pairwise CT combinations were different by .

20% (Fig. 2 E,G). For the multiple interaction profiles, 13 (G1)

and 14 (S) of the 21 CT combinations were different by .20%

(Fig. 2F,H). When considering both single and multiple interaction

profiles together, 10 pairwise CT interactions were significantly

different in G1 (Fig. 2E,F, Table S6, chi-square, p,0.05,), and 11

were significantly different in S (Fig. 2G,H, Table S6, chi-square,

p,0.05). Interestingly, the interaction profiles in each cell type

changed in a different way across the cell cycle. For example CT1–

4 was a member of type 3 in WI38, but was switched to the

opposite (type 4) in 10A (Fig. 3). Simulations displayed no

significant differences between 10A and WI38.

The preferred probabilistic model of CT interactions is
altered across the cell cycle and between cell types

The difference in the profiles of CT interactions between G1

and S phase of WI38 and 10A cells suggests reorganization in

interchromosomal interactions during the cell cycle. Furthermore,

it reinforces the concept of cell type specificity to CT organization

beyond the Go state. To investigate this further we used an

algorithm designed to determine the overall pattern of CT

interactions across the population of cells (see Materials and

Methods, Fig. S8). This program, termed the chromatic median,

represents each nucleus as a 14614 (7 CT for this study, 2

homologs per CT) binary matrix wherein a value of 1 indicates an

interaction and a value of 0 indicates the absence of an interaction.

It then determines the corresponding homologs across all nuclei

based upon the homologs’ interactions with all the other individual

chromosome heterologs under investigation, thus switching the ‘a’

and ‘b’ labels for homologs based on its interactions with other

Figure 3. Alterations in interaction profiles from G1 to S phase. Calculation of the ratio between pairwise CT (S:G1) reveals different
alterations of CT interactions from G1 to S. Some alterations demonstrate an overall increase (type 1) in interaction while others have an overall
decrease in interaction (type 2). Others switch from having greater levels with a singular interaction to those with more nuclei with multiple
interactions (type 3) or vice versa (type 4). Others do not change from G1 to S (type 5). Values are color coded with green increasing the most from G1
to S and red decreasing the most. The types of alterations in interaction are displayed for WI38 and 10A in the center rows.
doi:10.1371/journal.pcbi.1003857.g003

Alterations in Interchromosomal Networks across the Cell Cycle
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CT. Subsequently, we determine the percent of cells that contain

an interaction for each of the 91 positions in the matrices (Fig. 5).

Within the resulting median matrices, we found hot and cold spots

that range from 0 to 62% of input cells (Fig. 5). Random

simulations did not show hot spots and the range of values was

approximately 2.3 fold less than experimental values (0–27%, Fig.

S9).

To determine a preferred probabilistic model of CT interac-

tions, thresholding was performed on the matrices at 32 (WI38)

and 31% (10A) association. This enriched for the CT interactions

found at the higher levels among the total population. Moreover,

at these thresholds, there are no connections in randomizations of

input matrices or random simulations (Fig. S9). 15–18 CT

interactive connections were identified in both the 10A and

WI38 (Fig. 6). Comparison of the models generated from this

analysis revealed only modest differences between G1 and S phase

of WI38 cells, but massive differences across the cell cycle of 10A.

13 connections were shared between G1 and S of WI38, but only

3 were shared between G1 and S of 10A. The differences between

cell types were even more striking. Only 4 were shared in G1 and

none were shared in S phase. Thick connecting lines are within the

top one third of associations within the model Fig. 6). Sorenson’s

analysis [42] revealed that each individual nucleus contains on

average 39–42% of the connections displayed in these probabilistic

models (Fig. 6).

Since random simulations had much lower levels of interaction

than experimental (Fig. S9), we evaluated whether the high level of

interactions in the experimental data falsely lead to a model of

interactions instead of random interactions. After running the

chromatic median on randomized matrices, the range of values

(13–32%, Fig. S9) was approximately 3.3 fold lower than

experimental values which range from 0–62% (Fig. 5). The range

for experimental is 62 and the range for randomization was 19. 62

divided by 19 is 3.26. This demonstrates that the process of

determining corresponding homologs in a cell population with a

high degree of interactions does not artificially create a pattern of

those interactions.

Discussion

It is well established that histones are dynamically regulated

through a diverse array of modifications [43,44], which can result

in visual alterations in chromatin structure [45,46]. Chromatin

remodeling has been shown to control progression through the cell

cycle by regulating transcription of essential cell cycle genes

[47,48] and replication. For example, during S phase loosening of

chromatin structure enables the replication machinery to access

the DNA [49]. At a global level, as cells progress from early S to

mitosis, the chromatin becomes increasingly condensed and less

sensitive to DNase I [50].

Chromatin organization is also thought to be involved in the

compartmentalization of the genome and long range interaction

between genes [51]. These interactions have been shown to occur

in a transcription dependent manner to regulate gene expression

Figure 4. Patterns of multiple interactions of CT pairs. (A) Categories of multiple interactions of CT pairs for 2, 3 and 4 interactions are
illustrated; (B) the percent of multiple interactions that are type 2a, 2b, 3 interactions were calculated and are shown for WI38 and 10A. Green depicts
the highest levels of interaction between CT pairs and red the lowest. Chi-square test indicates many significant differences between 2A–2C between
CT pairs across the cell cycle and between cell types.
doi:10.1371/journal.pcbi.1003857.g004

Alterations in Interchromosomal Networks across the Cell Cycle
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[52–55]. Fundamental to these interactions is the arrangement of

chromatin into discrete chromosome territories (CTs) in the

interphase nucleus (for review see, [18]). Despite this progress, our

understanding of the spatial positioning of the CTs, their

interchromosomal associations and the resulting influence on gene

regulation is less clear [7–14,56–58]. For example, only a few

reports have investigated whether there are preferred interchro-

mosomal positional arrangements between CT [19–29]. However,

the majority of these studies were primarily focused on the gravity

centers of CT which may not reflect their interactions at their

interfaces and/or were limited to 3 chromosomes per nucleus.

Earlier reports suggested a high degree of stability of the large

scale arrangement of chromatin in the cell nucleus [30–35] and

during the cell cycle [36,37]. If specific interchromosomal

interactions are involved in gene expression, however, alterations

in these interactions should occur during the cell cycle in

coordination with the known changes in gene expression [59–

62]. Detection of positional changes during the cell cycle of in vivo

labeled CT regions is consistent with this possibility [36,38].

However, the identity of the CT could not be determined in these

previous studies.

To directly address whether specific CT interactions are

altered across the cell cycle, we examined the CT spatial

positioning and interchromosomal associations using reFISH

[24] to concurrently label 7 CT (1,4,11,12,16,17,18) in the G1

and S phases of WI38 lung fibroblast and MCF10A human

breast epithelium cells. An integrated suite of in-house

developed software [24,63] and a new 3D distance measure-

ment program termed eFISHent were then applied to the

collected images to generate an extensive database of distance

measurements. A new data mining and pattern recognition

algorithm termed the chromatic median [39] was then applied

to determine whether there is an overall preferential organiza-

tion of the CT interactions.

Figure 5. Chromatic median analysis of chromosome interactions in the cell cycle of WI38 and 10A. The chromatic median algorithm
determines correspondence between homologs across nuclei based upon their interactions with other CT. This algorithm determined a median
matrix for CT interactions in WI38 (A–B) and 10A (C–D) in G1 (A, C) and S phase (B,D). Each cell in the matrix represents the percent of input nuclei
that have an interaction between those homologs. The values are color coded on a colorscale from low (red) to high (green).
doi:10.1371/journal.pcbi.1003857.g005

Alterations in Interchromosomal Networks across the Cell Cycle
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Figure 6. Preferred probabilistic network models of chromosome interactions in the cell cycle of WI38 and 10A. Thresholding of the
WI38 (32%) and 10A (31%) matrices above a level where there are no connections in random simulations or randomizations of input matrices or
random simulations level interactions (Fig. S9) reveals 14–18 CT interactions in G1 of WI38 (A, E), S of WI38 (B, F), G1 of 10A (C, G), and S of 10A (D,

Alterations in Interchromosomal Networks across the Cell Cycle
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Radial positioning of chromosome territories
The radial positioning of genes has been suggested to be

functionally linked to gene expression. In support of this proposal,

highly expressed genes generally are found more internal than

inactive genes [64–70] and heterochromatin is found preferentially

at the nuclear periphery [71,72]. The major contributing factors

involved in peripheral positioning of CT are posited to be size

[20,24,25,29,73], gene density [74,75], or both these properties

[76]. Differences in the nuclear shape of cells may also play a role

in CT radial positioning [20,77].

While it has been reported that CT change their radial

organization when cells re-enter the cell cycle from quiescence

[78,79], our studies demonstrate that CT do not change their

radial positioning during the cell cycle. In contrast, we found that

the radial positioning of some CT are different between cell types.

These differences between cell types are stage specific. For

example CT11 and CT17 are not significantly different in their

radial positioning comparing WI38 and 10A in G1, but are in S

phase. Importantly, random simulations demonstrated that

differences in nuclear shape or CT volume do not account for

these changes in radial positioning.

Alterations of interchromosomal organization in the cell
cycle

Previous studies of interchromosomal associations based on

measurements of the pairwise border distances between individual

CT, have suggested an overall non-random nature of these

interactions [19–29]. Our analysis of interchromosomal associa-

tions has revealed for the first time, multiple CT associations with

an average of ,3 interactions out of a maximum of 12 for each

CT copy or 20–30% of the other heterologs in the CT subset. This

extrapolates to 9–13 interactions per chromosome out of the 44

possible heterologous interactions at the whole genome level. Thus

each CT in the nucleus is interacting with an amazingly high

proportion of the other CTs. There was no relationship between

chromosome size and total levels of interaction. For example, even

though chromosome 1 is approximately 3.2 fold larger in sequence

length than chromosome 18, both have similar levels of

interaction. The radial positioning of CT may allow for this

equivalent level of interaction as larger CT have large borders with

the nuclear periphery. In this view, smaller CT have a larger

proportion of their surface area free for interaction with other CT

than larger CT. Moreover, the gene rich CT17 interacts with

significantly more CT than the gene poor CT18 or CT1. This

suggests a possible relationship of the level of interchromosomal

associations for a CT to its gene density and/or activity.

While CT17 interacts with more CT in experimental nuclei, in

random simulations that account for nuclear and CT volumes, as

well as general irregularity in CT shapes, we do not find a gene

density correlation to interaction. In a separate investigation from

our group we have reported a large variation in chromosome

shapes that are related to gene density. Thus gene-rich chromo-

somes are much more irregular in shape than gene poor ones

(Sehgal et al, 2014, manuscript under review). This investigation

found that CT17, for example, was much more irregular in shape

than the gene poor CT18 in WI38 cells (Sehgal et al., 2014

manuscript under review) Such irregularity could lead to the

greater level of interactions displayed by CT17. In this model,

extensions from gene rich CT could allow for greater levels of

interactions with other CT. It is further proposed that these

interchromosomal interactions are critical for the coordinated

regulation of the genome. Determining the intrachromosomal

organization of CT17 during the cell cycle would enable

identification of regions which are frequently external to CT17

and may, therefore interact with regions within other CT.

While the total level of CT interactions did not change from G1

to S, there were significant alterations in singular and multiple CT

pairwise interactions. Five types of alterations were determined

from G1 to S. Some CT pairs increased in both singular and

multiple interactions (type 1), while others decreased in both (type

2). Other CT pairs increased in singular interactions while

decreasing in multiples (type 3) or vice versa (type 4). Finally,

some CT pairs did not change in their level of interactions (type 5).

Moreover, cell type differences were detected for the cell cycle

alterations. For example CT1–4 are type 3 in WI38, but type 4 in

10A. Only 4 of the 21 pairwise interactions are altered similarly in

WI38 and 10A (eg. CT1–16, Fig. 3).

Previous reports have demonstrated cell type specificity to

chromosome interactions in G0 cells [24,25]. We, therefore,

applied a novel computational data mining and pattern recogni-

tion approach termed the chromatic median to identify overall

patterns of global interactions across the cell cycle in both cell

types. A maximum of 18 out of 91 possible connections were found

to be above random simulations and randomizations of the input

population. While 13 connections within the model of WI38 in G1

are shared in S, only 3 are shared in 10A from G1 to S (Fig. 6).

Between cell types, only 4 were shared in G1 and none were

shared in S indicating cell type differences across the cell cycle.

This suggests that certain cell types may demonstrate more

alterations in interchromosomal organization across the cell cycle

than others.

Our findings support the presence of a higher order probabi-

listic chromosome code or network of CT interactions inside the

cell nucleus [24,25,29]. It is proposed that the preferred

interchromosomal association network defined by this code is

maintained epigenetically and facilitates specific genomic expres-

sion programs characteristic of the particular cell type such as the

fibroblast and epithelial cells of this study. The probabilistic nature

of the overall interactive network could in turn provide flexibility

for alterations in the network and contribute to corresponding

changes in the overall genomic program. Consistent with this view,

the interchromosomal networks are dynamically altered during the

cell in conjunction with gene expression changes [59–62].

While many studies using microscopy have demonstrated

simplistic and distinct chromosome clusters of interaction involv-

ing a limited number of interfaces between CT [5,6,10,14,18], our

studies have demonstrated a complex network of interactions with

a high degree of interchromosomal interactions [24,25,29]. In

comparison, studies using chromatin capture techniques, such as

genome-wide Hi-C, have also demonstrated a complexity to

interchromosomal interactions. Initially these studies were per-

formed as a population average and demonstrated interactions

H). Red lines are unique connections in G1 or S phase (A–D), blue lines indicate unique connections between cell types in each stage of the cell cycle
(E–H) and black lines represent common connections. Comparison of the models generated from this analysis indicate more differences between G1
and S phases in 10A compared to WI38 cells and virtually completely different networks between cell types across the cell cycle (I). Thick connections
are within the top third of percent pairwise interactions within the model. Connections of medium thickness are in the middle third and thin lines are
within the bottom third. Sorensons analysis [42] determined that a given nucleus will contain an average 39–42% of the connections within these
models.
doi:10.1371/journal.pcbi.1003857.g006
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between all possible pairs of chromosomes [80–84]. More recently

using single cell Hi-C, Nagano et al, 2013 discovered cell-specific

clusters between domains on different chromosomes [85]. These

domains were found to be of similar level of activity such that

active domains preferentially paired with active (and inactive

domains with inactive). Notably, the authors identify multiple

domain–domain contacts between CT interfaces. While single-cell

Hi-C also demonstrates cell-to-cell variability, our findings indicate

that particular homologs of CT display patterns of interaction

across the population of cells (Fig. 5, 6). Within a pair of CT, we

further define the pairwise interaction profile wherein certain CT

pairs can demonstrate a greater degree of multiple interactions

than others (Fig. 2, 3). This suggests that while some of these

multiple interacting domains between CT interfaces are possibly

on the same interacting homologs, they may be distributed

between the four possible pairwise interactions (especially on CT

pairs that interact as multiples more frequently). In direct

agreement with our findings, this investigation similarly found a

high level of interchromosomal interactions and that the total level

of interactions between chromosomes was independent of

chromosome sequence length [85].

Using a on synchronized HeLa cells, it was demonstrated on a

population level that the intrachromosomal topologically associ-

ating domains identified by this approach are largely maintained

across the cell cycle [86]. Further studies using Hi-C approach for

studying interchromosomal interactions at the genomic level in

both cell populations and at the single cell level [80,85], should

enable more detailed definition of the many alterations in

chromosomal interactions identified in our investigation. In

particular, differences between cells in different stages of the cell

cycle within a population could be distinguished via cell sorting

followed by single cell Hi-C [85].

Materials and Methods

Cell culture
MCF10A cells (Barbara Ann Karamanos Cancer Institute,

Detroit, MI) were grown in DMEM/F-10 media supplemented

with 5% horse serum, 2% insulin, EGF, hydrocortisone, cholera

enterotoxin, and 1% penicillin/streptomycin. WI38 was cultured

in DEME/F-10 media with 5% FBS and 1% penicillin/

streptomycin. All cell lines were grown at 37uC in a 5% CO2

incubator.

3D microscopy and reFISH image analysis
Seven chromosome territory pairs were analyzed by sequential

rounds of chromosome territory FISH labeling, image collection,

stripping and re-FISH as previously described [24]. In the final

round EdU replication labeling [40] was used to discriminate

between cells that are in S phase versus those that were not.

Geminin which labels cells in S/G2/M [41] was used to exclude

cells that are in G2. Those cells which are geminin+/EdU- were

not analyzed. Images were collected on an Olympus BX51

fluorescence microscope equipped with a Sensicam QE (Cooke

Corporation, Romulus, MI) digital CCD camera, motorized z-axis

controller (Prior, Rockland, MA) and Slidebook 4.0 software

(Intelligent Imaging Innovations, Denver, CO). Three dimensional

z stacks (0.5 mM intervals) of three or four chromosome territories

per in situ hybridization were collected and deconvolved with a

NoNeighbor algorithm in Slidebook 4. Images from each round of

labeling were aligned by comparing x,y,z coordinates of landmark

refractile structures in corresponding phase contrast using

registration software developed in our laboratory [24,63] and

with imageJ’s translation function. This process allows two

different sets of images of the same nucleus to be combined into

a single image set. Accuracy of matching was then verified by

merging of DAPI images from different rounds followed by

imageJ’s line profile tool.

The chromosome territories were segmented into binary images

using ImageJ’s threshold feature. Three different criteria were used

to distinguish between signal and noise including: (1) algorithms

that process the intensity histograms using ImageJ threshold

reference isodata; (2) user selection of a narrow range of intensities

corresponding to the chromosomes borders; (3) decreasing the

threshold until the captured pixels are no longer connected to the

chromosome. All three of these criteria result in nearly identical

selection of chromosome signals into binary segmented images.

Next we developed a program termed eFISHent that reconstructs

the 3D shapes of CT based on well-known region labeling

algorithms to determine the boundary of each CT [87] and

subsequently measures many parameters within the nucleus. The

eFISHent program then measures in 3-D a large number of

parameters including: their volumes, volume overlap between

interacting CT, minimal border-to-border distances (pairwise

border distances, PBDs), distances between centers of gravity

(pairwise center distances, PCDs), distances between peripheries

and centers (PBCDs), the distance of the line projecting from the

nuclear center through the center of the chromosome/gene to the

nuclear periphery (subtended radii, SR), minimal peripheral

distance to the nuclear periphery (MPD), centroid xyz coordinates,

and major and minor axes. This program is versatile since it will

measure all of these values for any given amount of input objects

simultaneously. For example, with 7 chromosomes labeled, as in

this study, it will measure the 18 homologs’ volumes, the nuclear

volume, 252 pairwise heterologous distances (82 PBDs, 82 PCDs,

and 82 PBCDs), 21 homologous distances (7 PBDs, 7 PCDs, and 7

PBCDs), 14 subtended radii, 14 MPDs, 14 centroid coordinates,

and 28 major/minor axes. For validation we simulated data of

known distances and found that our program accurately measures

all distance combinations. We also used conventional measure-

ment techniques in imageJ to validate distance measurements

made by eFISHent in experimental FISH between BAC probe

labeling.

Since the volume determination of each homolog in a CT pair

are never exactly the same, this program enables us to distinguish

‘‘homolog a’’ as having a larger volume than ‘‘homolog b’’. This

results in four pairwise distances for each CT (e.g., 1a-2a, 1a-2b,

1b-2a, 1b-2b). Any given nucleus, therefore, will have between 0 to

4 associations for each CT pair. From this data, the percentages of

pair-wise associations based on PBD measurements were calcu-

lated using a threshold distance of #4 pixels or #0.28 mM as the

minimal nearest 3-D distance for a ‘‘positive interaction’’ [24].

,90% of these values for each chromosome pair were ‘‘zero’’

pixel values. We have found that all zero pixel values represent a

degree of overlap or co-localization between the two CT under

measurement [29]. Thus the 4 pixel threshold used in these studies

for nearest neighbor CT pairs is indicative of interchromosomal

interactions and not simply the close proximity of CTs.

Random simulation of nuclei and chromosome territories
While many simulations are done using an artificial nucleus and

preset volumes run many times [24], to more accurately mimic the

experimental conditions, we have simulated the precise nuclear

and CT volumes and shapes for each image set. All images from

each given nucleus are contained within its own separate folder.

The simulation program reads the volumes of the CT within each

CT image, selects a point at random from within the DAPI mask

and grows asymmetrically from that point until the volume and
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shapes similar to the experimental CT in that given nucleus are

reached. If a CT reaches the nuclear border it no longer grows in

that direction - ensuring that all simulated CT are within the

nucleus.

Chromatic median analysis and modeling chromosome
territory associations

Previously an algorithm called the generalized median graph

(GMG) was developed to determine the probabilistic best fit model

for global interactions of chromosome in the Go stage of WI38

human fibroblasts [24,25,88]. The GMG considered all possible

association matrices (i.e., all permutations of the association

graphs) and simultaneously optimizes the associations of all CT

under consideration. To tackle a larger population of cells with

more CT and enhance the theoretical guarantee of the quality of

the solution, we have developed a new algorithmic technique

termed the chromatic median or CM which uses combinatorial

optimization to infer the common chromosome interaction pattern

or network for the overall cell population [39]. While the GMG

used integer linear programming and rounding techniques, the

CM is more accurate and robust. It is based on a number of new

techniques, such as semi-definite programming, multi-level

rounding, geometric peeling, and adaptive sampling [89,90].

The CM technique results in much better approximation ratios

and yields near optimal solutions in all tested random or real

datasets [39].

Details of the CM technique and its mathematical basis are

presented elsewhere [39]. In brief, this approach represents each

nucleus as an 14614 (7 CT for this study, 2 homologs per CT)

binary matrix wherein a value of 1 designates an interaction and

a value of 0 indicates the lack of an interaction. This is illustrated

in Figure S8. The objective is to find the best permutation (re-

categorizing from ‘‘a’’ to ‘‘b’’ and vice versa for all CT pairs

within each nucleus) which will align the matrix of each input cell

with that of the common pattern. The new CM algorithm

considers all possible permutations of the interactions and

simultaneously optimizes the interactions of all pairs of heterologs

and homologs. For example, if there is a high frequency of nuclei

wherein one homolog of CT4 associates with CT12, 16, 18, while

the other homolog associates with CT1, 11, and 17, it will classify

the first as CT1a and the second as CT1b across all cells. This

process is done simultaneously for all CT studied to maximize

similarity across the population. The number of input cells which

have an interaction is then determined for each of the possible

pairwise combinations.

After permutation analysis, the CM gives an output matrix

which lists the percent of cells that have that given interaction.

Using excel’s conditional formatting, each interaction is filled with

a color ranging from green (high/hot spots) to red (low/cold spots).

Yellow indicates moderate values. After setting a threshold for

interactions, probabilistic models are generated of preferred CT

interactions among the entire subset of CTs. A simple example of

this process is illustrated in Figure S8.

Supporting Information

Figure S1 Nuclear volumes and radial positions of CT
in the cell cycle. (A) The percent difference in CT absolute

volumes from G1 to S are shown. The volume differences as a

percent of the nucleus are also shown. (B) The relationship

between radial positioning (% subtended radii) and sequence

length (B) or gene density (C) in WI38 is shown. Blue is G1, Red is

S, and green are random simulations.

(TIF)

Figure S2 Comparison of experimental pairwise center
distances (PCD) between all combinations. Experimental

pairwise distances between CT centers were normalized to the

major axis. Each position within the matrix represents a

comparison between the pairwise CT centers in 10A G1 (A),

10A S (B), WI38 G1 (C), and WI38 S (D). Green squares represent

p,0.05 and red p,0.001.

(TIF)

Figure S3 Comparison of pairwise center distances
(PCD) between all combinations in random simulations.
Each position within the matrix represents a ttest comparison

between the normalized pairwise CT centers in random

simulations of 10A G1 (A), 10A S (B), WI38 G1 (C), and WI38

S (D). Green squares represent p,0.05.

(TIF)

Figure S4 Distributions of total interactions between
CT. The number of interactions between each CT pair and other

CT studied was determined. The distributions of interactions ($1,

$2, etc.) for each CT are shown for 10A G1 (A), 10A S (B), WI38

G1 (C), and WI38 S (D), and random simulations of 10A G1 (E) or

10A S (F).

(TIF)

Figure S5 Interaction profiles of CT ($1 interaction).
The percent of cells with at least one interaction in WI38 (A) and

10A (B) are shown. Blue bars are G1 and red S. Chi square p

values are shown for the difference between G1 and S (C).

(TIF)

Figure S6 Interaction profile of CT in random simula-
tions in G1 and S phase of WI38. Simulations were performed

where CT of the same volume were grown asymmetrically

simulating CT morphology inside the experimental nuclei (see

materials and methods). The percent of cells with at least one

interaction (A), only 1 interaction (B) and greater than 2

interactions (C) are shown. Blue bars are random simulations of

G1 and red are random simulations of S. Error bars are SEM.

(TIF)

Figure S7 Interaction profile of CT in Random simula-
tions in G1 and S phase of 10A. The percent of cells with at

least one interaction (A), only 1 interaction (B) and greater than 2

interactions (C) are shown for random simulations using 10A G1

or S cells. Blue bars are random simulations of G1 and red are

random simulations of S. Error bars are SEM.

(TIF)

Figure S8 Schematic diagram of chromatic median
analysis. The interactions between CT in each input nucleus

are represented as a binary code in input matrices. The input into

the chromatic median program is defined based upon CT volumes

with the larger CT homolog termed ‘‘a’’ and the smaller ‘‘b’’ (A).

After a permutation analysis that defines homolog a versus

homolog b based upon each homologs interaction with other CT

(B), the percent of cells with an interaction between all pairwise

combinations is determined (C). CT homologs that are switched

are indicated by double arrows and are outlined in bold in their

corresponding matrices. The values are color coded on a color-

scale from low (red) to high (green).

(TIF)

Figure S9 Chromatic median analysis of random sim-
ulations and randomizations in G1and S. The chromatic

median algorithm determines correspondence between homologs

across nuclei based upon which other CT it interacts. This

algorithm determined a median matrix for CT interactions for

Alterations in Interchromosomal Networks across the Cell Cycle

PLOS Computational Biology | www.ploscompbiol.org 11 October 2014 | Volume 10 | Issue 10 | e1003857



random simulations that put CT of similar volume within the

DAPI signal in WI38 (A–B) and 10A (C–D); in G1 (A, C) and S

phase (B,D). Next we randomized the input matrices of the

experimental input cells for WI38 G1 (E), WI38 S (F), 10A G1 (G),

and 10A S (H). Each cell in the matrix represents the percent of

input nuclei that have an interaction between those homologs.

Values are color-coded on a color-scale from low (red) to high

(green).

(TIF)

Table S1 Chi-square values comparing the overall
patterns to uniform averages. The overall patterns were

compared to their uniform averages. Chi-square p values are

shown for experimental and random simulations. Green p,0.05,

yellow p,0.01, red p,0.001.

(DOCX)

Table S2 Chi-square values comparing the overall
patterns between G1 and S. The chi-square p values are

shown comparing the overall patterns in G1 to S in 10A to WI38

and in random simulations for G1 versus S. Green p,0.05, yellow

p,0.01, red p,0.001.

(DOCX)

Table S3 Chi-square values of individual CT pairs
across the cell cycle. The chi-square p values are shown

comparing G1 to S for each individual CT pair in WI38 and in

10A for differences in the percent of cells with only 1 interaction,

$2 interactions, and when considering both = 1$2 interactions

together. Purple p,0.10, Green p,0.05, yellow p,0.01, red p,

0.001.

(DOCX)

Table S4 Homologous versus heterologous Interac-
tions. The percent of total interactions for heterologous (4

possible per cell) and homologous (1 possible per cell) CT

interactions were ranked from lowest to highest in G1 of WI38

or 10A. Heterologous interactions are normalized for the fact that

there are 4 possible interactions. Homologous CT interactions are

written in magenta. The values are color coded on a color-scale

from low (red) to high (green).

(DOCX)

Table S5 Chi-square values comparing the overall
patterns between cell types within G1 or S. The chi-square

p values are shown comparing the overall patterns in WI38 to 10A

in G1 and in S and comparing random simulations of WI38 and

10A. yellow p,0.01, red p,0.001.

(DOCX)

Table S6 Chi-square values for individual CT pairs
between cell types. The chi-square p values are shown

comparing WI38 to 10A for each individual CT pair in G1 and

in S for differences in the percent of cells with only 1 interaction,

$2 interactions, and when considering both = 1$2 interactions

together. Purple p,0.10, Green p,0.05, yellow p,0.01, red p,

0.001.

(DOCX)

Dataset S1 Distance and volume measurements for CT and

nuclei.

(XLSX)
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