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Abstract
Control risk regression is a diffuse approach for meta-analysis about the effec-
tiveness of a treatment, relating the measure of risk with which the outcome
occurs in the treated group to that in the control group. The severity of illness is
a source of between-study heterogeneity that can be difficult to measure. It can
be approximated by the rate of events in the control group. Since the estimate is
a surrogate for the underlying risk, it is prone to measurement error. Correction
methods are necessary to provide reliable inference. This article illustrates the
extent of measurement error effects under different scenarios, including depar-
tures from the classical normality assumption for the control risk distribution.
The performance of different measurement error corrections is examined. Atten-
tion will be paid to likelihood-based structural methods assuming a distribution
for the control risk measure and to functional methods avoiding the assumption,
namely, a simulation-based method and two score function methods. Advan-
tages and limits of the approaches are evaluated through simulation. In case
of large heterogeneity, structural approaches are preferable to score methods,
while score methods perform better for small heterogeneity and small sam-
ple size. The simulation-based approach has a satisfactory behavior whichever
the examined scenario, with no convergence issues. The methods are applied
to a meta-analysis about the association between diabetes and risk of Parkin-
son disease. The study intends to make researchers aware of the measurement
error problem occurring in control risk regression and lead them to the use of
appropriate correction techniques to prevent fallacious conclusions.
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1 INTRODUCTION

Meta-analysis instruments are commonly adopted to evaluate the effectiveness of a treatment in clinical trials compar-
ing a treatment group and a control group.1,2 Detecting and explaining heterogeneity between the studies are crucial, as
heterogeneity can be a consequence of several factors, including differences in study designs, characteristics of patients
enrolled, and clinical interventions. Although many sources of study heterogeneity can be quantified, some factors can
be difficult to measure, as, for example, the severity of illness in patients.3 An approximation of the severity of illness
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is given by the underlying risk or baseline risk for the patients in the control condition, a measure of the rate at which
the outcome of interest occurs. This kind of information is typically not available at the population level, but it can be
measured from the studies included in the meta-analysis through the control rate, that is, the rate of events in the control
group.1-6 The inclusion of such information in the meta-analysis model gives rise to the so-called control risk regression.
Control risk regression is an example of meta-regression,1 an extension of meta-analysis obtained through the inclusion
of study-specific covariates useful to quantity the contribution of the differences among the studies to the overall hetero-
geneity. Criticism toward the use of meta-regression points out the risk of low power to detect relationships or of data
dredging.7 Nevertheless, meta-regression is commonly adopted as an efficient alternative to the simple subgrouping of
studies with different characteristics.8,9 The use of a surrogate for the measure of risk of the outcome from the studies
included in the meta-analysis suggests that the available information is affected by error. The most known effect of mea-
surement error is the attenuation bias, that is, a biased toward zero estimate of the estimator of the coefficient associated to
the risk measure in control risk regression, under an additive and homoscedastic error on the baseline risk measure, see,
for example, van Houwelingen et al.1 This article investigates the effects of measurement errors in inferential procedures
including estimates of the parameters of interest in control risk regression, the evaluation of the associated variability,
and the construction of confidence intervals. Attention is paid to classical scenarios where normality is assumed for the
control risk distribution and to nonclassical scenarios with departures from the normality assumption. Correcting for the
presence of measurement error is a necessary step for inference to be reliable. The last decade has seen the development
of several approaches to face the measurement error problem in control risk regression. Proposals are primarily inspired
by solutions developed in the long-established measurement error literature,10-13 which distinguishes between structural
techniques, when a distribution for the mismeasured covariate is assumed, and functional techniques, that are free of
assumptions on the mismeasured covariates. A comparison of some of the proposed correction methods has been carried
out in Ghidey et al,14 namely, a structural solution represented by the likelihood approach under a Normal distribution for
the underlying risk,15-17 the method of moments, and two functional methods, represented by conditional score and cor-
rected score functions.11 The comparison performed through simulation includes the underlying risk following a Normal
distribution or a mixture of Normals.

The article intends to deeply investigate the performance of the correction methods in control risk regression under
different scenarios, with the aim of providing suggestions to choose the appropriate solution, in this way avoiding the risk
of fallacious conclusions. The article extends the previous comparison carried out in Ghidey et al14 by including other
measurement error solutions beyond the functional methods. Namely, the article considers the likelihood-based approach
when the classical Normal distribution for the control risk measure is assumed and when a flexible alternative represented
by the Skew-Normal distribution is adopted17 and a simulation based-technique.18 All the approaches are compared to
the uncorrected weighted least squares regression ignoring the presence of measurement errors. The comparison is per-
formed through simulation, including the underlying risk following a Normal distribution, a Skew-Normal distribution
or a mixture of Normals, in scenarios with increasing sample size and between-study heterogeneity. In addition, data are
simulated according to a two-step procedure with the aim of reflecting the control risk generation mechanism, instead of
the usual simulation strategy which samples data directly from the model considered in the meta-analysis.

Characteristics of the competing approaches, either in terms of accuracy of inferential procedures and applicability
with interest on convergence issues, are discussed. The methods are illustrated in a real data example about the association
between diabetes and risk of Parkinson disease.

2 BACKGROUND

Consider a meta-analysis of n independent studies comparing a treated group and a control group, with the aim of eval-
uating the effectiveness of a common treatment. Let 𝜂i and 𝜉i, i = 1,… ,n, denote the true unobserved measure of risk in
the treatment group and the true unobserved measure of risk in the control group for study i, respectively. Common mea-
sures of risk are the log-odds or the log-event rate. The true unobserved measure of risk in the control group 𝜉i is often
called control risk or underlying risk.2 A well-established and computationally convenient model relating 𝜂i and 𝜉i is the
linear regression model2,5,15,19

𝜂i = 𝛽0 + 𝛽1𝜉i + 𝜀i, 𝜀i ∼ N(0, 𝜏2), (1)

where 𝜏2 is the residual variance describing the variation among studies in the treatment rate unexplained by the under-
lying risk, that is, due to factors different from the severity of illness. Let the sampling error 𝜀i be independent of 𝜉i.
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Parameter 𝛽1 represents the interest of the analysis, as it describes the relationship between the treatment rate and the
underlying risk. The case 𝛽1 = 0 indicates a treatment rate independent of the underlying risk, that is, a constant treatment
rate equal to 𝛽0, while the case 𝛽1 = 1 indicates that when the risk in the control condition increases by a given amount,
then the risk in the treatment group increases by the same amount. A different model can be formulated that considers
the relationship between the treatment effect and the underlying risk. If the treatment effect is 𝜂i − 𝜉i, then model

𝜂i − 𝜉i = 𝛽∗0 + 𝛽∗1 𝜉i + 𝜀i, 𝜀i ∼ N(0, 𝜏2)

is a reparameterization of model (1), with (𝛽∗0 , 𝛽
∗
1 )
⊤ = (0, 0)⊤ being an indication of no treatment effect, see Ghidey et al.14

Increasing values of 𝛽∗1 reflect a larger treatment effect for subjects with larger risks. Model formulation (1) has the advan-
tage of independence between the risk measure in the treatment group and the risk measure in the control group, as they
are computed on different subjects. The alternative formulation, conversely, gives rise to dependence between the mea-
sure of the treatment effect and the control risk, with the possibility of spurious correlation, see van Houwelingen et al1

and references therein. In the rest of this article, we will focus on relationship given in model (1). Inference is typically
performed using the estimates �̂�i and 𝜉i of 𝜂i and 𝜉i, respectively, obtained as summary measures provided by each study.
The simplest approach for analysis4 is a weighted least squares regression, with weights given by the inverse of the vari-
ance of the treatment rate. Large criticism toward the weighted least squares regression highlights that the approach does
not account for the measurement error affecting �̂�i and 𝜉i as they are estimated rather than true values obtained from
each study included in the meta-analysis in form of summary measures.15 The main consequence of measurement error
in both the variables of model (1) has been long recognized an estimate of 𝛽1 biased toward zero.1,20 Actually, there are
further effects of measurement errors on inferential conclusions, as it would be illustrated in the simulation studies. Over
the past few decades, a huge literature has focused on the effects of measurement errors affecting covariates in regres-
sion models. Notable examples are included in the book-length reviews of measurement error correction techniques by,
for example, Gustafson,10 Carroll et al,11 Buonaccorsi,12 and Yi,13 see also Keogh et al21 and Shaw et al.22 Consequences
of ignoring the errors in variables are various, with negligible to substantial effects on inferential conclusions. The most
known effect is the attenuation phenomenon, that is, a biased toward zero estimate of the slope in simple linear regres-
sion model when the covariate is mismeasured. The attenuation phenomenon occurs in case the measurement error
affecting the covariate is classical and additive, that is, the observed measure X∗ is the sum of the true unobserved covari-
ate X plus an error component U, where U is independent of X , with zero mean and constant variance, for example,
Buonaccorsi.12(Chapter5). Outside this situation, as, for example, in case of nonlinear models or more complex error struc-
tures, effects are unpredictable (eg, Carroll et al11(Chapter3)) and typically include reduced power of tests and empirical
coverage probabilities far from the nominal level, usually underestimating it. When the unbiased and homoscedastic mea-
surement error affects the response variable, consequences in linear regression models do not typically include bias of the
estimators. The main effect is an increased variability of the observed data about the least squares fitted line if compared
to the error-free data. Inferential procedures such as tests and confidence intervals remain valid, although less powerful.
See, for example, Carroll et al.11(Chapter15)

In control risk regression, information available from each study included in the meta-analysis, either �̂�i or 𝜉i, is a
summary measure of the outcome risk for the subjects belonging to that study. Accordingly, the measure is an estimate of
the real 𝜂i or 𝜉i affected by the variability associated to the estimation process. In contrast to much of the literature focused
on mismeasured covariates, measurement errors in control risk regression affect both the covariate and the response,
as Ghidey et al14 point out. Issues in this framework have been relatively less explored and typically refer to situations
where the mismeasured variables are independent, for example, Buonaccorsi.12(Chapter4) In control risk regression, con-
versely, we cannot assume that the error in 𝜂i and the error in 𝜉i are independent, as they can reflect characteristics of the
measurement procedure in the patients enrolled in the same study included in the meta-analysis.

3 CORRECTION METHODS

Consider the measurement error model specifying the relationship between error-prone estimates (�̂�i, 𝜉i)⊤ based on study
i and the corresponding error-free unobserved variables (𝜂i, 𝜉i)⊤. A common choice is the bivariate Normal specification,
namely, (

�̂�i

𝜉i

)||||||
(
𝜂i

𝜉i

)
∼ Normal2

((
𝜂i

𝜉i

)
,Γi

)
, (2)
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where the within-study variance/covariance matrix Γi is specified using single study information. Model (2) assumes
that (�̂�i, 𝜉i)⊤ is an unbiased measure of the unknown (𝜂i, 𝜉i)⊤, with an additive component accounting for residual vari-
ation, due, for example, to study characteristics in observational studies. In the rest of this article, the within-study
variance/covariance matrix Γi will be considered as known and denoted by Γ̂i. Matrix Γ̂i is equal to that obtained from
the information of each study. Considering the within-study variance-covariance matrix as known, when it is actually
estimated from each study, is a common and convenient assumption in classical meta-analysis, usually justified by large
sample size of each study in medical or epidemiological investigations. See Hamza et al23 and Bellio and Guolo24 for a
discussion and innovative solutions in case the assumption is not satisfied.

3.1 Structural methods

The structural approach to measurement error correction in terms of likelihood function requires the specification of
the distribution for the underlying risk in the control condition 𝜉i. Let pi(𝜉i; 𝛿) be the associated density function, with
parameter vector 𝛿. Let pi(𝜂i|𝜉i;𝜓) be the density function for the conditional outcome of the control risk regression model
(1), with𝜓 = (𝛽0, 𝛽1, 𝜏

2)⊤, and let pi(�̂�i, 𝜉i|𝜂i, 𝜉i; 𝛾i) be the density function for the conditional outcome of the measurement
error model (2), depending on the study-specific vector of parameters 𝛾i which consists of the known elements of Γ̂i. The
likelihood function for the whole parameter vector 𝜃 = (𝜓⊤, 𝛿⊤)⊤ is

L(𝜃) =
n∏

i=1
∫ ∫ pi(�̂�i, 𝜉i|𝜂i, 𝜉i; 𝛾i)pi(𝜂i|𝜉i;𝜓)pi(𝜉i; 𝛿)d𝜂id𝜉i.

For computational convenience, a Normal distribution for 𝜉i is usually assumed 𝜉i ∼ N(𝜇, 𝜎2), so that 𝛿 = (𝜇, 𝜎2)⊤. This
leads to a closed-form expression of L(𝜃) (eg, Guolo17),

L(𝜃) =
n∏

i=1
pi(�̂�i, 𝜉i; 𝜃),

where pi(�̂�i, 𝜉i; 𝜃) is the density function of a bivariate Normal distribution(
�̂�i

𝜉i

)
∼ Normal2

((
𝛽0 + 𝛽1𝜇

𝜇

)
, Γ̂i +

[
𝜏2 + 𝛽2

1𝜎
2 𝛽1𝜎

2

𝛽1𝜎
2 𝜎2

])
.

Despite the computational advantage of a Normal specification for the underlying risk distribution, the choice does not
allow to account for common forms of non-normality arising in applications, including skewness, bimodality, heavy
tails, see for example, Guolo17 and Lee and Thompson.25 Specifications of the underlying risk distribution other than the
Normal have been proposed in the literature. They include flexible solutions based on mixture of Normals,15 semipara-
metric specification,16 and the Skew-Normal distribution.17 While the proposals are shown to be satisfactory in terms of
improved inference on variance components, computational difficulties related to the loss of the closed-form likelihood
function can discourage the applicability. In this article, we will focus on the Skew-Normal specification illustrated in
Guolo17 to deal with deviations from normality due to skewness. The approach has a feasible implementation and simu-
lation studies in Reference 17 suggest that it does not suffer from numerical instabilities. Moreover, in case the underlying
risk is actually normally distributed, then the Skew-Normal specification does not misrepresent the data as it includes
the Normal distribution as a special case. Finally, the choice does not limit the standard likelihood theory to be applied.

Consider the underlying risk 𝜉i following the Skew-Normal distribution,26 𝜉i ∼ SN(𝜇, 𝜎, 𝛼), with density function

p𝜉i(𝜉i; 𝛿) = p𝜉i(𝜉i;𝜇, 𝜎, 𝛼) = (2∕𝜎)𝜙{(𝜉i − 𝜇)∕𝜎}Φ{𝛼(𝜉i − 𝜇)∕𝜎}, (3)

where 𝛿 = (𝜇, 𝜎, 𝛼)⊤, 𝜇, 𝜎, 𝛼 denote, respectively, the location, the scale, and the shape parameter, and 𝜙(⋅) and Φ(⋅)
represent the standard Normal density and distribution functions, respectively. The likelihood function

L(𝜃) =
n∏

i=1
∫

R

p(�̂�i, 𝜉i|𝜉i; 𝛾, Γ̂i)p(𝜉i; 𝛿)d𝜉i (4)
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does not have a closed-form expression and a numerical integration is needed, for example, via a Gauss-Hermite quadra-
ture. Then, the maximum likelihood estimate (MLE) �̂� of the whole parameter vector 𝜃 can be obtained by optimization
routines in standard softwares.

In order to account for model misspecification, especially in terms of uncorrected specification of the distribution for
𝜉i, the standard errors of the MLE can be obtained using the sandwich formula, see for example, Guolo.17 Let 𝓁i(𝜃) be the
log-likelihood contribution of study i. The sandwich estimator of the variance-covariance matrix of �̂� is

cov(�̂�) = n−1J−1(𝜃)I(𝜃)J−1(𝜃)|𝜃=�̂� ,
where

J(𝜃) = n−1
n∑

i=1

𝜕2

𝜕𝜃𝜕𝜃 𝓁i(𝜃)

and

I(𝜃) = n−1
n∑

i=1

𝜕

𝜕𝜃
𝓁i(𝜃)

{
𝜕

𝜕𝜃
𝓁i(𝜃)

}
.

See, for example, Carroll et al.27(SectionA.6.1)

3.2 Functional methods

Differently from structural approaches, functional methods for measurement error correction do not make any
assumption on the distribution of the unobserved underlying risk 𝜉i. According to this view, parameters 𝜉1,… , 𝜉n are
interpreted as additional nuisance components to be estimated. Thus, the total number of parameters increases with
the sample size, giving rise to a framework where standard likelihood inference might fail, see for example, Severini.28

The use of functional methods has the advantage of robustness of the inferential conclusions to misspecification of
the control risk distribution, although at the price of a loss of efficiency of the results with respect to fully parametric
solutions.

3.2.1 Score functions

In order to face the problem of increasing number of parameters, Ghidey et al14 refer to the methodology of unbiased
estimating equations, by investigating two approaches developed in the measurement error literature and known as cor-
rected score approach and conditional score approach. Both methods produce consistent estimators that are M-estimators,
whose score function is unbiased in presence of measurement error, see also Carroll et al.11(Chapter7)

Starting from the estimating equations for (𝛽0, 𝛽1, 𝜏
2)⊤, Ghidey et al14 derive the weighted estimating equations

accounting for the size of the measurement error in study i. Let 𝜎2
�̂�i

and 𝜎2
𝜉i

denote the known variance of �̂�i and 𝜉i,
respectively. Then, the corrected score equations for (𝛽0, 𝛽1, 𝜏

2)⊤ are

n∑
i=1

�̂�i − 𝛽0 − 𝛽1𝜉i

𝜎2
�̂�i
+ 𝜏2

= 0,

n∑
i=1

(
�̂�i − 𝛽0 − 𝛽1𝜉i

)
𝜉i + 𝛽1𝜎

2
𝜉i

𝜎2
�̂�i
+ 𝜏2

= 0,

n∑
i=1

𝜎2
�̂�i
+ 𝜏2 + 𝛽2

1𝜎
2
𝜉i
−
(
�̂�i − 𝛽0 − 𝛽1𝜉i

)2

(
𝜎2
�̂�i
+ 𝜏2

)2 = 0.
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The corrected estimates of (𝛽0, 𝛽1, 𝜏
2)⊤ can be obtained through a Newton-Raphson algorithm and the associated stan-

dard error from the sandwich formula. The consistency of the resulting estimator is based only on the correct specification
of the first and second moments of the sampling error 𝜀i, without any distributional assumption on 𝜉i.

The conditional score approach developed in Stefanski and Carroll29 makes use of sufficient statistics to derive the
parameters estimators. Ghidey et al14 obtain the conditional score equations for (𝛽0, 𝛽1, 𝜏

2)⊤, namely,

n∑
i=1

�̂�i − 𝛽0 − 𝛽1𝜉i

𝜎2
�̂�i
+ 𝜏2

= 0,

n∑
i=1

(
�̂�i − 𝛽0 − 𝛽1𝜉i

)
𝜉i

𝜎2
�̂�i
+ 𝜏2

+
𝛽1𝜎

2
𝜉i

(
�̂�i − 𝛽0 − 𝛽1𝜉i

)2

(
𝜎2
�̂�i
+ 𝜏2

)(
𝜎2
�̂�i
+ 𝜏2 + 𝛽2

1𝜎
2
𝜉i

) = 0,

n∑
i=1

𝜎2
�̂�i
+ 𝜏2 + 𝛽2

1𝜎
2
𝜉i
−
(
�̂�i − 𝛽0 − 𝛽1𝜉i

)2

(
𝜎2
�̂�i
+ 𝜏2

)2 = 0.

As in the previous approach, the equations can be solved through a Newton-Raphson algorithm and the associated
standard error can be obtained through the sandwich formula.

Simulation studies in Ghidey et al14 suggest that the approaches perform similarly when the measurement error
is small. When the measurement error is large and the number of studies recruited in the meta-analysis is small, the
conditional score approach is preferable as the associated estimator is more efficient.14

3.2.2 Simulation-extrapolation

SIMEX is a simulation-based functional approach developed to estimate and reduce the effects of measurement errors
affecting covariates, see Cook and Stefanski30 and Stefanski and Cook.31 The method has been originally developed to
correct for additive errors, but it can be extended to any situation where the measurement error can be simulated via
Monte Carlo procedures. SIMEX consists of two steps. In the first step, simulation is used to estimate the parameters
in datasets generated with additional increasing measurement errors. In the second step, the relationship between the
estimates and the amount of the added measurement error is established and used to extrapolate the estimate back to the
case of no measurement error. As the approach focuses on the main model (1), its applicability with existing software is
straightforward, in this way making it extremely appealing.17

Let Wi = (�̂�i, 𝜉i)⊤ denote the vector of data from study i, with expected value Xi = (𝜂i, 𝜉i)⊤ and known vari-
ance/covariance matrix Γ̂i and let𝜓 = (𝛽0, 𝛽1, 𝜏

2)⊤ denote the vector of parameters in model (1). In the simulation step, for
any 𝜆 ≥ 0 in a grid Λ = {0, 𝜆1,… , 𝜆M}, additional independent measurement errors are generated B times starting from
the original data,

Wb,i(𝜆) = Wi +
√
𝜆Ub,i, b = 1,… ,B, i = 1,… ,n,

where Ub,i is a vector of mutually independent pseudo-errors, independent of Xi, and generated from a Normal distribu-
tion with zero mean and variance/covariance matrix Γ̂i. The new mismeasured variable Wb,i(𝜆) has expected value equal
to Xi and variance/covariance matrix equal to (1 + 𝜆)Γ̂i. Its mean squared error MSE{Wb,i(𝜆)} = E{(Wb,i(𝜆) − Xi)2|Xi}
equals zero when 𝜆 = −1. Once the additional mismeasured data are available, the estimate �̂�b(𝜆) of 𝜓 for given b and
𝜆 is obtained, by applying the uncorrected or naive model, for example, the weighted least squares regression,4 to data
Wb,i, i = 1,… ,n. The simulation step ends with the average of the estimates over b for a fixed 𝜆,

�̂�(𝜆) = B−1
B∑

b=1
�̂�b(𝜆).

The extrapolation step determines a relationship between �̂�(𝜆) and 𝜆, one parameter at a time. The relationship is
extrapolated back to the case of no measurement error, that is, to 𝜆 = −1. The resulting estimate is the SIMEX estimate
�̂�SIMEX.
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The variance/covariance matrix associated to �̂�SIMEX can be easily calculated when the measurement error vari-
ance/covariance matrix is known or estimated well enough, see Stefanski and Cook31 and Carroll et al.11(AppendixB.4) Let
ŝ2

b(𝜆) denote the estimated model-based variance/covariance matrix of �̂�b(𝜆) obtained from the naive model and let ŝ2(𝜆)
be the average of ŝ2

b(𝜆) over b,

ŝ2(𝜆) = B−1
B∑

b=1
ŝ2

b(𝜆).

Let s2
Δ(𝜆) denote the sample variance/covariance matrix of terms �̂�b(𝜆), b = 1,… ,B. The variance/covariance matrix of

�̂�SIMEX is obtained by extrapolating back the relationship between the components of the difference ŝ2(𝜆) − s2
Δ(𝜆) and 𝜆

to the case 𝜆 = −1, one parameter at a time.

4 SIMULATION STUDY

Several simulation studies have been conducted to investigate the performance of the structural and functional methods
in terms of accuracy of inferential results. The likelihood approach under the Normal and the Skew-Normal specification
for the control risk distribution, corrected score, conditional score, and SIMEX are compared to the uncorrected weighted
least squares regression,4 also referred to as the naive approach. Simulations are implemented in the R programming
language.32

4.1 Set-up

Data simulation follows a two-stage procedure. In the first stage, values for 𝜉i are generated according to one of the
following choices:

1. A standard Normal distribution;
2. A Skew-Normal distribution SN(0, 1, 1), in order to investigate the performance of the methods under skewness of the

risk distribution;
3. A mixture of Normal distributions, in order to investigate the performance of the methods under bimodality of the

risk distribution, namely,

𝜋N
(
−(1 − 𝜋)𝜇, 𝜎2) + (1 − 𝜋)N

(
𝜋𝜇, 𝜎2) ,

where 𝜋 = 0.25, 𝜇 = 1.5, 𝜎2 = 0.05.

Values of 𝜂i are generated following relationship (1) with (𝛽0, 𝛽1)⊤ = (0, 1)⊤. The parameter choice reflects the case of
no relationship between the treatment benefit 𝜂i − 𝜉i and the underlying risk 𝜉i, for example, Ghidey et al.14 In the second
stage, values of �̂�i and 𝜉i are obtained conditionally on (𝜂i, 𝜉i)⊤ for each study, by distinguishing two scenarios:

(i) 𝜂i and 𝜉i are the log-odds in the treatment group and in the control group for study i, respectively; their observed
versions are measured as

�̂�i = log
(

yi

nTi − yi

)
, 𝜉i = log

(
xi

nCi − xi

)
, (5)

where yi and xi are the observed number of events in the treatment group and in the control group for study i,
respectively, and nTi and nCi are the number of treated and controls, respectively; thus, yi and xi are generated as
follows,15

Yi ∼ Binomial
(

nTi ,
e𝜂i

1 + e𝜂i

)
, Xi ∼ Binomial

(
nCi ,

e𝜉i

1 + e𝜉i

)
;
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the numbers of treated and controls are generated from a Uniform distribution on [15, 200]. For structural
approaches, matrix Γ̂i is obtained as

Γ̂i =

[
y−1

i + (nTi − yi)−1 0
0 x−1

i + (nCi − xi)−1

]
. (6)

The correlation between �̂�i and 𝜉i is zero as the estimates of 𝜂i and 𝜉i are computed on different subjects, treated and
controls, respectively;

(ii) 𝜂i and 𝜉i are the log event rate in the treatment group and in the control group for study i, respectively; their observed
versions are measured as

�̂�i = log
(

yi

nyi

)
and 𝜉i = log

(
xi

nxi

)
,

where yi and xi are the observed number of events in the treatment group and in the control group for study i, respec-
tively, and nyi and nxi are the number of person-years in the treatment group and in the control group, respectively;
thus, yi and xi are generated as follows,15

Yi ∼ Poisson
(

nyi e
𝜂i
)

and Xi ∼ Poisson
(

nxi e
𝜉i
)
;

the numbers of person-years in the treatment group and in the control group are generated from a Uniform
distribution on [100, 5000]. For structural approaches, matrix Γ̂i is still obtained as a diagonal matrix,

Γ̂i =

[
y−1

i 0
0 x−1

i

]
.

For each scenario, increasing values of the variance component are considered, 𝜏2 ∈ {0.1, 0.5, 0.9, 1.5}, as well as
increasing values of the number of studies included in the meta-analysis, n ∈ {10, 20, 50}. One thousand datasets are
generated for each scenario and each combination of sample size n and variance 𝜎2. Likelihood maximization, based on
the Nelder and Mead algorithm,33 employs the weighted least squares estimates as starting values. Numerical integration
needed for likelihood maximization in case of Skew-Normal specification of the distribution of 𝜉i is performed through a
Gauss-Hermite quadrature.

The application of SIMEX considers 𝜆 assuming values on Λ = {0.0, 0.5, 1.0, 1.5, 2.0}, following the conventional
choice in the literature. Similarly, the number of remeasured datasets B is fixed at 200. The quadratic extrapolation func-
tion is chosen to model the relationship between �̂�(𝜆) and 𝜆, given its numerical stability with respect to alternatives, see
Carroll et al.11(Section5.3.2)

4.2 Results

Results for scenario (i) are graphically reported in terms of empirical coverage probabilities of confidence intervals at
nominal level 0.95 for 𝛽1 (Figures 1-3) and numerically reported in terms of bias, standard deviation of the estimates, and
estimated standard error of the estimator of the variance component 𝜏2 (Tables 1-3). Analogous results for the estimators
of 𝛽0 and 𝛽1 and empirical coverage probabilities of confidence intervals at nominal level 0.95 for 𝛽0 are reported in the
Supplementary Material. The Supplementary Material contains also the values of the empirical coverage probabilities
for 𝛽0 and 𝛽1 and the associated Monte Carlo standard error (eg, Morris et al.34). Analogous results for scenario (ii) are
reported in the Supplementary Material.

As expected, the weighted least squares approach provides unsatisfactory results, with empirical coverage probabili-
ties for 𝛽1 below the 95% target level. Such a behavior appears whichever the distribution of the underlying risk, and it
does not ameliorate increasing the sample size. This is a consequence of the downward bias of 𝛽1 (Tables S5-S7 in the
Supplementary Material), which turns out in confidence intervals centered on a value far from the target level, with stan-
dard error that reduces as the sample size increases. The unsatisfactory performance is more evident in case of small
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F I G U R E 1 Empirical coverage probabilities of confidence intervals for 𝛽1 from uncorrected approach (NAIVE), likelihood approach
under a Normal specification (LIKELIHOOD) or a Skew-Normal specification (SKEW-NORMAL) for the underlying risk distribution,
SIMEX, corrected score, and conditional score, on the basis of 1000 replicates of simulation scenario (i). Underlying risk normally distributed
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F I G U R E 2 Empirical coverage probabilities of confidence intervals for 𝛽1 from uncorrected approach (NAIVE), likelihood approach
under a Normal specification (LIKELIHOOD) or a Skew-Normal specification (SKEW-NORMAL) for the underlying risk distribution,
SIMEX, corrected score, and conditional score, on the basis of 1000 replicates of simulation scenario (i). Underlying risk distributed as a
mixture of Normals
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F I G U R E 3 Empirical coverage probabilities of confidence intervals for 𝛽1 from uncorrected approach (NAIVE), likelihood approach
under a Normal specification (LIKELIHOOD) or a Skew-Normal specification (SKEW-NORMAL) for the underlying risk distribution, SIMEX,
corrected score and conditional score, on the basis of 1000 replicates of simulation scenario (i). Underlying risk distributed as a Skew-Normal

between-study variance 𝜏2. A similar behavior affects inference on 𝛽0, see the corresponding results in the Supplementary
Material (Tables S1-S3 and Figures S1-S3).

Likelihood solutions, using a Normal specification or a Skew-Normal specification of the underlying risk distribution,
provide almost unbiased estimators of the regression parameters 𝛽0 and 𝛽1 under all the examined situations, as expected
from a theoretical point of view. See the corresponding results in the Supplementary Material (Tables S1-S3 and Tables
S5-S7). Conversely, the estimators of the between-study variance 𝜏2 are affected and tend to underestimate the true value.
The bias remarkably increases with 𝜏2, see Tables 1 to 3. Increasing the sample size is helpful to reduce the bias as well
as the standard errors of the estimators. The discrepancy between the standard deviation of the estimators of 𝜏2 and the
corresponding average standard errors is a consequence of the assumptions on the distribution of 𝜉i made in the structural
approaches. Mean squared error associated to likelihood-based solutions increases with 𝜏2, and it appears to be substantial
with reference to the estimator of 𝜏2, as a consequence of the large bias. See the results in the Supplementary Material,
namely, Figures S1 to S3 with reference to the estimators of 𝛽0, Figures S7 to S9 with reference to the estimators of 𝛽1, and
Figures S10 to S12 with reference to the estimators of 𝜏2. Such a behavior emerges under a Normal distribution for the
underlying risk and is even more evident under departures from normality. As expected, the mean squared error largely
reduces increasing the sample size. The biased estimates of 𝜏2 affect the empirical coverage probabilities for the regression
coefficients, that are far from the target level, especially for small n. Improvements are obtained with increasing sample
size. With n = 50 the empirical coverage probabilities are very close to the target level. See Figures 1 to 3 and Table S8 with
reference to 𝛽1, and Figures S4 to S6 and Table S4 with reference to 𝛽0. A slightly better performance in terms of empirical
coverage probabilities is obtained when a Skew-Normal specification for the distribution of 𝜉i is adopted in place of the
Normal specification, for large 𝜏2 and 𝜉i not normally distributed (Figures 2 and 3).

Score functions reveal helpful to improve on likelihood-based approaches in terms of empirical coverage probabilities
of confidence intervals for 𝛽1 in case of small sample size and small values of the between-study variance 𝜏2. See, for
example, the results when the underlying risk is distributed as a Normal (Figure 1) or as a mixture of Normals (Figure 2).
The result is even more evident with reference to 𝛽0, see the corresponding empirical coverage probabilities in Figures
S4 to S6 and in Table S4 in the Supplementary Material. Conversely, likelihood solutions tend to perform similarly or
even better, in case of large 𝜏2, see Tables 1 to 3. With respect to the estimation of 𝜏2, both the corrected score and the
conditional score are preferable to the likelihood-based solutions, as they provide estimators with a reduced bias and a
reduced standard error, especially for large 𝜏2, whichever the underlying risk distribution. This result translates into a
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T A B L E 1 Bias and standard deviation (SD) of the estimates of 𝜏2, and average of the estimated standard errors (SE) obtained from
uncorrected approach (NAIVE), likelihood analysis under a Normal or a Skew-Normal specification of the distribution of 𝜉, corrected score,
conditional score, SIMEX, on the basis of 1000 replicates of simulation scenario (i)

𝝉2 Method Bias SD SE Mean SD SE Mean SD SE

0.1 n = 10 n = 20 n = 50

NAIVE 0.066 0.091 0.083 0.163 0.102 0.088 0.133 0.057 0.048

LIKELIHOOD −0.037 0.068 0.031 −0.029 0.067 0.034 −0.009 0.040 0.023

SKEW-NORMAL −0.037 0.069 0.031 −0.029 0.068 0.034 −0.009 0.040 0.023

CORRECTED SCORE −0.014 0.067 0.144 0.007 0.069 0.136 −0.008 0.042 0.071

CONDITIONAL SCORE −0.014 0.067 0.143 0.007 0.069 0.139 −0.008 0.043 0.070

SIMEX −0.001 0.111 0.146 0.014 0.105 0.117 0.010 0.056 0.056

0.5 n = 10 n = 20 n = 50

NAIVE 0.011 0.274 0.255 0.177 0.257 0.226 0.171 0.156 0.137

LIKELIHOOD −0.139 0.239 0.238 −0.090 0.210 0.236 −0.033 0.129 0.166

SKEW-NORMAL −0.139 0.241 0.243 −0.090 0.210 0.239 −0.033 0.129 0.167

CORRECTED SCORE −0.129 0.241 0.155 −0.079 0.214 0.141 −0.032 0.132 0.087

CONDITIONAL SCORE −0.129 0.241 0.155 −0.079 0.214 0.140 −0.032 0.132 0.087

SIMEX 0.015 0.331 0.381 0.044 0.265 0.270 0.036 0.150 0.147

0.9 n = 10 n = 20 n = 50

NAIVE −0.028 0.456 0.436 0.226 0.440 0.375 0.182 0.240 0.221

LIKELIHOOD −0.261 0.372 0.496 −0.151 0.306 0.484 −0.087 0.201 0.347

SKEW-NORMAL −0.256 0.375 0.508 −0.152 0.307 0.488 −0.086 0.201 0.349

CORRECTED SCORE −0.229 0.394 0.182 −0.148 0.317 0.155 −0.086 0.204 0.105

CONDITIONAL SCORE −0.228 0.393 0.180 −0.148 0.317 0.154 −0.086 0.204 0.104

SIMEX 0.019 0.536 0.599 0.034 0.380 0.386 0.040 0.234 0.234

1.5 n = 10 n = 20 n = 50

NAIVE −0.077 0.753 0.711 0.210 0.612 0.570 0.213 0.363 0.350

LIKELIHOOD −0.549 0.440 0.836 −0.317 0.430 0.924 −0.109 0.326 0.757

SKEW-NORMAL −0.547 0.450 0.841 −0.317 0.433 0.930 −0.105 0.328 0.761

CORRECTED SCORE −0.344 0.657 0.231 −0.216 0.534 0.198 −0.106 0.327 0.133

CONDITIONAL SCORE −0.344 0.657 0.229 −0.216 0.535 0.196 −0.106 0.327 0.133

SIMEX 0.085 0.892 0.987 0.097 0.631 0.643 0.091 0.362 0.373

Note: Underlying risk normally distributed.

much smaller mean squared error, whichever the underlying risk distribution (Figures S10-S12 in the Supplementary
Material). Such a behavior is in line with previous findings in Ghidey et al.14 The score functions approaches tend to
perform similarly, the only difference being a slightly reduced standard error of the estimators of the parameters 𝛽0 and
𝛽1 from the conditional score function with respect to the corrected score function, see Tables S1 to S3 and Tables S5 to S7
in the Supplementary Material. The difference is more evident in case of small sample size and in case of deviations from
the normality for the underlying risk distribution. The estimators of 𝜏2 perform similarly, see Tables 1 to 3. No relevant
differences are experienced in terms of empirical coverage probabilities for the estimators of the regression coefficients
(Figures 1-3 and Table S8).

Results from SIMEX are largely satisfactory. Bias of the estimators of 𝛽0 and 𝛽1 is small whichever the examined
scenario and it is not affected by the sample size or the increasing between-study variance 𝜏2, see Tables S1 to S3 and
Tables S5 to S7 in the Supplementary Material. SIMEX estimator of 𝛽1 is less biased than the estimator provided by
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T A B L E 2 Bias and standard deviation (SD) of the estimates of 𝜏2, and average of the estimated standard errors (SE) obtained from
uncorrected approach (NAIVE), likelihood analysis under a Normal or a Skew-Normal specification of the distribution of 𝜉, corrected score,
conditional score, SIMEX, on the basis of 1000 replicates of simulation scenario (i)

𝝉2 Method Bias SD SE Mean SD SE Mean SD SE

0.1 n = 10 n = 20 n = 50

NAIVE 0.056 0.078 0.078 0.096 0.070 0.065 0.116 0.050 0.044

LIKELIHOOD −0.031 0.067 0.032 −0.021 0.058 0.028 −0.010 0.038 0.022

SKEW-NORMAL −0.032 0.067 0.032 −0.022 0.058 0.031 −0.009 0.037 0.022

CORRECTED SCORE −0.012 0.064 0.137 −0.013 0.057 0.107 −0.012 0.041 0.073

CONDITIONAL SCORE −0.012 0.064 0.134 −0.013 0.058 0.106 −0.012 0.041 0.072

SIMEX 0.006 0.099 0.130 0.009 0.079 0.084 0.009 0.049 0.050

0.5 n = 10 n = 20 n = 50

NAIVE −0.001 0.260 0.249 0.087 0.202 0.196 0.149 0.150 0.132

LIKELIHOOD −0.124 0.241 0.252 −0.083 0.174 0.209 −0.047 0.119 0.155

SKEW-NORMAL −0.120 0.244 0.257 −0.079 0.175 0.214 −0.040 0.122 0.159

CORRECTED SCORE −0.116 0.235 0.154 −0.087 0.176 0.123 −0.046 0.120 0.084

CONDITIONAL SCORE −0.116 0.235 0.152 −0.086 0.176 0.122 −0.045 0.120 0.084

SIMEX 0.023 0.320 0.367 0.015 0.215 0.226 0.030 0.142 0.141

0.9 n = 10 n = 20 n = 50

NAIVE 0.119 0.628 0.510 0.100 0.361 0.333 0.159 0.238 0.216

LIKELIHOOD −0.276 0.362 0.489 −0.146 0.292 0.482 −0.078 0.206 0.355

SKEW-NORMAL −0.267 0.374 0.500 −0.136 0.304 0.499 −0.075 0.210 0.356

CORRECTED SCORE −0.244 0.397 0.183 −0.142 0.301 0.153 −0.077 0.208 0.105

CONDITIONAL SCORE −0.243 0.397 0.180 −0.141 0.302 0.152 −0.077 0.208 0.105

SIMEX 0.000 0.543 0.585 0.045 0.374 0.384 0.053 0.237 0.234

1.5 n = 10 n = 20 n = 50

NAIVE −0.130 0.699 0.685 0.390 0.795 0.630 0.267 0.408 0.361

LIKELIHOOD −0.556 0.457 0.826 −0.304 0.398 0.892 −0.136 0.327 0.727

SKEW-NORMAL −0.546 0.458 0.832 −0.305 0.394 0.892 −0.133 0.319 0.727

CORRECTED SCORE −0.384 0.596 0.227 −0.233 0.480 0.189 −0.133 0.328 0.130

CONDITIONAL SCORE −0.384 0.596 0.223 −0.233 0.480 0.187 −0.133 0.328 0.129

SIMEX 0.034 0.828 0.948 0.072 0.590 0.611 0.085 0.372 0.367

Note: Underlying risk distributed as a mixture of Normals.

likelihood-based solutions, especially in case of small sample size n = 10. Similarly, the SIMEX estimator of 𝜏2 has
a small bias, outperforming alternative approaches for small n, with substantial improvement over likelihood-based
solutions (Tables 1-3). The price to pay is a larger standard error, which reflects the simulation-based nature of the cor-
rection method. Increasing the sample size reduces the standard error, sometimes markedly, as it happens for large 𝜏2,
if compared to likelihood-based solutions. Globally, the standard deviations of the estimators of 𝜏2 are consistent with
the estimated standard errors. The mean square error of the estimators is smaller than that from the likelihood-based
approaches, especially when the inferential interest is on 𝜏2 (Figures S10-S12 in the Supplementary Material), and slightly
larger with respect to the score approaches. Empirical coverage probabilities of confidence intervals for 𝛽1 tend to be
closer to the target level than competing approaches, with emphasis in case of small sample size and moderate to large
between-study variance. Advantages are evident in case of skewness of the underlying risk distribution, see Figure 3 and
Table S4.
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T A B L E 3 Bias and standard deviation (SD) of the estimates of 𝜏2, and average of the estimated standard errors (SE) obtained from
uncorrected approach (NAIVE), likelihood analysis under a Normal or a Skew-Normal specification of the distribution of 𝜉, corrected score,
conditional score, SIMEX, on the basis of 1000 replicates of simulation scenario (i)

𝝉2 Method Bias SD SE Mean SD SE Mean SD SE

0.1 n = 10 n = 20 n = 50

NAIVE 0.073 0.089 0.087 0.238 0.169 0.113 0.171 0.077 0.055

LIKELIHOOD −0.032 0.069 0.033 −0.019 0.080 0.038 −0.007 0.044 0.025

SKEW-NORMAL −0.032 0.070 0.033 −0.016 0.082 0.044 −0.007 0.044 0.025

CORRECTED SCORE −0.008 0.068 0.145 0.016 0.088 0.143 −0.006 0.050 0.084

CONDITIONAL SCORE −0.008 0.068 0.143 0.017 0.089 0.137 −0.006 0.050 0.082

SIMEX 0.011 0.108 0.149 0.020 0.125 0.128 0.016 0.064 0.062

0.5 n = 10 n = 20 n = 50

NAIVE 0.029 0.274 0.264 0.207 0.262 0.236 0.218 0.178 0.147

LIKELIHOOD −0.130 0.239 0.255 −0.094 0.205 0.236 −0.038 0.127 0.167

SKEW-NORMAL −0.134 0.239 0.254 −0.093 0.211 0.239 −0.039 0.127 0.167

CORRECTED SCORE −0.121 0.234 0.161 −0.085 0.207 0.145 −0.037 0.132 0.091

CONDITIONAL SCORE −0.121 0.234 0.159 −0.084 0.208 0.142 −0.037 0.132 0.090

SIMEX 0.028 0.328 0.394 0.039 0.259 0.278 0.040 0.151 0.154

0.9 n = 10 n = 20 n = 50

NAIVE −0.004 0.460 0.448 0.271 0.447 0.390 0.260 0.268 0.237

LIKELIHOOD −0.264 0.362 0.511 −0.146 0.316 0.519 −0.060 0.213 0.376

SKEW-NORMAL −0.261 0.369 0.520 −0.152 0.312 0.514 −0.060 0.212 0.376

CORRECTED SCORE −0.238 0.388 0.189 −0.135 0.342 0.168 −0.059 0.216 0.110

CONDITIONAL SCORE −0.237 0.387 0.186 −0.134 0.342 0.165 −0.059 0.217 0.109

SIMEX 0.029 0.535 0.624 0.069 0.410 0.428 0.072 0.248 0.247

1.5 n = 10 n = 20 n = 50

NAIVE −0.131 0.714 0.685 0.409 0.709 0.636 0.298 0.413 0.367

LIKELIHOOD −0.577 0.443 0.806 −0.291 0.438 0.936 −0.127 0.333 0.737

SKEW-NORMAL −0.575 0.438 0.809 −0.290 0.441 0.942 −0.130 0.334 0.736

CORRECTED SCORE −0.381 0.634 0.229 −0.176 0.541 0.200 −0.126 0.338 0.132

CONDITIONAL SCORE −0.380 0.635 0.225 −0.174 0.541 0.196 −0.126 0.338 0.131

SIMEX 0.042 0.863 0.963 0.144 0.645 0.656 0.075 0.376 0.370

Note: Underlying risk distributed as a Skew-Normal.

An additional simulation has been carried out to compare the methods in case of large sample size, equal to 100.
The examined scenario refers to the Normal distribution for the underlying risk. Results are reported in the Sup-
plementary Material (Table S9 and Figures S13-S17). Under such a large sample size, the behavior of the competing
methods is comparable (Table S9), and superior to that of the naive analysis, in line with the findings in Ghidey et al14

referred to the score functions and the likelihood-based solution. Efficiency in terms of mean squared error is similar
when inference is on the regression parameters 𝛽0 and 𝛽1 (Figures S13 and S14). A similar result holds when inter-
est is on the between-study variance 𝜏2, although likelihood-based estimators tend to have larger mean squared error
for large 𝜏2 (Figure S15). Nevertheless, the mean squared error reaches small values if compared to scenarios with
reduced sample size, as expected. Empirical coverage probabilities of confidence intervals for 𝛽0 and 𝛽1 are closer to
the target 95% level under all the approaches, providing an evident amelioration over the naive analysis (Figures S16
and S17).
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T A B L E 4 Parkinson disease data

Cases of Parkinson disease Controls

Study Events Total Events Total

1 6 35 12 105

2 6 178 58 534

3 18 212 8 175

4 12 74 18 148

5 11 93 26 93

6 13 196 17 196

7 10 249 39 368

8 13 318 31 318

9 18 197 24 197

10 17 228 29 228

11 26 352 61 484

12 48 13 695 223 68 445

13 126 1931 482 9651

14 291 3637 308 3637

Note: Number of events and totals in the diabetes group and in the control group in
the meta-analysis of Lu et al.35

A comparison of the correction techniques from a computational point of view highlights convergence problems of
likelihood approaches, which typically occur as nonpositive definite variance/covariance matrix. The issue is frequent
in case of small sample size and/or small between-study variance. The failure rate reaches about 15% for n = 10 and
𝜏2 = 0.1. The application of the corrected score and the conditional score experiences some convergence issues as well.
The corrected score has a slightly larger failure rate if compared to the conditional score, reaching 15% to 16% for n = 10
and 𝜏2 = 0.1. SIMEX is the correction method less affected by computational problems, under all the examined scenarios.
A nonpositive definite SIMEX estimated variance/covariance matrix is a possible issue related to SIMEX application,
although not frequent Carroll et al.11(SectionB.4.1) It has been not experienced in the performed simulation studies.

5 EXAMPLE

Lu et al35 consider a meta-analysis of 14 case-control studies about the association between prior onset of diabetes and the
risk of Parkinson disease. Information is available about the number of events and the number of subjects in the diabetes
group and in the control group, as reported in Table 4. The meta-analysis in Lu et al35 has the aim of providing an addi-
tional investigation of the relationship between the two pathologies, a topic that has received substantial attention as the
results in the literature are often inconsistent, giving rise to positive association, null association or inverse association.
The analysis in Lu et al35 performed through a random-effects approach of the log-odds ratio from each study suggests
a negative association between the two pathologies (summary odds ratio = 0.75, 95% confidence interval 0.58-0.98). A
limitation of the study highlighted by the authors is the presence of several sources of heterogeneity to be controlled
for, as heterogeneity is due to gender, geographical region, source of the control groups, and severity of diabetes melli-
tus. In this light, the use of control risk regression can be advantageous. Let 𝜂i and 𝜉i denote the log-odds in the ith case
group and control group, respectively, and let their observed error-prone versions �̂�i and 𝜉i evaluated as in (5), that is,
�̂�i = log

{
yi∕(nyi − yi)

}
, 𝜉i = log

{
xi∕(nxi − xi)

}
. The within-study variance/covariance matrix Γ̂i is estimated as in (6). The

inferential interest is on 𝛽1, with a value smaller than one indicating that the increase of the log-odds in the control con-
dition by a certain amount leads to a reduced increase of risk for the case group. The results after applying the likelihood
approach under a Normal specification of the risk distribution, SIMEX, the corrected score and the conditional score for
(𝛽0, 𝛽1, 𝜏

2)⊤ are reported in Table 5, with standard errors for the estimators of the regression parameters in parentheses.
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T A B L E 5 Parkinson disease data

𝜷0 𝜷1 𝝉2

NAIVE −0.459 (0.283) 0.853 (0.098) 0.349 (0.241)

LIKELIHOOD NORMAL −0.626 (0.254) 0.886 (0.086) 0.115 (0.031)

CORRECTED SCORE −0.766 (0.331) 0.803 (0.085) 0.147 (0.078)

CONDITIONAL SCORE 0.748 (0.321) 0.810 (0.074) 0.147 (0.079)

SIMEX −0.847 (0.321) 0.799 (0.108) 0.245 (0.101)

Note: Estimates and estimated standard errors in parentheses for the parameters in model (1), obtained
from uncorrected approach (NAIVE), likelihood analysis under a Normal specification for the control
rate distribution, corrected score, conditional score, SIMEX.

The results from the uncorrected approach are reported as well. The use of a Skew-Normal specification of the control
risk distribution in the likelihood approach does not give benefits, as the skewness parameter is estimated equal to zero.
The corresponding results are not displayed, as the method reduces to the likelihood approach under a Normal control
risk distribution.

All the approaches provide estimates of the regression coefficient 𝛽1 smaller than one, suggesting that diabetes affected
subjects are associated with a lower risk of Parkinson disease than patients in the control condition. In this way, the con-
clusions in Reference 35 are supported, although the correction techniques result in a less strong association between
diabetes and risk of Parkinson disease than the weighted least squares approach. The estimate of the intercept is sub-
stantially lower if the measurement error is not taken into account; more interestingly, not accounting for the presence
of measurement error produces a much larger estimate of the heterogeneity component 𝜏2, if compared to correction
approaches, with a substantially larger standard error. The finding reflects the capability of the correction techniques to
capture the variability among studies due to the presence of errors affecting the measures of 𝜂i and 𝜉i. Not accounting for
such component, in the naive analysis, gives rise to a larger estimate of the between-study heterogeneity parameter 𝜏2.
As experienced in the simulation studies, there is no relevant difference between the corrected score and the conditional
score. The normality assumption of the structural approach is difficult to be tested given the small number of studies
included in the meta-analysis (eg, Ghidey et al14). Nevertheless, the results from the approach are in line with those from
competing methods and the use of a skewed distribution reveals to be not necessary. From a practical point of view, no
computational problems arise when applying the correction techniques.

6 CONCLUDING REMARKS

This article focused on inference in control risk regression, where the presence of measurement error affects the outcome
risk measure of both the treatment group and the control group. Inference ignoring the presence of measurement error
typically gives rise to unreliable inferential conclusions. In this article, different correction techniques from either a struc-
tural or a functional approach for dealing with measurement errors have been compared through simulation. Attention
has been paid to likelihood-based solutions under a Normal or a Skew-Normal distribution for the underlying risk dis-
tribution, score functions, and the simulation-extrapolation SIMEX method. The approaches have been compared under
different scenarios, including small to large sample size, increasing between-study heterogeneity, underlying risk nor-
mally or not-normally distributed in the control condition. The paper represents an extension of a previous comparison
between correction methods developed in Ghidey et al,14 with new contributions given by the inclusion of additional
approaches, different scenarios, further criteria for the evaluation of the methods. The adopted data generation process
has been designed in order to reflect the control risk generation mechanism.

Simulation results indicate that correcting for measurement error is a necessary step, as the naive weighted least
squares approach ignoring the errors provides largely unsatisfactory inferential results. Among the correction techniques,
likelihood-based solutions suffer for small-sample bias of the estimator of the heterogeneity parameter, with emphasis
for large values of the heterogeneity component. The result affects the empirical coverage of confidence interval for the
estimators of the regression coefficients, which tends to be lower than the target level. The unsatisfactory performance of
the likelihood approach under a Normal specification of the underlying risk distribution is partially improved using the
Skew-Normal specification. The use of corrected score function or conditional score function reveals helpful in improving
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on likelihood approaches in terms of empirical coverage of confidence intervals for small sample size and small values of
the heterogeneity component. For large heterogeneity, likelihood solutions remain preferable. No substantial differences
emerge between the two score functions, the conditional score function providing a slightly reduced standard error of the
estimators of the regression coefficients. SIMEX reveals satisfactory in terms of bias of the estimators of the regression
coefficients and the heterogeneity components, whichever the examined scenario and the sample size, although at the
price of a larger standard error. Empirical coverage probabilities for the estimator of the regression coefficients are closer to
the target level than competing approaches, especially in case of skewness of the underlying risk distribution. In addition,
it has the advantage of not suffering from convergence problems. In this sense, it is preferable to likelihood-based solutions
and score functions, whose application is limited by substantial failure rate in convergence, especially for small sample
size or large heterogeneity.

All the approaches allow to quickly carry out control risk regression, as they take only few seconds in case of large
sample size of the examined meta-analysis. Computational time required by SIMEX could increase if the number B of
replicates in the simulation step is fixed to a larger value than examined. However, some investigations with larger B show
that the performance of SIMEX does not substantially vary.

The application of the methods has been illustrated in a real meta-analysis about the association of diabetes and risk
of Parkinson disease. Correcting for measurement error in control risk regression suggests a decreased risk of Parkinson
disease for diabetic patients if compared to controls, with a substantial larger estimate of the variance component from
the correction techniques with respect to the naive approach which ignores the presence of measurement errors.

The paper did not consider the moment-based correction method (Buonaccorsi12(Section5) and Ghidey et al14). Previous
results in Guolo18 show that the method shares with SIMEX the lack of any assumption about the underlying baseline
risk distribution, however at the price of a less accurate evaluation of the uncertainty of the estimators. In addition,
the moment based correction may provide inadmissible estimates of some components, such as, for example, negative
estimates of variance quantities, a situation which requires ad hoc corrections, see, for example, Buonaccorsi.12(Section5.4.4)

At the time of writing, the code for implementing some of the approaches developed for measurement error correction
in control risk regression is made available from the authors. We refer to the code in the R32 programming language used
for implementing the score functions in Ghidey et al14 and SIMEX in Guolo.17

The performed study has the first aim of warning researchers against the risk due to not accounting for measurement
error in control risk regression and secondly of helping in choosing an appropriate correction technique to be applied to
the available meta-analysis. Control risk regression is a powerful instrument to explain a portion of the heterogeneity in
meta-analysis studies: We hope this article motivates researchers to make an appropriate use of it through the inclusion
of measurement error correction techniques to prevent fallacious results.
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