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Abstract

Hard X-ray spectroscopy is an element specific probe of electronic state, but signals are weak 

and require intense light to study low concentration samples. Free electron laser facilities offer 

the highest intensity X-rays of any available light source. The light produced at such facilities 
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is stochastic, with spikey, broadband spectra that change drastically from shot to shot. Here, 

using aqueous ferrocyanide, we show that the resonant X-ray emission (RXES) spectrum can be 

inferred by correlating for each shot the fluorescence intensity from the sample with spectra of 

the fluctuating, self-amplified spontaneous emission (SASE) source. We obtain resolved narrow 

and chemically rich information in core-to-valence transitions of the pre-edge region at the Fe 

K-edge. Our approach avoids monochromatization, provides higher photon flux to the sample, 

and allows non-resonant signals like elastic scattering to be simultaneously recorded. The spectra 

obtained match well with spectra measured using a monochromator. We also show that inaccurate 

measurements of the stochastic light spectra reduce the measurement efficiency of our approach.

Over the last 10 years, X-ray Free Electron Lasers (XFELs) have shown their potential 

for being transformative tools to study chemical and structural dynamics of materials, 

molecular and biological systems. The X-ray pulses generated by an XFEL are extremely 

intense with short pulse durations of typically 50 fs or less and they contain 1012 to 1013 

photons per pulse, which are as many photons as synchrotron radiation sources generate in 

one second. Due to its high spatial coherence, XFEL radiation can also be easily focused 

into a micrometer-size spot. These exceptional properties of XFEL radiation, together with 

shot-by-shot data collection, make it possible to follow chemical reactions, transformations 

of materials, molecular dynamics and biological processes in real time1–3.

Except for seeded XFELs4, XFEL sources are based on the principle of self-amplified 

spontaneous emission (SASE) for the amplification of short X-ray pulses. SASE XFELs 

are intrinsically stochastic and produce pulses with spikey spectral amplitude that change 

dramatically from shot to shot5. When tuned to an atomic edge, the SASE spectral amplitude 

variation induces shot to shot fluctuations in excited state population that correspond to 

a weighted superposition of populations created by the constituent colors of the SASE 

pulse. Correlating SASE spectral amplitude with a signal proportional to excited state 

population, therefore allows one to recover various resonant signals like X-ray absorption, 

anomalous scattering, and Resonant X-ray Emission Spectroscopy (RXES), with spectral 

resolution determined by the SASE spikes, rather than the overall SASE bandwidth. In order 

to recover a spectrum, i.e., the monochromatic response, from polychromatic stochastic 

light, the spectrum of the source must be measured accurately for each shot along with 

every observation from the sample so that the desired signal can be recovered from the 

correlation of the two measurements. Hard X-ray (>5 keV) signals are well suited to 

explore using SASE spectral fluctuations for resonant measurements, since the available 

SASE spectral diagnostics6–9 have both high spectral resolution and excellent signal to noise 

characteristics.

Kayser et al.10 demonstrated for the first time that hard X-ray absorption spectra can 

be experimentally obtained by correlation of X-ray emission with measurements of the 

stochastic XFEL pulse spectrum. They were able to reconstruct Fe K-edge absorption 

of Fe2O3 nanoparticles. The recovered spectra of the Fe2O3 nanoparticles resolved the 

absorption edge and evidenced non-linear effects, but not finer spectral details like pre-edge 

features. The current study is focused on resolving such features, since stochastic detection 

of the pre-edge region, which is ~10× weaker than the main edge, greatly broadens its utility 
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in revealing essential chemical information in biological, chemical and material science 

systems. The weak features of the K pre-edge region are a desirable probe of the chemical 

environment of the absorbing metal, as they are mainly comprised of transitions from core 

(1 s) orbitals to valence orbitals and thus report on the valence state of the metal. The 

K pre-edge is sensitive to the metal’s oxidation state, ligand coordination and symmetry, 

and the type of ligand bound to it. 1s2p (Kα detected) Resonant Inelastic X-ray Scattering 

(RIXS) signal in the RXES pre-edge region contains more chemical information than X-ray 

absorption alone. In 1s2p RIXS, the fluorescence from the sample at various incidence 

energies is collected, resulting in a two-dimensional spectrum that reveals a coupling 

between the distribution of final states involved in emission and pre-edge resonances 

involved in absorption. The coupling can manifest as a shift or splitting of pre-edge peaks 

along the energy transfer direction, i.e., the difference between incident and emitted energy, 

and thus contains unique information not resolved in the emission or absorption spectra 

alone11.

The prospect of using SASE light for resonant experiments is exciting because the 

bandwidth mismatch between the monochromator and source is avoided, increasing the 

number of photons that can be delivered to the sample for each XFEL shot by up 

to 100 times. The commensurately increased signal yield of SASE light can result 

in faster acquisition times when the signal is close to the noise floor. The potential 

benefits of polychromatic light relative to monochromatic light for improving spectroscopic 

measurement times has been known for a long time in the optical and infrared wavelengths, 

particularly in Fourier spectroscopy12 and more recently in compressed sensing13. We 

examine the possibility of faster acquisition times via direct experimental comparison as 

well as via simulation and conclude that a measurement time advantage using SASE light 

is possible in some experiments. The increased number of available photons would also 

make combined time resolved resonant spectroscopy and scattering experiments possible. 

In combined time resolved scattering/spectroscopy experiments, the high intensity afforded 

by SASE pulses is crucial to the experimental viability of the scattering signal, so only 

spectroscopies which can be performed with a SASE beam like X-ray emission have been 

paired with them to date. Such emission/scattering experiments have been used14–17 to 

observe concurrent atomic motions via scattering and localized valence electronic state 

evolution via emission spectroscopy. Stochastic resonant spectroscopies would complement 

the valence electronic state information that can already be obtained through emission 

spectroscopy. Beyond the traditional linear spectroscopy regime, the approach we describe 

here to accurately correlate incoming broadband X-rays and outgoing signals will enable 

non-linear spectroscopies by increasing power on the sample, while also allowing shorter 

pulses than a monochromator permits18. Shorter X-ray pulses are needed to probe 

attosecond processes that are fundamental to electron-light interaction and electron-electron 

correlation.

The central focus of this work is to examine the viability of RIXS spectroscopy with 

stochastic XFEL pulses for the study of chemical systems and to determine where 

improvements can be made. We examine the spectral details which stochastic spectroscopy 

can experimentally resolve and directly compare the recovered signal to monochromatic 

measurements using the same setup and analysis approach. In this comparison we find good 
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agreement between the two approaches that improves as measurement time increases. For 

short measurement times, however, we see some discrepancy between the two approaches. 

We examined the differences via simulation and show how signal recovery is affected 

by measurement noise in the SASE diagnostic. We conclude that SASE diagnostic noise 

can reduce measurement time efficiency for stochastic spectroscopy and explain some of 

the differences we see between stochastic and monochromatic measurements. Finally, via 

simulation, we examine the impact XFEL statistics and fluorescence detection noise (and by 

proxy sample concentration) has on the measurement efficiency of stochastic spectroscopy. 

We find that stochastic spectroscopy scales just as well as monochromatic spectroscopy with 

respect to sample concentration and that increasing the randomness of the XFEL spectrum 

improves stochastic spectroscopy performance.

Results

Comparison of monochromatic and stochastic measurements.

A comparison of 1s2p RIXS planes of aqueous ferrocyanide reconstructed from both 

monochromatic and polychromatic SASE excitation for the same measurement time is 

shown in Fig. 1a. The two RIXS reconstructions qualitatively agree with one another. 

Notably, both can resolve a well-known pre-edge feature at around 7.113 keV, with the 

monochromatic measurement peaking at slightly lower incidence energy than we see for the 

polychromatic SASE beam. Supplementary Figure 1 examines the stochastic reconstruction 

with around 2.5 times more shots and we see that this gives an improved agreement between 

monochromatic and stochastic measurements, mainly in the vicinity of 7.120 keV. Both 

monochromatic and stochastic measurements exhibit a RIXS shift of the pre-edge peak in 

Fig. 1a, where the peak appears at slightly lower emission energy than the emission does for 

higher incident photon energies. In the edge region from 7.116 to 7.124 keV (Fig. 2b) we 

see again qualitative agreement, with noticeable differences in peak location around 7.120 

keV, but good agreement in peak location is seen at 7.116 keV. Black contours in the figures 

are drawn at multiples of the standard deviation estimation from our fit (see Methods). 

Judged by the number of contour lines, the monochromatic measurement has higher contrast 

than the stochastic measurement with respect to the estimated variance for the pre-edge 

peak feature at 7.113 keV. This relative confidence in the pre-edge peak intensity for the 

stochastic reconstruction does improve slightly with added data, as shown in Supplementary 

Fig. 1a, but not to the level seen with a monochromatic beam.

A scaled slice of the RXES plane at constant emission energy 6.4033 keV from the SASE 

beam measurements is overlaid with that from the monochromatic beam in Fig. 1b across 

the near edge region (7.100–7.160 keV). This single emission energy (Kα1)-detected X-ray 

absorption is also referred to as High-Energy Resolved Fluorescence-detected (HERFD) 

absorption19 and the sharper spectral features it gives relative to X-ray absorption make it 

a more incisive probe of valence state20. The monochromatic energy scan was terminated 

around 7.140 keV, as indicated by the sharp drop there, while the stochastic signal recovery 

extends further in energy, covering the same spectral bandwidth as the SASE beam. Where 

the SASE spectral intensity is weak on average, the uncertainty of the fit becomes higher, 

as indicated by the shaded 95% confidence interval. For the monochromatic measurement, 
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the spectral content in the SASE diagnostic above 7.140 keV is just noise, which is why 

the uncertainty reported in the monochromatic spectrum is so high there. The agreement 

between HERFD spectra at energies above 7.120 keV is quite good until the SASE spectral 

intensity becomes weak. From the HERFD comparison, we see that stronger absorption 

signals are well handled by the stochastic spectroscopy approach so chemical analysis 

relying on the near-edge region21,22 is feasible. Note that the monochromatic signal has 

been corrected for a spatial intensity profile effect due to slight deviation of the beam on 

changing from offset mirrors to the double crystal monochromator, which is described in 

Supplementary Fig. 2.

Probing systematic effects in the SASE diagnostic signal.

That the Fe pre-edge feature is recoverable from the stochastic measurement and that it, 

along with other spectral features, is largely consistent with that of the monochromatic 

measurement indicates stochastic spectroscopy has suitable sensitivity to be broadly useful 

in the study of chemical systems. However, the differences of peak location and shape 

between the two measurements, particularly in the vicinity of 7.120 keV, are still noticeable. 

Spectral differences of this magnitude are similar in scale to changes induced, for example, 

by changing the solvent environment of ferrocyanide from water to ethylene glycol23. 

As the sample and solvent in both monochromatic and stochastic measurements are the 

same, taking such differences at face value and interpreting them as chemical changes in 

the sample could potentially be misleading. A simple explanation for these differences is 

that we did not include enough data in the signal recovery algorithm to suitably constrain 

the solution. Supplementary Figure 1 supports this hypothesis by showing that agreement 

between monochromatic and stochastic measurements improves in the 7.120 keV region 

upon the addition of more data. Measurement noise is a major factor in determining 

how many shots are needed to form an accurate estimate of the true spectrum of the 

material. One of the advantages of stochastic spectroscopy is that more emission photons 

are generated per shot. This means that the emission measurement should have a higher 

signal to noise ratio for the stochastic approach, compared to the monochromatic one. 

Therefore, it is unlikely that emission measurement noise explains a need for more data in 

the stochastic measurement. Noise in the SASE diagnostic measurement, i.e., inaccuracy 

of the reported SASE spectral intensity compared to what the sample experienced, is 

more likely to be the cause of the problem and may arise due to several noise models. 

SASE diagnostic noise integrated over the entire SASE bandwidth is added to each shot in 

stochastic spectroscopy, while only a narrowly filtered portion of it is added to each shot 

in monochromatic measurements. SASE measurement noise enters both monochromatic and 

stochastic signal recoveries implicitly when the proposed spectrum is weighed by the SASE 

spectral diagnostic measurement. Consequently, SASE diagnostic noise is a greater liability 

to stochastic spectroscopy than monochromatic spectroscopy. We turn to simulations in Fig. 

2 to explore the effect of SASE diagnostic noise, as it is not trivial to predict.

Knowing what type of SASE diagnostic noise is impacting stochastic recovery will inform 

what improvements should be sought in the method used to measure the SASE spectral 

intensity as well as in signal recovery algorithms. Two types of SASE diagnostic noise are 

anticipated: shot noise resulting from low photon collection per pixel and complications 
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arising from spatial beam profile coupling to spectral amplitude, also called spatial-chirp. 

While high photon flux is a strength of the SASE spectrometer used, errors in spectral 

intensity above the edge where spectral intensity drops can have a strong impact on the 

inferred spectrum. The spectrometer employed in the experiment is known to be sensitive 

to spatio-spectral variation within the beam profile7. Sun et al.24 showed the XFEL spatial 

profile for a given X-ray photon energy varies shot to shot. Spatio-spectral variations are 

thus a known, yet unobservable effect that can potentially alter the correlation between 

emission and SASE spectral intensity measurements. To probe the effect of these physical 

noise models, we plot the solution resulting from independent fits to independent subsets 

of experimental and simulated data in Fig. 2. The data subsets for each fit have been 

selected so that the average first moment, or central photon energy, of the SASE spectral 

intensity increases from one subset to the next. Sorting the data subsets this way introduces 

a systematic change in the underlying SASE intensity diagnostic signal entering each fit, 

which enhances changes that noise processes on the SASE diagnostic introduce. The line 

color in Fig. 2 encodes the average SASE diagnostic first moment for the dataset employed 

in the fit (see color bar). See Supplementary Figure 3a for a comparison of the SASE subsets 

employed. On the other hand, the ~10 eV range of SASE first moments is small compared 

to the ~30 eV bandwidth of the SASE beam, so these subsets should all produce very 

consistent results, except where the SASE spectral intensity tails off. Indeed, one can see in 

panel b of Fig. 2, which examines synthetic data in which no noise was added to the SASE 

diagnostic, that there is no clear dependence of the solution on the SASE first moment. 

In stark contrast to the noiseless SASE diagnostic case, the experimental data in panel a 

and all simulated noise models, show marked dependence of the solution on the SASE first 

moment.

The synthetic emission data considered in panels b–e of Fig. 2, are generated using the 

same subsets of SASE spectra used in panel a in conjunction with a reference spectrum. 

See Methods for more details on signal simulation. Panels b–e of Fig. 2 all share the same 

emission responses with identical noise. The distribution of emission noise added in these 

simulations is depicted in Supplementary Fig. 3b. For Fig. 2c–e, the SASE spectra used 

during signal reconstruction (but not signal generation) are corrupted by noise. We used 

shot noise (Poisson) for panel c, multiplicative noise for panel d, and beam pointing noise 

in panel e. Shot noise produces substantial deviation of the solution as a function of first 

moment above the edge, but little first moment dependent deviation near the pre-edge. 

Poisson noise does reduce contrast of weak features, but this lack of weak feature contrast 

is not seen in our experimental data. Multiplicative noise, which simulates a fluctuating 

and randomly rugged beam intensity profile, induces strong solution dependence on SASE 

first moment for all incident energies. Beam pointing noise produces smoother deviations 

than multiplicative noise, but likewise impacts the entire spectrum. Multiplicative and 

beam pointing noise are a better match to the behavior of experimental data in panel a. 

Furthermore, multiplicative noise induces both new peaks and peak position fluctuations in 

the pre-edge and near-edge regions, which may explain some of the discrepancy between 

monochromatic and stochastic measurements. Both beam pointing noise and multiplicative 

noise are a consequence of the spatial-spectral coupling of the SASE spectral diagnostic 

method employed7.
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So far, we have assumed that the signal generated in the stochastic experiment is linearly 

related to the spectral intensity of the SASE spectrum. As the SASE pulse is 20–100 

more intense than what a monochromator can deliver, non-linear effects may explain 

the discrepancy between the monochromatic and stochastic measurements. In Kayser and 

co-worker’s10 stochastic spectroscopy study of Iron nanoparticles10 the shape of spectra 

depended strongly on the X-ray intensity used, which was interpreted to be caused by 

a variety of non-linear effects. A recent study on X-ray emission of metallic Iron by 

Alonso-Mori and co-workers25 also finds large spectral shape changes over a similar range 

of intensities to that used in10 as well as in this study. In contrast to spectra of metallic Iron, 

Alonso-Mori et al.25 show that spectra of dilute aqueous Iron salt solutions (200 mM), like 

those used in this study, are much less sensitive to intensity and better preserve valence state 

information present in Kβ emission spectra. Consequently, we expect non-linear effects to 

be small in our data, compared to what was seen in locally dense Iron nanoparticles10.

Impact of SASE statistics and detection noise.

Supposing the SASE diagnostic can be made as accurate as possible, the distribution of 

spectral amplitude in a SASE pulse and the noise that affects the emission signal detection 

are the two main controllable parameters of the stochastic spectroscopy experiment. 

Emission detection noise depends mainly on sample concentration and the solid angle that 

the emission spectrometer can collect. Detector technology affects the emission detection 

noise, but modern X-ray detectors are very close to shot noise limited performance. The 

distribution of SASE spectral amplitude can be controlled to some degree by various XFEL 

facility parameters. For example, shorter pulses are comprised of few, broad spikes, while 

longer pulses are comprised of many well resolved sharp spikes. How many spikes are 

resolved is also affected by the resolution of the SASE diagnostic spectrometer. As a 

proxy for many different facility parameters, we characterize a collection of synthetically 

generated SASE shots by their mutual coherence26, the maximum absolute value of the 

cross-correlations between SASE spectra. The more similar the shots are to one another, 

the higher their mutual coherence. Generally, SASE spectra composed of well separated 

and sharp spikes produce lower mutual coherence. The impact of mutual coherence and 

emission noise on the reconstruction accuracy is shown in Fig. 3 through a pure simulation 

study. The simulation imitates an experimental setup where the SASE beam is split into two 

equal intensity beams. One beam is monochromatized before striking the sample, while the 

other is sent directly to a separate identical sample. The incident light spectrum impinging 

the sample is recorded for both beam paths along with emission signal generated at their 

respective samples, producing two datasets that are related through their mutual source. We 

are interested in knowing which arm of the simulated experiment produces a smaller root 

mean squared error (RMSE) with respect to the ground truth given a fixed measurement time 

budget.

SASE spectra used in the simulation are synthetically generated. The spectral intensity 

at each energy is treated as statistically independent of one another and is drawn from 

a Gamma distribution of unit scale. The shape parameter of the Gamma is adjusted to 

create datasets with different mutual coherence. Emission signals are produced using the 

generated SASE spectra as input along with a ground truth spectrum taken from reference 
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data, see Methods for more detail. Emission noise is controlled by setting the number of 

photons in each beam, so that efficiencies of the mono and collection optics are considered 

appropriately for each branch of the experiment. Read noise equivalent to 1/5 of a photon 

in addition to shot noise (Poisson–Gaussian noise) is added to the emission signal used in 

Fig. 3 panel a, while purely shot noise (Poisson noise) limited measurements are used in 

panel b. For each condition of SASE mutual coherence and photon budget, the spectrum is 

reconstructed independently for both monochromatic and full bandwidth experiments. The 

RMSE of these reconstructions were calculated and we plot in each pixel the ratio of the 

RMSEs: monochromatic RMSE divided by polychromatic RMSE. When the ratio is greater 

than one, this indicates that the monochromatic measurement had a larger RMSE (poorer 

fit) than the polychromatic beam, which is shown as white to red colors in the plot. When 

the ratio is less than one, the polychromatic beam RMSE is greater and this is depicted with 

hatched pixels that have white to blue colors.

The vertical black dashed line in Fig. 3 indicates the experimentally measured mutual 

coherence for the data used in Fig. 1. In compressed sensing27, which examines imposed 

projections of a signal, lower mutual coherence between the projections produces better 

quality results. We see this trend reflected here as superior performance of the stochastic 

recovery compared to the raster scanned monochromatic experiment. One takeaway of this 

simulation is that lowering mutual coherence of the SASE spectrum is a way to obtain a 

measurement time advantage over monochromatic measurements. Conversely, even with 

ideal SASE diagnostic measurements, at the present SASE mutual coherence, we can 

expect at best similar measurement times between the two approaches when the per-shot 

signal to noise is high. Additionally, these simulations show that the stochastic approach is 

competitive for a wide range of signal to noise values. In fact, both simulations show that the 

stochastic approach can be advantageous over a broader range of mutual coherence values at 

lower signal to noise than is the case for higher signal to noise measurements. The presence 

of a Gaussian (read) noise component in the measurement, as shown in Fig. 3a, improves the 

relative advantage that stochastic spectroscopy provides over monochromatic spectroscopy, 

particularly for low concentration samples. Thus, we anticipate stochastic spectroscopy, with 

an accurate SASE diagnostic, can make challenging time resolved RIXS experiments on 

dilute systems more feasible.

Discussion

We have shown experimentally that stochastic spectroscopy can yield similar spectral 

information content in RXES and HERFD spectroscopies to the more established 

monochromatic approaches used to collect the same spectra. With the currently available 

SASE spectral intensity diagnostic, we found that more shots are needed in the stochastic 

approach to achieve a signal to noise comparable to the monochromatic approach. At 

the same time, our results suggest that stochastic spectroscopy could be employed in its 

present state for any sample where monochromatic studies are already feasible and can 

tolerate small degradation of the signal to noise. Simulations in Fig. 3 show that the relative 

performance of stochastic spectroscopy is largely unaffected by the signal to noise of each 

shot, so lower concentration samples will fare similarly to the same sample measured with 

a monochromatic approach. For very dilute samples, Fig. 3 also indicates that stochastic 

Fuller et al. Page 8

Commun Chem. Author manuscript; available in PMC 2022 March 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



spectroscopy will offer a measurement advantage once the signal’s amplitude is comparable 

to the read noise of the detector. The relative inefficiency of stochastic spectroscopy that 

we have observed is unexpected when measurement noise is present only on the emission 

signal, as we show via simulations in Fig. 3. Some of the issues with how quickly the 

solution converges to the right answer can be explained by noise on the SASE spectral 

intensity diagnostic. In analysis presented in Fig. 2, we find that noise models which invoke 

the spatial-spectral coupling of the SASE spectral diagnostic best reproduce the behavior 

seen in experimental data, which points to spatial-spectral coupling being a problem that 

should be addressed in future studies. The strong performance dependence of stochastic 

spectroscopy on the SASE beam mutual coherence, illustrated in Fig. 3, implies that 

different XFEL accelerator control parameters may be used to improve the performance 

of stochastic spectroscopy.

Despite some of the challenges exposed in this study, the use of beam diagnostic 

measurements to characterize a chaotic source in lieu of source control is liberating for 

XFEL experimental design. The freedom to use the full SASE bandwidth will enable 

new multi-modal signal collection experiments, like combined scattering and resonant 

spectroscopy experiments. Additionally, resonant scattering experiments making use of 

the natural SASE fluctuations in a similar fashion to the experiment discussed here have 

been recently studied theoretically28. A compelling experimental use-case18, used the 

natural SASE fluctuations in combination with photo-electron yield to measure X-ray 

absorption from an attosecond pulse. Here stochastic spectroscopy enables attosecond 

time-scale optical pump, resonant X-ray probe experiments. The conventional approach to 

absorption, employing a monochromatized X-ray probe compromises either time resolution 

or frequency resolution due to the time-bandwidth limit on the X-ray pulse. While similar 

advantage can be accomplished via a traditional Fourier Transform approach, the natural 

spectral fluctuations are already present and quick to exploit as little extra instrumentation 

is needed. The ready availability of natural spectral and temporal fluctuations in the 

SASE beam have also inspired theoretical studies into more complex multidimensional 

spectroscopies beyond RXES. Stimulated emission, rather than spontaneous emission, 

correlated with SASE spectral intensity diagnostics can be used to study a non-linear form 

of RXES29,30. Combining spectral analysis of diffraction signals and temporal intensity 

diagnostics have also been explored theoretically31 to measure time resolved diffraction 

signals. While this work does not cover these non-linear X-ray scenarios, the use of source 

diagnostics in correlation with an observable is a common thread. Some of the challenges 

studied here will be of value in bringing these exciting extensions of XFEL science to 

mainstream use.

Methods

Data collection.

The physical process that produces incident energy-dependent X-ray emission is depicted 

using an energy level diagram in Fig. 4a. The experimental setup we employed to measure 

RXES can use either monochromatized or full bandwidth SASE light, so that all other 

components can remain fixed in either source configuration, allowing us to directly compare 
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the approaches. The setup is summarized in Fig. 4b and was implemented at Beamline 

332 of SPring-8 Angstrom Compact free-electron Laser (SACLA)33. Aside from the offset 

mirror/monochromator, the setup consists of three main devices: a spectrometer to measure 

the spectral amplitude of the SASE light, a spectrometer to measure X-ray emission, and a 

liquid jet to replenish the sample after each XFEL shot. For both spectrometers, the X-ray 

light was detected with a multiport charge-coupled device34, a direct-detection pixel array 

detector capable of single photon registration. The 1s2p emission line from Iron is monitored 

with an energy dispersive von Hamos spectrometer with ~1 eV resolution and a sampling 

rate of about 0.6 eV per pixel. The von Hamos spectrometer used a cylindrically bent 

Ge 440 crystal with 250 mm bending radius. The SASE spectrometer9 samples the beam 

after the monochromator/offset mirrors, via a silicon grating, and resolves the spectrum 

of the light sent to sample with ~0.5 eV resolution and a sampling rate of 0.6 eV per 

pixel. The SASE spectrometer, also serves as a beam intensity monitor, or I0, for the 

monochromatic measurement. The crystal analyzer in the SASE spectrometer (a flat Si 

220 crystal) trades off spectral resolution in exchange for the ability to resolve the entire 

SASE spectral bandwidth so that all SASE fluctuations influencing the emission intensity 

are captured. This type of SASE spectrometer provides a strong signal with little photon 

noise. The XFEL beam was focused by a Kirkpatrick-Baez mirror system35 to a ~1 micron 

spot onto a 200 micron diameter liquid jet. The liquid jet used a nozzle and pump system 

designed at SACLA36 and was housed in a Helium chamber also developed there37. The 

liquid jet delivered an aqueous solution of 200 mM Potassium ferrocyanide (K4Fe(CN)6) via 

a recirculating reservoir.

Noise treatment.

Von Hamos emission spectrometers, as well as other hard x-ray spectrometers, capture only 

a small solid angle of the emission that radiates spherically from the sample. The setup had 

a collection angle of 67 micro-steradian per eV, resulting in average counting rates of a few 

photons per pixel (~50 photons per shot in the focused region of the von Hamos at the Kα1 

peak). Modern X-ray pixel array detectors38 have very low read noise compared to the signal 

of a single X-ray photon, less than 1/5 of a photon, so X-ray emission from the sample is 

dominantly corrupted by Poisson noise. In contrast, the collection solid angle per eV of the 

SASE spectrometer is more closely matched to the source divergence and directly measures 

a (~2% at 10 keV) sample of the beam so each shot has hundreds of photons per pixel. Thus, 

the SASE signal diagnostic should have substantially higher signal to noise, considering 

only the photon counting statistics. For this reason, we treat the SASE spectral measurement 

as noise free in the signal recovery algorithm. Statistical inference of the model is also 

substantially easier when the SASE diagnostic signal is treated as noise-free. However, we 

saw in the Results that the SASE spectral diagnostic measurement is not actually noise-free 

and so properly addressing the noise in signal recovery is an avenue for future improvement.

Extraction of RXES spectrum.

Figure 4c depicts how X-ray absorption and emission of a material are related when 

measured using broadband SASE light. We can summarize Fig. 4c with a matrix equation:
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Y = WS (1)

Here S is the RXES spectrum, with absorption axis forming the rows and emission axis 

forming the columns. W are the SASE spectra, with the spectrum of each shot occupying 

a row of the matrix and with the number of rows being much greater than the number of 

columns. Y is a matrix of X-ray emission intensities, each row consisting of a single-shot 

Kα emission spectrum. The SASE spectra act as a linear operator that transforms the RXES 

spectrum to a new space, similar in spirit to the action of the Fourier operator in Fourier 

spectroscopy. All our simulations of emission Ysim using SASE light in Figs. 2 and 3 are 

done using a given spectrum S and supplied SASE weighs W, according to Eq. (1). The 

RXES spectrum can be obtained through the approximate inverse transformation: S = W+Y, 

where W+ is the Moore-Penrose pseudo-inverse. This solution minimizes the least-squares 

error between observations Y and the model WS. However, measurement noise, arising from 

low photon counting rates, detector read noise or other effects, cause this solution, which is 

one of infinitely many in such an over-determined problem, to have high frequency content, 

to have non-physical negative intensities, and generally to be unsatisfactory.

Gaussian process regression.

To mitigate the impact of noise and prevent unrealistic solutions, some constraint needs to be 

imposed on the RXES spectrum being estimated. We may, for example, desire the solution 

to be smooth and positive. A popular and computationally cheap method to constrain the 

solution is to penalize the least squares objective by adding a scaled L2 norm, L1 norm, 

or a more general norm of the solution. The strength of the penalty is a hyper parameter 

that is determined through grid search39, Bayesian optimization40, or other methods41. The 

spectra recovered by Kayser and co-workers10 used L2 penalization tuned by the L-curve 

method41. We used Gaussian Process Regression (GPR)42, a Bayesian approach that is 

like penalized least squares in some regards but allows for the penalty to be optimized 

through gradient descent on an objective function. GPR also supplies an error estimate 

of the fit and does this by assuming the RXES spectrum is a functional distribution over 

many possible spectra, with the distribution on a finite set of energy points taking the form 

of a multivariate normal distribution. When conditioned on observed data, the conditional 

distribution becomes tighter, modeling how our certainty in the spectrum improves with 

added data. We obtain the gradient of the GPR objective function, called the marginal 

likelihood, through automatic differentiation in Tensorflow43 and use GPFlow44 as a basis 

for our code45. Another attractive attribute of GPR is that it fits a function to the data, 

as opposed to a matrix of coefficients at fixed energy values, which allows one to easily 

interpolate the response to unmeasured energy points. It is important to note that there are 

many ways to approach the signal recovery problem. For example, in the work of Driver 

and co-workers18, the solution was controlled for smoothness, sparsity in a basis set, and 

non-negativity through a more general optimization algorithm called Alternating Direction 

Method of Multipliers46.
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Signal extraction design space.

A GPR model defines the prior distribution of the RXES spectrum to be S(x) ~ N(0, k[x, 

x′]), where k X, X′ =def K is a matrix-valued function called a kernel that maps a collection 

of energy points X to a positive definite matrix. The mean solution of GPR is the same as 

the solution to the penalized least squares objective471
2σ−2(y − Kα)T (y − Kα) + 1

2αTα, where 

α is the solution. This shows that, in the context of penalized least squares, the kernel 

defines a generalized norm that we are penalizing. Consequently, the functional form of the 

kernel plays an important role in the behavior of the optimal solution. In this work, we use 

only simple stationary kernels that smooth the solution uniformly for all energies, leaving 

more complex (energy-dependent) options48 to future studies. GPR assumes the data is 

corrupted by Gaussian noise, which is very computationally convenient, if not representative 

of the detector physics. With the Gaussian noise assumption, the solution is analytic given 

hyper-parameters that are themselves optimized via a quasi-Newton solver from the scipy 

library49. A derivation of the predictive RXES distribution and objective function is supplied 

in Supplementary Note 1. Because the measurements are repeated at the same energies for 

each shot, the cost of optimizing the GP is independent of how many shots are measured, 

but it is cubic in the number of energy points (the cartesian product of incident and emission 

energies).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Experimental comparison of stochastic and monochromatic measurements.
The recovered Fe 1s2p RIXS planes using the polychromatic SASE beam is shown in panel 

a while the same obtained with a monochromatized SASE beam is shown in panel b. The 

spectra were recovered from 42,000 shots corresponding to ~24 min of measurement time 

at 30 Hz in both cases. Solid black contour lines indicate an increase of RIXS intensity 

by 2σ, where σ is the standard deviation of the predictive distribution estimated for a 

given emission/incident energy point. These contour lines can be treated as an estimate 

of relative significance, where peaks of interest are separated from surroundings by many 

contours. A slice at constant emission energy (6.4033 keV) is shown in panel c over a much 

larger incidence energy range. For both measurements, the XFEL central energy is fixed 

and scanning of the mono was limited to 7.100–7.140 keV. The SASE spectral intensity 

is centered on the Fe pre-edge region and tails off above 7.130 keV. Error bars in panel c 
likewise indicate 2σ bounds of the solution.
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Fig. 2. Impact of SASE spectral diagnostic inaccuracy.
In each panel, we plot the Fe HERFD absorption spectra fit to 17 independent subsets of the 

data, each containing 10k shots. The spectra are color coded by the average first moment of 

the SASE spectral diagnostic used for each independent fit (color bar in units of keV) (see 

Supplementary Fig. 3a). The spectra are scaled with a symmetric log function to enhance 

dynamic range of the plot and show variance of the fit in both pre-edge and above edge 

regions. Panel a is fit to experimental data. Panels b–e are fit using synthetically generated 

emission signals created using the same SASE spectral intensity measurements used in panel 

a. In panel b, no additional noise is added to the SASE spectral measurements during the 

reconstruction. In panel c, shot noise is added to the SASE spectral diagnostic such that 

around 330 photons are distributed over 200 pixels in each shot. In the actual experiment, 

each shot has around 5–10× more photons than this, so the effect shown here is exaggerated 

to highlight the effect this kind of noise has. In panel d, the SASE spectral diagnostic is 

corrupted by a random, smooth multiplicative filter to simulate spectra distorted by intensity 
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profile fluctuations. In panel e, a Gaussian intensity filter of fixed width, but with mean 

that depends linearly on the SASE first moment is applied to simulate beam pointing that 

changes slightly with central photon energy.
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Fig. 3. Relative performance of stochastic spectroscopy to monochromatic spectroscopy.
We examine the merits of stochastic signal recovery to monochromatic signal recovery as 

a function of detector noise type (panels), amount of detector noise (vertical axis), and a 

similarity metric of SASE shots (horizontal axis). Poisson or shot noise is used in panel 

b, while in panel a, shot-noise plus Gaussian read noise (Poisson–Gaussian) is used. No 

noise is added to the SASE spectral diagnostic. The amount of detector noise applied is 

determined by a ratio of the 2nd moment of the noiseless signal to the noisy signal. A 

ratio of 1.0 indicates that the detector noise model contributes negligibly to the 2nd moment 

(a high quality signal), while a ratio of near zero indicates a measurement dominated by 

detector noise. SASE coherence, defined in the text, is smaller for collections of shots which 

are less similar (have smaller inner product). Each pixel in panels a and b depicts a ratio: the 

RMSE for signal recovered using monochromatized light divided by the RMSE of the signal 

recovered using the full SASE bandwidth. Each pixel represents the median RMSE ratio of 

10 simulated experiments, with 100k shots each. The black line on each image shows the 

experimentally observed coherence of the SASE light in Fig. 1 as a point of reference.
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Fig. 4. Setup and signal generation overview.
A cartoon in panel a depicts the atomic transitions involved in K-edge absorption and 1s2p 

emission of Iron. The beamline configuration used for data collected is shown in panel b and 

shows how the beamline can switch between full bandwidth SASE and monochromatized 

SASE upstream of both spectrometers. Details of the SASE spectrometer and emission 

spectrometer are highlighted. The SASE spectrometer works by sampling a collimated beam 

using a silicon grating and then dispersing the spectral content of the beam onto a pixel 

array detector via a flat Si 220 analyzer crystal coupled to a reflective focusing optic. A 

von Hamos configuration is used for emission detection, wherein a single cylindrically 

bent crystal collects sample emission perpendicular to the beam, re-images, and energy 

disperses it onto a pixel array detector. Panel c depicts the model used for analysis. For 
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each detected emission energy, a proposed absorption spectrum is weighed by the measured 

SASE spectrum and then sum reduced to form a proposed emission intensity.
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