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Abstract: B-cell-specific Moloney murine leukemia virus integration region 1 (Bmi-1, also known
as RNF51 or PCGF4) is one of the important members of the PcG gene family, and is involved in
regulating cell proliferation, differentiation and senescence, and maintaining the self-renewal of
stem cells. Many studies in recent years have emphasized the role of Bmi-1 in the occurrence and
development of tumors. In fact, Bmi-1 has multiple functions in cancer biology and is closely related
to many classical molecules, including Akt, c-MYC, Pten, etc. This review summarizes the regulatory
mechanisms of Bmi-1 in multiple pathways, and the interaction of Bmi-1 with noncoding RNAs.
In particular, we focus on the pathological processes of Bmi-1 in cancer, and explore the clinical
relevance of Bmi-1 in cancer biomarkers and prognosis, as well as its implications for chemoresistance
and radioresistance. In conclusion, we summarize the role of Bmi-1 in tumor progression, reveal
the pathophysiological process and molecular mechanism of Bmi-1 in tumors, and provide useful
information for tumor diagnosis, treatment, and prognosis.
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1. Introduction

Polycomb group (PcG) proteins are a group of transcriptional inhibitors that regulate
targeted genes at the chromatin level. They also play a critical role in embryonic develop-
ment, cell proliferation, and tumorigenesis [1,2]. PcG proteins act on the development of
organisms by forming two multimeric protein complexes: the polycomb repressive com-
plex 1 (PRC1) and the polycomb repressive complex 2 (PRC2)) [3]. B-cell-specific Moloney
murine leukemia virus integration region 1 (Bmi-1, also known as RNF51 or PCGF4) is
one of the core members of the PRC1 complex. This complex, acting through chromatin
remodeling, is an essential epigenetic repressor involved in embryonic development and
self-renewal in somatic stem cells [4–6]. Therefore, Bmi-1 also is an oncogene, and its
abnormal expression is associated with tumorigenesis and drug resistance in many cancers,
including bladder cancer cells, B-cell lymphoma cells, melanoma cells, and others. Non-
coding RNAs (ncRNAs) are a class of RNAs produced in noncoding regions that are not
translated into proteins but are widely expressed in organisms [7]. With the development
of gene sequencing technology, increasing evidence suggests that ncRNAs have crucial
biological functions and play core roles in regulating gene expression [8]. In recent years, it
has been identified that microRNAs (miRNAs) play important roles in various biological
processes by inhibiting the translation of mRNAs and inducing their degradation, which
makes them potential molecular targets for cancer therapy [9–13]. Interestingly, several
recent studies have found that Bmi-1 is targeted and regulated by many miRNAs in cancer.
Furthermore, the unique biological functions and cancer-promoting effects of Bmi-1 have
also attracted increased attention. Therefore, in this review, we first describe the normal
function of Bmi-1; then, we review the relevant signaling pathways regulated by Bmi-1 in
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normal and carcinogenic conditions and its regulatory network with miRNAs, to provide a
reference for a more comprehensive understanding of the role of Bmi-1 in cancer.

2. Molecular Features and Characteristics of Bmi-1

The structure of Bmi-1 in humans and mice is very similar, and the homologies of
DNA and amino acid in Bmi-1 are 86% and 98%, respectively. The Bmi-1 gene in humans,
composed of 10 exons and 9 introns, is localized on the short arm of chromosome 10
(10p11.23). The Bmi-1 protein is 37 kD in size, consists of 326 amino acids, and has a highly
conserved structure. There are several important structures in the amino acid sequence
of Bmi-1 protein. The N-terminal is a RING finger domain, which is composed of a zinc
finger and C3hC4 sequence. Bmi-1 can regulate transcription, affect cell proliferation, and
participate in the formation of the malignant tumors by RING finger binding to other
critical proteins. The helix–turn–helix structure (HTH structure) is located in the center of
the Bmi-1 protein, and mediates the transcriptional inhibition of Bmi-1 by binding with
DNA. At the carboxyl terminus, the PEST structure of the PEST region situated at the C
terminal contains many serine, glutamic acid, threonine, and proline residues [14], which
are associated with intracellular turnover of Bmi-1 protein. Two nuclear localization signals
(NLS1, NLS2) are contained in Bmi-1, of which NLS2 is required for Bmi-1 localization
in the nucleus. Figure 1 illustrates the structure of the Bmi-1 gene and Bmi-1 protein, the
illustration is redrawn (with modifications) from Sahasrabuddhe (2016) [15].
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Figure 1. The structure of gene and protein of Bmi-1. The Bmi-1 gene contains 10 exons and 9 introns.
The amino acid sequence of Bmi-1 protein contains a RING finger domain, a helix–turn–helix, two
nuclear localization signals (NLS), and a PEST region.

3. Upstream Regulatory Mechanisms of Bmi-1

Bmi-1 is expressed in almost every human tissue and in many cancers, and serves
as a biomarker for some cancers. Therefore, it is crucial to explore the mechanisms that
regulate Bmi-1 mRNA and Bmi-1 protein levels. Over the past decade, researchers have
made some progress in the regulation of Bmi-1 at the transcriptional, post-transcriptional,
and post-translational levels. It is currently known that Bmi-1 is included in the positive
or negative transcriptional regulation of many transcription factors. Positively regulated
transcription factors are Sp1, Twist1, FoxM1, ZEB1, E2F1, SALL4, MYC-N, c-MYC, and
HDACs, while negatively regulated transcription factors are Mel18, Nanog, and KLF4 [15].

Post-translational modifications (PTMs) of proteins are an important part of pro-
teomics. Proteins change their spatial conformation, activity, stability, and interaction
performance with other molecules through PTMs, thereby participating in the regulation
of various life activities in the body. Most proteins can undergo PTMs, and there are more
than 200 known covalent modifications of proteins, including phosphorylation, nitrosy-
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lation, nitration, ubiquitination, and sumoylation, among others. PTMs are associated
with many important diseases, including cancer. There have been some studies on the
post-translational modification of Bmi-1.Bmi-1 can be activated by phosphorylation. For ex-
ample, the state of Bmi-1 protein binding to chromosomes is related to its phosphorylation;
in G1/S phase, non-phosphorylated Bmi-1 specifically binds to chromosomes, while in
G2/M phase, phosphorylated Bmi-1 does not bind to chromosomes [16]. Bmi-1 represses
the expression of the Ink4a-Arf locus, which encodes two tumor suppressor genes, p16Ink4a

and p19Arf. Bmi-1 is phosphorylated (and inactivated) at Ser 316 by Akt serine/threonine
kinase, also known as protein kinase B (PKB), to promote p16Ink4a and p19Arf expression
and inhibit hematopoietic stem cell self-renewal [17]. Similarly, the Wnt5a-ROR1 complex
can phosphorylate Bmi-1 through the Akt pathway to promote tumorigenesis [18]. It
has also been reported that activation or overexpression of MAPKAP kinase 3 leads to
the phosphorylation of Bmi-1 and other PcG members, and promotes their dissociation
from chromatin [19]. Sumoylation is a reversible post-translational modification which
has emerged as a crucial molecular regulatory mechanism, involved in the regulation of
replication, cell-cycle progression, protein transport and the DNA damage response. The
study found that DNA damage can induce the sumoylation of lysine 88 in Bmi-1, and
knockout of chromobox 4 (CBX4), a member of the polycomb group family of epigenetic
regulatory factors, can eliminate this phenomenon, which means that CBX4 can mediate
the sumoylation of Bmi-1 [20]. Moreover, p53/p21 can inversely regulate Bmi-1 expression
by affecting ubiquitin/proteasome activity [21]. This also implies that Bmi-1 may be ubiq-
uitinated. Furthermore, Ser255 was found to be the site of O-GlcNAcylation of Bmi-1 in
prostate cancer, and O-GlcNAcylation of Bmi-1 promoted the stability of Bmi-1 protein and
its oncogenic activity [22].

MicroRNAs (miRNAs or miRs) are a class of small of ncRNAs that contain about
19–24 nt. Although miRNAs do not encode proteins, they regulate the expression levels of
some genes at the post-transcriptional stage. MiRNAs negatively regulate the expression
of target genes by complete or incomplete complementary binding to the 3′-UTR of target
mRNAs, promoting the degradation or translational repression of target mRNAs. There
is growing evidence that miRNAs are involved in essential biological processes, includ-
ing development, differentiation, proliferation, apoptosis, invasion, and metastasis. The
3′UTR length of Bmi-1 is 2090 nt. The miRNAs mainly target two spacers of the 3′UTR
of Bmi-1. The first target position is 469–725, which includes miR-128, miR-221, miR-183,
and miR-200b/c; the other position is 1442–1758, including miR-203, miR-218. We summa-
rize the interaction between Bmi-1 and miRNAs in human tumors in Table 1, to provide
information for further research on cancer treatment and clinical applications.

Table 1. MicroRNAs that inhibit Bmi-1 in tumors.

miRNAs Efficacy for Cancer Cancer Type References

miR-34a, miR-15a, miR-218,
miR-183, miR-498, miR-128

Inhibits proliferation; inhibits metastasis;
decreases chemoresistance Gastric cancer [23–27]

miR-218, miR-200c,
miR-485-5p

Inhibits proliferation; inhibits migration;
increases apoptosis Colorectal cancer [28–30]

miR-15a, miR-183 Inhibits proliferation and EMT Pancreatic ductal
adenocarcinoma [31,32]

miR-203 Inhibits self-renewal Esophageal cancer [33]
miR-203 Promotes apoptosis Oral cancer [34]

miR-218, miR-203 Inhibits proliferation and invasion; introduces apoptosis;
decreases radiosensitivity and chemosensitivity

Hepatocellular
carcinoma [35–39]

miR-218 Increases chemosensitivity Liver cancer [38]

miR-320a Inhibits proliferation and migration Nosopharyngeal
carcinoma [40]
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Table 1. Cont.

miRNAs Efficacy for Cancer Cancer Type References

miR-132, miR-498 Increases radiosensitivity; inhibits proliferation
and invasion Cervical cancer [41,42]

miR-128, miR-200b, miR-221,
miR-30d, miR-15a,
miR-330-3p, miR-212

Inhibits proliferation and migration;
increases chemosensitivity Prostate cancer [43–50]

miR-200c, miR-194 Inhibits proliferation; inhibits EMT Endometrial
carcinoma [51,52]

miR-128, miR-495 Inhibits proliferation; introduces apoptosis; increases
chemosensitivity and DNA damage Breast cancer [53,54]

miR-132, miR-15a,
miR-16, miR-128 Inhibits metastasis; increases chemosensitivity Ovarian cancer [55–57]

miR-361-5p, miR-218, miR-128 Inhibits proliferation; inhibits EMT Glioma [58–60]

miR-128, miR-16, miR-128a Inhibits proliferation and angiogenesis;
introduces radiosensitivity Glioblastoma [61–63]

miR-128a Inhibits ROS Medulloblastoma [64]

miR-218 Inhibits proliferation, inhibits migration,
inhibits apoptosis Osteosarcoma [65,66]

miR-200c, miR-139-5p,
miR-218, miR-15

Inhibits proliferation; inhibits metastasis; inhibits
apoptosis; inhibits autophagy Bladder cancer [13,67–69]

miR-218 Inhibits proliferation Acute Promyelocytic
Leukemia [70]

miR-218 Inhibits proliferation and metastasis Lung
adenocarcinoma [71]

miR-203 Inhibits proliferation Myeloma [72]
miR-200C Inhibits proliferation and metastasis Renal cancer [73]

miR-154 Inhibits proliferation and migration Non-small cell lung
cancer [74]

miR-200c Inhibits proliferation and migration;
increases chemosensitivity Melanoma [75]

4. Bmi-1-Targeted Processes in Cancer

Bmi-1 protein belongs to the polycomb family of transcriptional repressors, and binds
to polycomb response elements in the genome to silence the transcription of specific target
genes. The genes to be transcriptionally regulated by Bmi-1 include INK4a/ARF, Pten,
homeobox protein HoxC13, human telomerase reverse transcriptase (hTERT), etc. [76–79].
Figure 2 illustrates the downstream genes directly regulated by Bmi-1. In addition, Bmi-1
is involved in many classical signaling pathways, for example mTOR, NF-κB, PI3K/Akt,
and other signaling pathways. The function of Bmi-1 in tumors has been identified in
various pathological processes, including abnormal cell proliferation, evasion of apoptosis,
migration of cancer cells, and stemness maintenance of cancer stem cells (CSCs). Therefore,
we provide a corresponding review of the key target genes and signaling pathways behind
these processes.

4.1. Bmi-1 in Cancer Proliferation

Hyperproliferation is a typical feature of cancer progression, manifested by altered
expression and activity of cell cycle-related proteins. The most classic downstream target of
Bmi-1 is INK4a/ARF. The tumor suppressor gene INK4a/ARF can encode two regulatory
genes: p16INK4a and p14ARF (p19ARF in mice). Their normal and orderly expression is the
key to maintaining the balance of the cell cycle. On the one hand, P16INK4a arrests cells
in the G0/G1 phase through cyclinD-CDK4/6-pRb-E2F. Mechanistically, when Bmi-1 is
deficient, p16Ink4a is up-regulated, which prevents the binding of CDK4/6 to cyclinD,
leading to phosphorylation of Rb. Phosphorylated Rb binds to E2F transcription factor
to inhibit E2F transcription-factor-mediated transcription, which arrests the cell cycle in
the G0/G1 phase [76]. On the other hand, p14ARF regulates the cell cycle through the
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MDM2/p53 pathway [15,84–87]. In detail, the p14ARF (p19ARF) protein can antagonize
the ubiquitin-protein ligase MDM2 and p53-dependent transcription, thereby stabilizing
tumor protein p53, causing cell apoptosis [15,84–87]. Bmi-1-shRNA reduces the expression
of cyclin D1 and increases the expression of cyclin dependent kinase inhibitor p21 and
p27 through the p16Ink4a independent pathway, to arrest lung adenocarcinoma cells in
the G0/G1 phase [88]. USP22, an oncogene, could actively and effectively participate in
the regulation of the cell cycle through the INK4a/ARF signaling pathway mediated by
Bmi-1 in human colorectal cancer cells [89]. Similar phenomena have also been detected
in gallbladder carcinoma, HeLa cells, lung cancer, esophageal carcinoma cell, etc. [90–93].
Bmi-1 can also activate the PI3K/mTOR/4EBP1 signaling pathway in ovarian cancer cells
to regulate cell proliferation [94]. N-acetylglucosamine transferase (OGT) is the only known
enzyme to catalyze the O-GlcNAcylation in humans. O-GlcNAcylation can promote the
stability and oncogenic activity of Bmi-1 [22]. MiR-485-5p can regulate the O-GlcNAcylation
level and the stability of Bmi-1 by inhibiting OGT, and then inhibit the proliferation of
colorectal cancer cells [28]. Nevertheless, some studies have shown that Bmi-1 does not
affect the cell cycle of lung cancer cells and the expression of p16/p19, PTEN, Akt, or
p-Akt [95]. This may be related to cell type.

4.2. Bmi-1 in Cancer Apoptosis

Strong anti-apoptotic ability is one of the characteristics of cancer cells. Bmi-1 directly
and indirectly regulates cell apoptosis via various pathways. The first pathway is the
p14ARF/MDM2/p53 signal pathway mentioned above. Inhibition of Bmi-1 can promote the
expression of p14ARF (p19ARF), and p14ARF (p19ARF) can antagonize the ubiquitin-protein
ligase MDM2 to stabilize p53 and cause apoptosis. This phenomenon has been reported
in many studies [29,96,97]. A second pathway involves the inhibition of Bmi-1, causing
abnormal mitochondrial function and increasing the level of ROS, leading to apoptosis.
For example, a recent study found that sodium butyrate induced ROS-mediated apoptosis
by inhibiting the expression of Bmi-1 through miR-139-5p [13]. The third pathway is
the Bmi-1 regulation of cell apoptosis by the NF-κB pathway. Expression of Bmi-1 could
protect glioma cells from apoptosis by activating the NF-κB pathway [98]. Consistently,
overexpression of Bmi-1 can increase cisplatin-induced apoptosis resistance in osteosarcoma
by activating the NF-κB signal pathway [99]. In addition, the loss of Bmi-1 leads to impaired
repair of DNA double-strand breaks by homologous recombination, ultimately leading
to apoptosis [96]. Inhibition of Bmi-1 reduces the ubiquitination of myeloid cell leukemia
sequence 1 (Mcl-1) by downregulating deubiquitinating enzyme (DUB3), resulting in cancer
cell apoptosis [99].

4.3. Bmi-1 in Cancer Autophagy

Autophagy is a conserved self-degradation system that is critical for maintaining
cellular homeostasis during stress conditions. Autophagy plays a dichotomous role in
cancer by suppressing benign tumor growth but promoting advanced cancer growth [100].
Bmi-1 also affects cellular autophagy generally through PI3K/Akt and AMPK signaling
pathways. Knockdown of Bmi-1 induced autophagy in ovarian cancer cells via ATP deple-
tion [101]. Sodium butyrate induced AMPK/mTOR pathway-dependent autophagy via the
miR-139-5p/Bmi-1 axis in human bladder cancer cells [13]. Knockdown of Bmi-1 in breast
cancer cells also induced autophagy [102,103]. Additionally, betulinic acid induced au-
tophagy and apoptosis in bladder cancer cells through the Bmi-1/ROS/AMPK/mTOR/ULK1
axis [86]. Similarly, Bmi-1 overexpression promoted migration and proliferation of cardiac
fibroblasts by regulating the Pten/PI3K/Akt/mTOR signaling pathway [104]. In addition,
the expression of Bmi-1 targets the inhibition of cyclinG2 expression, and cyclinG2 acts
by disrupting the phosphatase 2A complex, which activates the PKCζ/AMPK/JNK/ERK
pathway involved in autophagy [105].
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Figure 2. Downstream genes directly regulated by Bmi-1. Bmi-1 can enhance H2A ubiquitination
and bind to the promoter of HoxC13 to reduce the expression of HoxC13 in HeLa cells [77]. The most
classic downstream target of Bmi-1 is INK4a/ARF. The tumor suppressor gene INK4a/ARF can
encode two regulatory genes: p16INK4a and p14ARF (p19ARF in mice). P16INK4a arrests cells in G0/G1
phase through cyclinD-CDK4/6-pRb-E2F. p14ARF regulates the cell apoptosis through MDM2-p53
pathway [76]. Bmi-1 can regulate the development of colon cancer by negatively regulating the
expression level of PTEN and then activating the Akt/GSK3β axis [78]. Bmi-1 regulates memory CD4
T cell survival via repression of the proapoptotic BH3-only protein Noxa gene [80]. Bmi-1 regulates
cell fate via transcriptional repression tumor suppressor WW Domain Containing Oxidoreductase
(WWOX) in small-cell lung cancer cells [81]. Bmi-1 suppresses the expression of Smgc gene and
Gcnt3 gene [82]. Bmi-1 activates Wnt signaling in colon cancer by negatively regulating the Wnt
antagonist IDAX [83]. Bmi-1 can also transcriptionally positively regulate human telomerase reverse
transcriptase (hTERT) to block senescence in human mammary epithelial cells [79].

4.4. Bmi-1 in Cancer EMT

Cancer cells have the characteristics of invasion into surrounding tissues and metasta-
sis to distant tissues, and they continue to grow in these organs, destroying the function of
the organs, and finally causing the death of the patient. The expression of Bmi-1 is closely
related to tumor migration and invasion [93,95,106–109]. It has been reported that down-
regulation of Bmi-1 reduces the migration and invasion of endometrial cancer cells in vivo
and in vitro, by increasing the expression levels of E-cadherin and keratin, and down-
regulating N-Cadherin, vimentin, and SLUG [106]. Likewise, Bmi-1 induces miR-27a and
miR-155 to negatively regulate the expression of raf kinase inhibitory protein (RKIP), which
promotes the migration and invasion of gastric cancer cells [107]. Additionally, Bmi-1 pro-
motes the migration and invasion of Hepatocellular carcinoma by inhibiting phosphatase
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and tensin homolog (PTEN) and activating the PI3K/Akt pathway, and increasing the
expression of MMP2, MMP9 and VEGF [110]. Similar phenomena have also been found
in breast cancer, colon cancer, esophageal cancer cells [107]. Moreover, Bmi-1 increases lu-
ciferase activity of the MMP9 promoter-driven reporter gene containing an NF-κB binding
site, which promotes MMP9 transcription levels in glioma cells [111]. Bmi-1 may also regu-
late the TLR4/MD2/MyD88 complex-mediated NF-κB signaling pathway to participate
in colorectal cancer cell EMT [112]. Furthermore, miR-218, miR-330-3p, and miR-498 may
regulate the migration and invasion of cancer cells through the Bmi-1/Akt axis [112].

4.5. Bmi-1 in Cancer DNA Damage Response

An underlying feature of cancer is genomic instability, which is associated with the
accumulation of DNA damage. Bmi-1 plays an important role in the regulation of DNA
damage response (DDR) [113,114]. The lack of Bmi-1 in cells could cause mitochondrial
dysfunction, and at the same time, the DDR pathway could be initiated with the increase
of ROS [115]. Bmi-1 enhances the repair of damaged DNA through epigenetic mechanisms
to reduce the genotoxic effects of ionizing radiation (IR) [116]. Bmi-1 is a component
of PRC1, and affects the expression of many genes through histone H2A ubiquitination.
Mechanically, Bmi-1 binds to ring2/ring1b subunit to form a functional E3 ubiquitin ligase,
and inhibits the expression of multiple gene through monoubiquitination of histone H2A in
lysine 119 [117]. Through Bmi-1/RIN1b E3 ubiquitin ligase, Bmi-1 promotes histone H2A
and γH2AX ubiquitination for the repair of double-stranded DNA breaks by stimulating
homologous recombination and non-homologous end connection [117,118]. In addition,
the knockout of Bmi-1 further aggravated the phosphorylation of checkpoint kinase 2
(Chk2) and H2AX induced by cisplatin treatment [119].

4.6. Bmi-1 in Cancer Inflammation

Inflammation is often associated with the progression of cancer. Cells responsible for
cancer-related inflammation are genetically stable and therefore do not rapidly emerge
drug resistance. Therefore, targeting inflammation is an attractive strategy for both cancer
prevention and cancer therapy [120]. NF-κB transcription factors are major mediators of
inflammatory processes and key players in innate and adaptive immune responses. There-
fore, NF-κB pathway has been considered as the target of anti-inflammatory drugs. Recent
studies have found that Bmi-1 is involved in the regulation of NF-κB signaling pathway. For
example, Bmi-1 promotes tumor proliferation, metastasis and drug resistance by activating
NF-κB signaling pathway [121]. Similarly, Bmi-1 promotes glioma invasion by activating
NF-κB/MMP3 or NF-κB/MMP9 signaling pathways [111,122]. Moreover, Bmi-1 promote
colorectal cancer migration and EMT in an inflammatory microenvironment by regulating
TLR4/MD2/MyD88 complex-mediated NF-κB signaling pathway [112]. Furthermore, the
expression of Bmi-1 can activate the NF-κB signaling pathway and increase the expression
of vascular endothelial growth factor C (VEGF-C)to promote glioma angiogenesis [123].
Additionally, toll-like receptor 4 (TLR4) promotes inflammation by inhibiting Bmi-1 to
activate the NOD-like receptors (NLRs) family member (NLRP3) pathway [124].

4.7. Bmi-1 in Cancer Stem Cells

Stem cells have self-renewal ability, and produce at least one highly differentiated cell.
Cancer stem cells refer to cancer cells with stem cell properties such as self-renewal and
multicellular differentiation. At present, many studies have proved that CSCs are present
in a variety of tumors, such as leukemia, breast cancer, lung cancer, glioblastoma, colon
cancer, liver cancer, and others [125]. Increasing evidence has indicated that Bmi-1 plays a
critical role in the self-renewal and differentiation of cancer stem cells [6,126].

Revealing the molecular mechanism of the self-renewal of neural stem cells (NSCs)
is one of the main goals for understanding the homeostasis of the adult brain. Neural
stem cells and progenitor cells (NSPC) strictly regulate self-renewal potential to maintain
homeostasis in the brain. The researchers found that the absence of Bmi-1 led to the
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decline of self-renewal ability in NSCs [127,128]. Molofsky et al. further found that Bmi-1
promoted the self-renewal of NSCs by inhibiting INK4a/ARF1. One study found that
Bmi-1-knockout mice lacked stem cells and developed defects in the central nervous system,
but no significant effect on the proliferation of progenitor cells was recorded. The results
showed that Bmi-1 is a key factor for maintaining the stability of NSCs, but had little
influence on differentiated cells [129,130]. Furthermore, Protein S (PROS1) can affect the
self-renewal of adult hippocampal NSPC by down-regulating Bmi-1 [131]. In summary,
Bmi-1 is a vital factor for the self-renewal of NSCs.

Bmi-1 also plays a pivotal role in hematopoietic stem cells (HSCs). Park et al. reported
that Bmi-1 is strongly expressed in fetal mouse and adult human HSCs. Thus, Bmi-1
knockout resulted in the reduction of proliferation of mouse bone marrow, resulting in
the death of most of the studied mice before adulthood [5]. Lessard et al. [132] found
that the number of stem cells in peripheral leukemia cells from Bmi-1 wild-type mice was
significantly higher than that in Bmi-1 knockout mice. Subsequently, they found a decrease
of self-renewal ability of HSCs and poor hematopoiesis in Bmi-1−/− mice. Mice were then
injected with fetal liver HSCs (Bmi-1+/+ or Bmi-1−/−) after high doses of lethal radiation.
The results showed that the hematopoietic ability of bone marrow was dependent on the
expression of Bmi-1.

In breast cancer stem cells (BCSCs), Bmi-1 is a target of the miR-200 family and miR-
128 family. Furthermore, Bmi-1 is also regulated by certain signaling pathways, such as the
Hedgehog and Wnt pathways. The Hedgehog signaling pathway promotes self-renewal in
mammary stem cells and BCSCs by up-regulating Bmi-1 [4]. Bmi-1 can activate the Wnt
signaling pathway by inhibiting Dickkopfs (DKK), a Wnt inhibitor gene. DKK1 resulted in
the up-regulation of c-MYC, which further contributed to the transcriptional self-activation
of Bmi-1 [133].

Bmi-1 is a regulator of self-renewal in prostate stem cells and a marker in intestinal
stem cells [134,135]. Bmi-1 is also expressed in mesenchymal stem cells isolated from the
umbilical cord [136]. Therefore, further regulatory mechanisms of Bmi-1-promoting CSC
need to be revealed, and its role in tumor promotion requires exploration, to provide new
therapeutic strategies for anti-tumor therapy.

4.8. Bmi-1 in Tumor Microenvironment

The tumor microenvironment (TME) comprises various cell types (endothelial cells,
fibroblasts, immune cells, etc.) and extra-cellular components (cytokines, growth factors,
hormones, extracellular matrix, etc.) that surround tumor cells and are nourished by a
vascular network. Tumor cells interact with the surrounding cells through the circulatory
and lymphatic systems to influence the progression of cancer and therapeutic efficacy
of treatments [137,138]. The expression of Bmi-1 can also affect the tumor microenvi-
ronment (TME). Selective Bmi-1 inhibitor PTC-209 increases the expression of DKK1 by
down-regulating Bmi-1, impairing in vitro osteoclast formation and destroying the tumor
microenvironment [139]. There is a report that Bmi-1 is upregulated in multiple myeloma-
associated macrophages (MM-MΦs) and that Bmi-1 modulates MM-MΦ’s pro-myeloma
functions. Bmi-1 inhibitors could not only target multiple myeloma (MM) cells, but also
eliminate MM-MΦs in the treatment of myeloma [140]. Another report suggests that tumor-
associated macrophages (TAMs) may cause increased Bmi-1 expression through miR-30e*
suppression, leading to gastrointestinal cancer progression [141]. At present, there are few
reports on the effect of Bmi-1 on the tumor microenvironment. Therefore, the role of Bmi-1
in the tumor microenvironment needs to be further explored.

5. Clinical Characteristics and Cancer Therapy of Bmi-1
5.1. Protein Expression and Clinical Characteristics of Bmi-1

In the past two decades, many researchers have discussed the relationship between
the expression level of Bmi-1 and the clinical characteristics of different cancers. Although
a few results are contradictory, most of the results prove the importance of Bmi-1 in the
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occurrence and development of cancer. In order to describe it more simply and intuitively,
we summarized the expression level and clinical characteristics of Bmi-1 in Table 2.

Table 2. Protein expression and clinical characteristics of Bmi-1.

Cancer Type mRNA/Protein High/Low
Expression Positive Percentage Clinical Characteristics Remarks Ref.

Gastric cancer

Protein High GC162 (52.5%)
Associated with Lauren’s and
Borrmann’s classification and
clinical stage

Mainly in nucleus [142]

Protein High GC 178 (70.8%) Associated with sex, gross type, and
histologic type Mainly in nucleus [143]

mRNA High 71
Associated with tumor size, depth of
invasion, lymph node metastasis, and
clinical stage

Not involved [144]

Nonsmall cell lung
cancer

Protein and
mRNA High Associated with tumor size, poor

differentiation, and distant metastasis Mainly in nucleus [108]

Endometrial
Carcinoma Protein High 48

A significant positive relationship
between Bmi-1 and Ki-67, cyclin A,
or p53

Mainly in nucleus [145]

Esophageal cancer Protein High 1523

Associated with differentiation,
tumor/node/metastasis stage, depth
of invasion, and lymph node
metastasis

Mainly in nucleus [146]

Cervical cancer Protein and
mRNA High 302 (55.3%)

Correlated with clinical stage, lymph
node metastasis, vascular invasion,
and human papillomavirus (HPV)
infection

Mainly in nucleus [147]

Acute myeloid
leukemia (AML) mRNA High 60

Showed a strong association with
failure to achieve complete remission
(CR) or with relapse

Not involved [148]

Esophageal
squamous cell
carcinoma (ESCC)

Protein High 80 (78.7%)
Correlated with depth of invasion and
lymph node metastasis, but not with
patient age, tumor size, or nationality

Not involved [149]

ESCC Protein and
mRNA High 171 (64.3%) Correlated with stage and pN

classification. Mainly in nucleus [150]

Endometrial
adenocarcinoma Protein High 60

Correlated with FIGO stage,
myometrial invasion, and lymph node
metastasis

both the nucleus
and cytoplasm [106]

Colon cancer Protein and
mRNA High 203 (66.5%)

Correlated with clinical stage, depth of
invasion, nodal involvement, distant
metastasis, and Ki67 level

Mainly in nucleus [151]

Uterine cervical
cancer Protein High 152

Correlated with tumor size, clinical
stage, and regional lymph nodes
metastasis

Mainly in nucleus [152]

Bladder cancer Protein High 137
Correlated withhistopathological
classification, clinical stage, recurrence,
and patient survival

Mainly in nucleus [153]

Ovarian carcinoma Protein Low 179
Correlated with tumors’ histological
type, grade, pT/pN/pM status, and
FIGO stage

both the nucleus
and cytoplasm [154]

Epithelial ovarian
cancer Protein High 40 (72.5%)

Associated with advanced
International Federation of
Gynecology and Obstetrics stages,
bilaterality, and higher Gynecologic
Oncology Group grades and
carcinomas of serous histology

Mainly in nucleus [155]

Uterine cervical
cancer mRNA High 109 Correlated with clinical stage and

lymph nodes metastasis Not involved [156]

Salivary adenoid
cystic carcinoma Protein High 10

Associated with tumor metastasis,
Snail, Slug, and E-cadherin, serves as a
highrisk for AdCC

Not involved [157]

Laryngeal
carcinoma Protein High 64 (84.4%) Correlated with distant metastasis, N

pathological status, T classification
B oth the nucleus
and cytoplasm [158]

Pancreatic cancer Protein High 72 (48.61%)
Correlated with the presence of lymph
node metastases and negatively
correlated with patient survival rates

Mainly in nucleus [159]

Squamous cell
carcinoma of the
tongue

Protein High 73 (82%) Correlated with recurrence in nucleus [160]

ovarian Carcinoma mRNA High 47(72.34%) Correlated with tumor grade both the nucleus
and cytoplasm [161]

Neuroblastoma Protein High 45 Correlated with MYCN in nucleus [162]

Pediatric brain
tumors mRNA High 56

Expression of Bmi-1 showed
significant differences between
high-grade tumors and
low-grade tumors

Not involved [163]
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5.2. Bmi-1 in Chemoresistance and Cancer Therapy

Radiation and chemotherapy are common treatments for cancer. Drug resistance is one
of the main obstacles to effective anticancer treatment. Many clinical data have reported
that Bmi-1 is related to the drug resistance of tumors [114,164–167]. Silencing Bmi-1 could
enhance camptothecin-induced DNA double-strand breaks and promote camptothecin-
induced apoptosis. Conversely, increasing Bmi-1 can significantly reduce camptothecin-
induced apoptosis [168]. Direct inhibition of Bmi-1 abrogates head and neck cancer stem-
cell self-renewal and increases tumor sensitivity to cisplatin [169]. Hypoxic exposure
regulates PI3K/Akt signal and EMT through activation of the HIF-1α/Bmi-1 signal to
induce LSCs drug resistance [170]. Similarly, Bmi-1 activates the PI3K/Akt pathway
and NF–κB pathway to promote cell growth and resistance to cisplatin treatment [170].
Furthermore, the low expression of Survivin is considered to be one of the factors for
the success of chemotherapy; Bmi-1 promotes the drug resistance of B-cell lymphoma
cells through the regulation of Survivin [171]. Although radiation therapy is one of the
main methods of cancer treatment, tumors often acquire radioresistance, which leads
to radiotherapy failure. Bmi-1 depletion makes radiation-resistant ESCC cells sensitive
to radiotherapy by inducing apoptosis, senescence, ROS production, and oxidase gene
expression (Lpo, Noxo1 and Alox15), reducing DNA repair capabilities [172]. Interestingly,
the inhibition of Bmi-1 activates immune responses in tumor cells and recruits CD8+ T
cells. Mechanistically, knockdown of Bmi-1 not only eliminated CSCs, but also sensitized
tumor cells to anti-PD-1 antibodies by recruiting CD8+ T cells [173]. In conclusion, Bmi-1
has development potential as a target for the treatment of cancer. Perhaps in future the
development of small-molecule compounds that effectively target Bmi-1 will be an option
for anticancer drug development.

At present, certain small molecule inhibitors of Bmi-1 have been studied, and the most
commonly used small molecule inhibitor of Bmi-1 is PTC-209. An article published in
2013 reported that researchers had identified a low molecular compound PTC-209 for the
first time. They also found that PTC-209 reduced the tumorigenic activity and volume of
xenograft tumors and the number of functional colorectal cancer-initiating cells in mice,
after short-term treatment [174]. Subsequently, the drug has also been studied in other can-
cer cells and has demonstrated its anti-tumor effect, including for head neck squamous cell
carcinoma (HNSCC) [175], prostate cancer [176], myeloma [177], glioblastoma [178], and
cervical cancer cells [179]. In 2019, researchers developed an orally active nanoparticle PTC-
209 vector, which can significantly inhibit colony formation and migration of colon cancer
cells, and inhibit tumor progression and metastasis in orthotopic tumor-bearing mice by
reversing stemness [180]. An orally active and selective Bmi-1 inhibitor, PTC-596, downreg-
ulated bcl2 family apoptosis regulator Mcl-1 and induces p53-independent mitochondrial
apoptosis in AML progenitor cells [181]. The drug has also been explored for treatment of
other cancers, for example, mantle cell lymphoma [182], cancer stem-like cells [99], multiple
myeloma [183], and glioblastoma multiforme [184]. PTC-596 has been used in clinical phase
1 for conditions including diffuse intrinsic pontine glioma and leiomyosarcoma [185,186].
Moreover, a novel inhibitor, RU-A1, was developed based on the RNA three-dimensional
(3D) structure of Bmi-1 and showed stronger potency than PTC-209 in targeting CSCs [187].
PTC-028, an orally bioavailable compound, mediates hyperphosphorylation of Bmi-1 ac-
companied by a transient decrease in ATP and disruption of mitochondrial redox balance,
enhancing caspase-dependent apoptosis. In an orthotopic mouse model of ovarian cancer,
oral administration of PTC-028 as a single agent demonstrated significant antitumor activity
comparable to standard cisplatin/paclitaxel therapy [188]. Researchers have also discov-
ered another small molecule compound QW24, which can inhibit the expression of Bmi-1
through the lysosomal autophagy pathway, and can inhibit the growth of mouse xenograft
tumors and liver metastasis, and prolong the survival period of mice [189]. Unfortunately,
there have been no other reports of the anticancer effects of QW24, so its anti-cancer effect
needs to be further verified. Table 3 summarizes the inhibitors of Bmi-1, the ways they
regulate Bmi-1, and the regulatory mechanisms in tumors.
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Table 3. Inhibitors of Bmi-1.

Inhibitor
Name Regulatory for Bmi-1 Tumor Type Regulatory Mechanism References

PTC-209 Reduces transcript levels

Cervical cancer Promotes cell G0/G1 arrest and apoptosis [179]

Colon cancer Developed an orally active, easily synthesized
PTC209 nanomedicine [180]

Alveolar rhabdomyosarcoma Activates the Hippo pathway [190]

Glioblastoma Inhibits glioblastoma cell proliferation and
migration [178]

Ovarian cancer Induces autophagy through ATP depletion [101]
Lung cancer cells, breast cancer cells
and colon cancer cells Inhibits STAT3 Phosphorylation [191]

Pluripotent stem cells Reduces the expression of neuronal markers, such
as Nestin [192]

Prostate cancer Efficiently targets Bmi-1 and Sox2 [176]

ESCC Inhibits ESCC progression when combined with
cisplatin [193]

Acute myeloid leukemia Inhibits proliferation and induce apoptosis [194]

Acute Leukemia Cells Down-regulates the expression of Notch signaling
proteins Notch1, Hes1, and MYC [195]

Acute myeloid leukemia
Reduces protein level of Bmi-1 and its downstream
target mono-ubiquitinated histone H2A and
induces apoptosis

[196]

Breast cancer Transcriptionally upregulates expression of
miR-200c/141 cluster [197]

Biliary tract cancer cells Causes down-regulation of cell cycle-promoting
genes, DNA synthesis gene and DNA repair gene [198]

Chronic myeloid leukemia cells Triggers CCNG2 expression [105]

MM
Down-regulates the expression of Bmi-1 protein
and the associated repressive histone mark
H2AK119ub

[177]

HNSCC Inhibits proliferation, migration and invasiveness,
increases cell apoptosis and chemosensitivity [175]

PTC596
Reduces protein levels of
BMI-1

Myeloma Induces cell cycle arrest at G2/M phase followed
by apoptotic cell death [199]

AML Downregulates Mcl-1 and induces
p53-independent mitochondrial apoptosis [181]

Glioblastoma Targets both Bmi-1 and EZH2, prevents GBM
colony growth and CSC self-renewal [184]

Mantle cell lymphoma

Induces mitochondrial apoptosis, loss of
mitochondrial membrane potential, C-caspase-3,
Bax activation, and phosphatidylserine
externalization

[182]

Cancer stem-like cells Induces apoptosis through DUB3-mediated Mcl-1
degradation [99]

Pancreatic ductal adenocarcinoma
(PDA) Induces mitotic arrest and apoptosis [200]

Diffuse intrinsic pontine glioma (DIPG)
Decreases tumor volume and growth kinetics,
increases intertumoral apoptosis, and sustains
animal survival benefit.

[201]

RU-A1 Bind to the Bmi-1 mRNA Hepatocellular carcinoma
Impairs cell viability, reduces cell migration,
enhances HCC cell sensitivity to 5-fluorouracil
(5-FU) in vitro

[187]

PTC-028

Posttranslational
modification multiple myeloma Impairs MYC and Akt signalling activity; induces

cell cycle arrest at G2/M phase and apoptotic [183]

Diffuse intrinsic pontine glioma (DIPG)
Decreases the expression of E2F1, KRAS, Nestin,
SOX2 while increases the expression of p21 and
differentiation markers (GFAP)

[202]

Hyperphosphorylation Ovarian cancer
Decreases ATP and a compromised mitochondrial
redox balance potentiate caspase-dependent
apoptosis

[188]

Medulloblastoma (MB)
Abolishes the self-renewal capacity of MB stem
cells, reduces tumor initiation ability of recurrent
MB cells

[203]

Endometrial cancer Reduces cell invasive capacity and enhances
caspase-dependent apoptosis [204]

Alveolar rhabdomyosarcoma Inhibits proliferation and causes tumor growth
delay in vivo [190]

QW24 Autophagy-lysosome
degradation pathway Stem-like colorectal cancer Inhibits self-renewal of colorectal cancer-initiating

cells (CICs) [189]

SH498 Colorectal cancer Reduces PRC1 complex activity by
down-regulating Bmi-1 and ub-H2A [205]

Artemisinin Protein and transcript levels Nasopharyngeal carcinoma Induces G1 cell cycle arrest via the
Bmi-1-p16/CDK4 axis [206]

PRT4165
Down-regulating
Bmi-1/RING1A
self-ubiquitination

Acute leukemia Increases cell apoptosis [195]

CDDO-Me ESCC Induces autophagy via suppression of
PI3K/Akt/mTOR signaling pathway [207]
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6. Future Research and Conclusions

PcG family member Bmi-1 plays a vital role in the proliferation, apoptosis, metastasis,
and chemical sensitivity of cancer cells. The discovery of the biogenesis and function of
non-coding RNA has improved our understanding of the complexity of the human genome.
With the deepening of research, it has been found that non-coding RNA is involved in the
regulation of the cell cycle, proliferation, and differentiation, especially in the occurrence
and development of cancer. Many miRNAs inhibit Bmi-1 expression by targeting the
3′UTR [22]. That means that these miRNAs can also affect cancer proliferation, migration,
invasion, apoptosis, and drug sensitivity [22]. Thus, the interaction between miRNA and
Bmi-1 plays an important role in the occurrence and development of cancer. This also
provides new strategies for cancer treatment. However, at present, the research on the
interaction between miRNA and Bmi-1 remains in the initial stages, and there are many
problems still to be solved.

As a proto-oncogene, Bmi-1 has been confirmed to be highly expressed in a variety
of tumors. It is related to the clinical stage, pathological classification, and lymph node
metastasis, and can be used as one of the predictors for prognosis and recurrence in tumor
patients. With the development of molecular biological technology and the application
of gene chip technology, development is expected of a microfluidic multi-indicator joint
inspection chip, a circulating cancer-cell capture chip, and other devices for automatic
detection of Bmi-1 expression [208–210]. In addition, Bmi-1 is involved in the occurrence
and development of many tumors, and the targeted therapy of cancer stem cells is an
important measure for future development. However, there is currently no drug that can be
used clinically to target Bmi-1 specifically. Therefore, the discovery of new small-molecule
compounds that specifically inhibit Bmi-1 will be the focus of future research.
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Abbreviations

4EBP1 Eukaryotic Translation Initiation Factor 4E Binding Protein 1
AKT Protein kinase B
AML Acute myeloid leukemia
AMPK AMP-activated protein kinase
ATP Adenosine triphosphate
BCSCs Breast cancer stem cells
Bmi-1 B Lymphoma Mo-MLV Insertion Region 1 Homolog
CBX4 Chromobox 4
Chk2 Checkpoint Kinase 2
c-MYC Myc proto-oncogene protein
CSCs Cancer stem cells
DDR DNA damage response
DKK1 Dickkopf WNT Signaling Pathway Inhibitor 1
DUB3 Deubiquitinating Protein 3
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E2F1 E2F Transcription Factor 1
EMT Epithelial-mesenchymal-like transformation
FoxM1 Forkhead Box M1
H2AX H2A.X Variant Histone
HDACs Histone Deacetylase
HoxC13 Homeobox C13
HSCs Hematopoietic stem cells
hTERT Human telomerase reverse transcriptase
HTH structure Helix-turn-helix structure
IR Ionizing radiation
KLF4 Kruppel-like Factor 4
Mcl-1 Myeloid cell leukemia sequence 1
MD-2 Myeloid Differentiation Protein-2
MDM2 E3 ubiquitin-protein ligase Mdm2
Mel18 Polycomb Group RING Finger 2
miRNAs MicroRNAs
MM Multiple myeloma
MM-MΦs Myeloma-associated macrophages
MMP2 Matrix Metallopeptidase2
MMP9 Matrix Metallopeptidase 9
mTOR mammalian target of rapamycin
MYC-N MYCN Proto-Oncogene, BHLH Transcription Factor
MyD88 MYD88 Innate Immune Signal Transduction Adaptor
Nanog Homeobox protein NANOG
ncRNAs Non-coding RNA
NF-κB Nuclear factor kappa-B
NLRP3 NACHT, LRR and PYD domains-containing protein 3
NLRP3 NOD-like receptors (NLRs) family member
NLS Nuclear localization signal
Noxa Phorbol-12-Myristate-13-Acetate-Induced Protein 1
NSCs Neural stem cells
NSPC Neural stem cells and progenitor cells
P21 Cyclin-dependent kinase inhibitor 1A
P53 Tumor Protein P53
PcG Polycomb group
PRC1 polycomb repressive complex1
PRC2 polycomb repressive complex 2
PROS1 Protein S
PTEN Phosphatidylinositol3,4,5-trisphosphate 3-phosphatase and

dual-specificity protein phosphatase PTEN
PTMs Post-translational modifications
RKIP Raf kinase inhibitory protein
ROS Proto-oncogene tyrosine-protein kinase ROS
SALL4 Spalt Like Transcription Factor 4
Slug Snail Family Transcriptional Repressor 2
Snail Zinc finger protein SNAI1
SP1 Transcription factor Sp1
Stat3 Signal transducer and activator of transcription 3
TAMs Tumor-associated macrophages
TLR4 Toll-like receptor 4
TME Tumor microenvironment
Twist1 Twist Family BHLH Transcription Factor 1
USP22 Ubiquitin Specific Peptidase 22
VEGF Vascular Endothelial Growth Factor A
VEGF-C Vascular Endothelial Growth Factor C
WWOX WW Domain Containing Oxidoreductase
ZEB1 Zinc Finger E-Box Binding Homeobox 1
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