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Abstract: The accurate estimation and timely diagnosis of crop nitrogen (N) status can facilitate
in-season fertilizer management. In order to evaluate the performance of three leaf and canopy
optical sensors in non-destructively diagnosing winter wheat N status, three experiments using seven
wheat cultivars and multi-N-treatments (0–360 kg N ha−1) were conducted in the Jiangsu province
of China from 2015 to 2018. Two leaf sensors (SPAD 502, Dualex 4 Scientific+) and one canopy sensor
(RapidSCAN CS-45) were used to obtain leaf and canopy spectral data, respectively, during the main
growth period. Five N indicators (leaf N concentration (LNC), leaf N accumulation (LNA), plant N
concentration (PNC), plant N accumulation (PNA), and N nutrition index (NNI)) were measured
synchronously. The relationships between the six sensor-based indices (leaf level: SPAD, Chl, Flav,
NBI, canopy level: NDRE, NDVI) and five N parameters were established at each growth stages.
The results showed that the Dualex-based NBI performed relatively well among four leaf-sensor
indices, while NDRE of RS sensor achieved a best performance due to larger sampling area of canopy
sensor for five N indicators estimation across different growth stages. The areal agreement of the
NNI diagnosis models ranged from 0.54 to 0.71 for SPAD, 0.66 to 0.84 for NBI, and 0.72 to 0.86 for
NDRE, and the kappa coefficient ranged from 0.30 to 0.52 for SPAD, 0.42 to 0.72 for NBI, and 0.53 to
0.75 for NDRE across all growth stages. Overall, these results reveal the potential of sensor-based
diagnosis models for the rapid and non-destructive diagnosis of N status.

Keywords: nitrogen indicator; nitrogen nutrition diagnosis; optical sensor; spectral index

1. Introduction

Nitrogen (N) is an essential nutrient that improves crop growth and grain yield.
The excessive application of N fertilizers can lead to low N use efficiency, resulting in
environmental pollution and a loss of grain quality [1,2]. Precision N management could
be used to optimize N application by considering the temporal and spatial variability of
crop N status in practical production [3,4]. However, this promising strategy requires the
development and application of real-time and non-destructive technologies for in-season
crop N nutrition diagnosis.

Leaf and plant N concentrations (LNC, PNC) have been used as vital parameters of
crop N status [5]. However, N concentrations are dependent on the plant biomass, such
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that two different plants with the same N concentration but differ in plant biomass. The
critical N concentration dilution curve (CNDC) reflects the power–function relationship
between crop critical N concentrations and plant biomass [6]. Based on the CNDC, the N
nutrition index (NNI) could be calculated to effectively diagnose crop N nutrition status [7].
For example, NNI values greater than one indicate excessive N status, while values less
than one correspond to N deficiency. Previous studies indicated that the NNI diagnosis
model has been successfully used for characterizing corn (R2 = 0.33–0.68), wheat (R2 =
0.73–0.86), and pepper (R2 = 0.19–0.84) N status throughout crop growth stages [8–10].
However, the calculation of NNI requires complicated chemical analysis to determine PNC.
Plant biomass measurements using destructive sampling are also time-consuming and
unsuitable for in-season N management [11,12].

The application of proximal and remote sensing technology can provide an efficient
method for real time crop N status estimations [13]. Optical transmission measurements
with a handheld SPAD-502 chlorophyll meter (SPAD meter) have been widely used for crop
N nutrition assessments due to their portability, fast responses, and affordable cost [14,15].
However, SPAD are easily influenced by the crop growth stage and cultivar leaf structure,
with over-fertilized plants being challenging to detect due to chlorophyll saturation. The
Dualex 4 Scientific+ sensor (Dualex) is a portable leaf fluorescence sensor that measures
Chl values through leaf transmittance at 710 and 850 nm and epidermal flavonoid (Flav)
levels through the assessment of chlorophyll fluorescence induced by ultra-violet (UV)
excitation at 375 nm, and further providing a Chl/Flav ratio, which is termed the N balance
index (NBI) [16]. Many studies have demonstrated a prominent relationship between
Dualex-based indices and different N parameters. For example, Dualex-based Chl (R2 =
0.49–0.90) were found to correlate with leaf chlorophyll concentrations in rice, wheat, corn,
and soybean [17,18]. Zhang et al. [17] indicated a significant relationship between Flav
measured by Dualex and rice LNC (R2 = 0.52–0.83), PNC (R2 = 0.56–0.76), and NNI (R2 =
0.68–0.82) across different growth periods. Dualex-based NBI was also successfully used
to monitor N nutrition status in corn, wheat, and other crops [19–21]. Gabriel et al. [22]
compared two different leaf-clip sensors (SPAD meter and Dualex) to estimate corn LNC
and indicated similar performances, with R2 = 0.43–0.62 for the SPAD meter and R2 =
0.42–0.68 for Dualex. Lejealle et al. [23] indicated that N balance index (NBI), the ratio
of chlorophyll to flavonols that measured through by Multiplex, had an improved and
more stable correlation with turfgrass LNC than Chl readings alone. Consequently, it is
necessary to assess the performance of spectral indices collected from two leaf-sensors for
winter wheat N status assessments.

Canopy optical sensors can collect spectral data at the canopy level compared to
leaf sensor measurements at the leaf scale. Passive canopy optical sensors, including
ASD Fieldspec and Cropscan, have been successfully used to monitor crop growth and
to assess N status [24,25]; however, their correct function requires strict environmental
conditions, such as light intensity and measurement times [26]. Active sensors, such
as RapidScan CS-45 (RS sensor), possess an internal lights source that ensures effective
measurements in suboptimal environmental conditions. This can be used to collect crop
canopy spectrum values at 670, 730, and 780 nm wavelengths, with two default vegetation
indices (normalized difference red edge (NDRE) and normalized difference vegetation
index (NDVI)) synchronously. The relationship between the vegetation indices derived
from the RS sensor and crop growth status has been extensively studied for various crops,
including wheat and soybean [27–29].

While the SPAD meter, Dualex, and RS sensor have been widely used for estimations
of crop growth and N status, the comparative assessment of these three portable sensors
to real-timely diagnose winter wheat N nutrition have not been studied. The aims of this
study were: (a) to evaluate the performance of the six sensor-based indices (leaf level:
SPAD, Chl, Flav, and NBI; canopy level: NDRE, NDVI) for non-destructive estimates of
N status of winter wheat; (b) to establish winter wheat N diagnostic models based on
optimum leaf and canopy sensor-based indices, respectively; and (c) to plot N diagnosis
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maps temporally and spatially across all growth stages. These results can improve the
non-destructive diagnosis of crop N nutrition, and could be used to guide appropriate N
management strategies.

2. Materials and Methods
2.1. Experimental Design

Experiment 1 (2015–2016), 2 (2016–2017), and 3 (2017–2018) were performed at the
Sihong (Figure 1; 33.37◦ N, 118.26◦ E), Rugao (Figure 1; 32.27◦ N, 120.75◦ E), and Xinghua
(Figure 1; 33.08◦ N, 119.98◦ E) Experimental Stations, respectively, in the Jiangsu province of
China. All experiments were performed using different wheat cultivars and N application
rates with three replicates in a randomized complete block design. Plants density was 225
seedlings per square meter. The N fertilizer (granular urea with 46% N) was applied in two
batches: 50% prior to sowing and 50% at the stem elongation stage. Additionally, 105 kg
ha−1 P2O5 and 135 kg ha−1 K2O were applied to all experiment plots. Detailed information
is shown in Table 1.
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Figure 1. Three study sites in the Jiangsu province of China.

Table 1. Basic information about the three field experiments.

Experiment No. Year Location Plot Size (m2) Cultivar N Rate (kg ha−1) Sampling Stage (Date)

1
2015–2016

Sihong
(33.37◦ N,118.26◦ E)

42
(6 m × 7 m)

Xumai30 (XM30)
Huaimai20 (HM20)

0
90
180
270
360

Jointing (5 April)
Booting (15 April)
Heading (22 April)
Flowering (26 April)
Filling (4 May)

2
2016–2017

Rugao
(32.27◦ N, 120.75◦ E)

30
(5 m × 6 m)

Yangmai15 (YM15)
Yangmai16 (YM16)

0
150
300

Jointing (27 March)
Booting (11 April)
Flowering (22 April)
Filling (7 May)

3
2017–2018

Xinghua
(33.08◦ N, 119.98◦ E)

63
(7 m × 9 m)

Zhenmai12 (ZM12)
Yangmai23 (YM23)
Ningmai13 (NM13)

0
90
180
270
360

Jointing (9 April)
Booting (15 April)
Flowering (24 April)
Filling (9 May)

2.2. Spectral Data Collection

Three different optical sensors were used to collect wheat leaf and canopy spectral data
at jointing, booting, flowering, and filling stages, respectively. The SPAD meter (Figure 2a;
Minolta Camera Co., Osaka, Japan) and Dualex (Figure 2b; Dualex Scientific, Force-A Co.,
Orsay, France) were used to measure wheat leaf spectral parameters. The canopy sensor
(Figure 2c; Holland Scientific Inc., Lincoln, NE, USA) was used to obtain wheat canopy
spectral data. Detailed information of the three optical sensors is shown in Table 2.
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Figure 2. Images of the (a) SPAD-502 meter, (b) Dualex 4 Scientific+ sensor, and (c) RapidSCAN CS-45 sensor.

Table 2. Characteristics of the three optical sensors.

Sensor Information Chlorophyll Meter Fluorescence Sensor Reflectance Sensor

Sensor name SPAD-502 Dualex 4 Scientific+ RapidScan CS-45

Manufacturer Minolta Camera Co. (Osaka,
Japan)

Force-A
(Orsay, France)

Holland Scientific
(Lincoln, NE, USA)

Measurement scale Leaf Leaf Canopy
Field of view - - 10◦–45◦

Working height - - 0.3–3.0 m

Measurement area 6 mm2 20 mm2 Dependent on measurement
height

Measuring Principle Transmittance Fluorescence Reflectance

Spectral band Red (650 nm) and near
infrared (940 nm)

UV (375 nm), red (655 nm),
red-edge (710 nm), and near

infrared (850 nm)

Red (670 nm), red-edge (730 nm),
and near infrared (780 nm)

Output parameter SPAD value Chl, Flav, NBI Reflectance (670, 730, 780 nm);
NDRE, NDVI

Abbreviation SPAD meter Dualex RS sensor

The first, second, and third fully expanded leaves (measurement location: 1/3, 1/2,
and 2/3 of the distance from the leaves base) from the top of the plant were used for SPAD
meter and Dualex measurements, and ten representative plants were randomly selected
in each plot. All measurements were averaged to represent the leaf sensor data of each
plot. The RS active sensor was held manually approximately 0.80 m above the canopy
and at a constant speed in each plot (about 0.5 m s−1). The RS sensor measurement path
was parallel to the plant row. Three rows of wheat were randomly selected to obtain the
two default vegetation indices of NDRE ((NIR − RE)/(NIR + RE)) [30] and NDVI ((NIR −
R)/(NIR + R)) [31], with average vegetation indices collected to represent the spectral data
of each plot.

2.3. Plant Sampling and Measurements

The plots in the field experiments are often small (42, 30 and 63 m2 in Experiments 1,
2, and 3, respectively) and grown evenly; therefore, it is conventional to take representative
samples and optical sensor measurements at different locations in each experimental
plot [8,32]. Plant sampling was synchronously performed upon the completion of spectral
measurements. Twenty wheat plants were randomly sampled and destructively separated
into stems, leaves, and spikes. Each sub-sample was oven-dried at 105 ◦C for 30 min to
stop all metabolic processes and samples were dried at 80 ◦C until reaching a constant
weight. Samples were weighed and the leaf dry matter (LDM), stem dry matter (SDM),
and spike dry matter (SpDM) were determined. The leaf N concentration (LNC), stem N
concentration (SNC), and spike N concentration (SpNC) were measured using the standard
Kjeldahl method [33].
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LNA (kg ha−1) was used to measure N accumulation in the leaves (Equation (1)). PNA
(kg ha−1) was calculated as the sum of leaf, stem, and spike N accumulation (Equation (2)).
Plant N content (PNC (%); Equation (3)) was determined as the ratio of PNA (kg ha−1) and
plant biomass (kg ha−1):

LNA = LDM × LNC (1)

PNA = LDM × LNC + SDM × SNC + SpDM × SpNC (2)

PNC =
PNA

LDM + SDM + SpDM
(3)

The Nc curve was employed as described by Jiang et al. [27]. The NNI could be
calculated based on Equation (5):

Nc = 4.17 × W−0.39 (4)

NNI = Na/Nc (5)

where W is the weight of the plant (Mg ha−1), Na is the actual plant N concentration, and
Nc is the critical plant N concentration.

2.4. Data Analysis

Data obtained from experiments 1, 2, and 3 were used for the analysis of variance
between the six sensor-based indices and N status parameters using SPSS 24 software. The
exponential relationship between six sensor-based indices and LNC, LNA, PNC, PNA, and
NNI were calibrated and validated with 10-fold cross-validation procedure based on the
data from experiments 1–3. Model performance was evaluated using the coefficients of
determination (R2), root mean square error (RMSE), and the relative error (RE (%)). The
GraphPad Prism 8 software was used to plot the diagrams.

RMSE =

√
1
n
× ∑n

i=1(Pi − Oi)
2 (6)

RE(%)= 100×

√
1
n
× ∑n

i=1

(
Pi − Oi

Oi

)2
(7)

where n is the number of samples, Oi is the measured value, and Pi is the predicted value.
N deficiency (NNI < 0.95), N optimal (0.95 ≤ NNI ≤ 1.05), and N excessive (NNI >

1.05) were used for diagnostic analysis [8,34]. The diagnostic category of predicted NNI
using NBI and NDRE models was compared to those of observed NNI by areal agreement
and the Kappa coefficient [35]. The areal agreement means the percentage of the two groups
having same diagnostic category. The Kappa coefficient range of 0.21–0.40, 0.41–0.60, and
0.61–0.80 indicates fair, moderate, and substantial strength, respectively, of the diagnostic
agreement [36]. N diagnostic maps were plotted using ArcGIS 10.3 software.

Kappa Coefficent =
Observed Accuracy − Chance Agreement

1 − Chance Agreement
(8)

3. Results and Analysis
3.1. Variability of Nitrogen Status Indicators

Agronomic data from experiments 1, 2, and 3 were used for statistical analysis. The
results showed that LNC, LNA, PNC, PNA, and NNI varied across growth stages, N levels,
cultivars, and site-years (Table 3). LNA (coefficient of variation (CV) = 61.04%) was most
variable across all growth stages, followed by PNA (CV = 50.16%), NNI (CV = 40.45%),
and PNC (CV = 37.23%). LNC had a minimal CV of 26.44%. The analysis also indicated
that the CV of the five N parameters were variable across growth stages. For example, the
LNC was most variable at the jointing stage (CV = 30.10%), and had similar CV values
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(23.35–23.94%) to the other three growth stages. In contrast, the CV of PNC (27.59–34.36%),
PNA (42.66–59.98%), and NNI (33.10–46.37%) gradually decreased as the growth stage
progressed. The great variability of those N indicators will help to assess the ability of the
optical sensors when monitoring and diagnosing wheat N status.

Table 3. Descriptive statistics of leaf N concentration (LNC), leaf N accumulation (LNA), plant N con-
centration (PNC), plant N accumulation (PNA), and N nutrition index (NNI) across all growth stages.

Parameter Growth Stage N Min. Max. SD a CV b (%)

LNC
(%)

Jointing 93 1.78 5.22 1.03 30.10
Booting 93 2.14 5.39 0.84 23.35

Flowering 93 2.01 5.32 0.86 23.90
Filling 93 1.59 4.31 0.72 23.94

All 372 1.59 5.39 0.90 26.44

LNA
(kg ha−1)

Jointing 93 8.64 158.33 40.01 64.23
Booting 93 11.04 156.86 36.02 57.39

Flowering 93 11.55 123.44 26.75 50.93
Filling 93 5.51 90.58 22.23 55.39

All 372 5.51 144.86 33.22 61.04

PNC
(%)

Jointing 93 1.06 3.50 0.71 34.36
Booting 93 0.85 3.17 0.62 32.23

Flowering 93 0.71 2.61 0.50 31.34
Filling 93 0.68 2.04 0.36 27.59

All 372 0.68 3.50 0.64 37.23

PNA
(kg ha−1)

Jointing 93 15.39 257.46 61.75 59.98
Booting 93 21.27 274.88 58.92 51.29

Flowering 93 28.63 276.51 57.71 46.14
Filling 93 33.48 268.35 57.07 42.66

All 372 15.39 276.51 59.77 50.16

NNI

Jointing 93 0.34 1.92 0.45 46.37
Booting 93 0.30 1.84 0.40 40.89

Flowering 93 0.33 1.65 0.34 37.20
Filling 93 0.34 1.41 0.28 33.10

All 372 0.30 1.92 0.38 40.45
a SD indicates the standard deviation of the mean. b CV indicates the coefficient of variation (%).

3.2. Dynamic Changes of Six Sensor-Based Indices under Different N Treatments

The dynamic changes in the six sensor-based indices with days after sowing (DAS)
across all growth periods of XM30 in Experiment 1 are shown in Figure 3. All six sensor-
based indices, excluding Flav, exhibited similar trends as the wheat growth progressed.
These spectral indices treated with high N application rates generally exceeded these
treated with low N. The SPAD initially increased and then gradually decreased under low
N treatments (0, 90 and 180 kg N ha−1) as each growth stage progressed. Under conditions
of high N application (270 and 360 kg N ha−1), the SPAD value rapidly increased and
remained high before declining, indicating the SPAD values reached saturation. For
Dualex, the values of Chl and NBI increased gradually, reached peak values at 186 DAS,
and then decreased during plant aging. Trends for the Flav were the opposite of that for
the Chl and NBI, where the Flav initially decreased and then increased after 186 DAS.
For the RS sensor, the default vegetation indices of NDRE and NDVI increased slowly
and then gradually declined. Curves at 270 and 360 kg N ha−1 applications were close to
overlapping, indicating that the plant growth achieved a non-N limited status.
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the standard error.

3.3. Relationship between the Six Sensors-Based Indices and Four N Indicators

Nitrogen indicators, such as LNC, LNA, PNC, and PNA, were collected in four spectral
sensing stages: jointing, booting, flowering, and filling. Based on the data obtained from
experiments 1–3, the quantitative exponential relationship between the six sensor-based
indices and four N indicators were systematically analyzed, and the 10-fold cross-validation
results were showed in Table 4. The results showed SPAD had R2 values of 0.25–0.60, 0.29–
0.54, 0.28–0.57, and 0.23–0.54, RMSE values of 0.46–0.78, 17.69–29.85 kg ha−1, 0.24–0.55,
and 41.29–52.96 kg ha−1, and RE values of 16.25–25.08%, 53.04–80.50%, 18.22–33.85%, and
56.56–82.88% for LNC, LNA, PNC, and PNA estimation, respectively, at single and all
growth stages. The Chl index of Dualex had a similar performance to the SPAD value,
with R2 values of 0.25–0.68, 0.27–0.52, 0.29–0.69, and 0.24–0.53, RMSE values of 0.44–0.79,
15.40–28.81 kg ha−1, 0.21–0.54, and 38.86–50.07 kg ha−1, and RE values of 17.20–22.44%,
54.64–81.25%, 17.93–32.28%, and 39.77–77.54% for LNC, LNA, PNC, and PNA estimation,
respectively, at single and all growth stages. The NBI index performed relatively better
than the other two Dualex-based indices (Chl and Flav) for estimating LNC (R2 = 0.36–0.79,
RMSE = 0.39–0.67, RE = 13.43–20.02%), LNA (R2 = 0.49–0.70, RMSE = 14.35–23.50 kg ha−1,
RE = 48.33–67.38%), PNC (R2 = 0.49–0.76, RMSE = 0.19–0.46, RE = 15.63–27.44%), and PNA
(R2 = 0.53–0.72, RMSE = 34.63–39.32 kg ha−1, RE = 35.46–65.43%) at the single growth stage
and across all growth stages. For the RS active canopy sensor, the default vegetation index
of NDRE was more closely associated with LNC (R2 = 0.61–0.79, RMSE = 0.39–0.53, RE
= 11.84–15.79%), LNA (R2 = 0.66–0.87, RMSE = 12.39–19.79 kg ha−1, RE = 24.72–42.12%),
PNC (R2 = 0.51–0.74, RMSE = 0.18–0.45, RE = 14.81–27.34%), and PNA (R2 = 0.64–0.87,
RMSE = 24.09–36.39 kg ha−1, RE = 20.56–36.21%) than NDVI at single growth stage and
across all growth stages.
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Table 4. Ten-fold cross-validation results for the pair-wise exponential relationship between the six sensor-based indices and leaf N concentration (LNC), leaf N accumulation (LNA), plant
N concentration (PNC), and plant N accumulation (PNA) at different growth stages across experiments 1–3.

Parameter Sensor Index
Jointing Stage Booting Stage Flowering Stage Filling Stage All Stage

R2 RMSE RE (%) R2 RMSE RE (%) R2 RMSE RE (%) R2 RMSE RE (%) R2 RMSE RE (%)

LNC
(%)

SPAD SPAD 0.44 0.77 25.08 0.59 0.53 16.25 0.25 0.78 21.68 0.60 0.46 16.28 0.39 0.70 21.21
Dualex NBI 0.79 0.47 13.43 0.66 0.50 14.48 0.36 0.67 20.02 0.71 0.39 14.19 0.61 0.56 16.74

Chl 0.68 0.58 18.66 0.57 0.55 16.27 0.25 0.79 22.44 0.65 0.44 17.20 0.42 0.68 20.00
Flav 0.66 0.60 19.21 0.43 0.63 19.22 0.27 0.74 21.34 0.50 0.50 19.24 0.51 0.62 20.70

RS NDRE 0.79 0.47 15.02 0.75 0.42 11.84 0.61 0.53 15.79 0.70 0.39 13.80 0.70 0.49 15.03
NDVI 0.72 0.55 18.61 0.56 0.55 17.05 0.56 0.57 17.86 0.62 0.44 19.45 0.64 0.54 19.03

LNA
(kg ha−1)

SPAD SPAD 0.36 29.85 80.50 0.54 24.86 67.24 0.29 24.32 62.51 0.46 17.69 53.04 0.29 29.11 78.15
Dualex NBI 0.70 23.50 67.38 0.63 22.31 52.52 0.49 18.47 55.47 0.58 14.35 48.33 0.53 23.46 59.49

Chl 0.51 28.81 81.25 0.50 26.12 69.43 0.27 24.73 69.82 0.52 15.40 54.64 0.31 28.51 78.51
Flav 0.50 30.23 83.25 0.49 28.32 70.21 0.49 18.95 58.39 0.50 15.55 60.67 0.53 23.43 68.19

RS NDRE 0.87 15.04 24.72 0.77 17.71 24.75 0.78 12.39 24.81 0.66 13.62 42.12 0.67 19.79 40.55
NDVI 0.86 16.27 37.82 0.68 20.55 37.09 0.74 13.65 33.63 0.66 15.49 44.25 0.63 21.43 42.00

PNC
(%)

SPAD SPAD 0.36 0.53 31.75 0.50 0.44 26.44 0.30 0.42 29.56 0.57 0.24 18.22 0.28 0.55 33.85
Dualex NBI 0.76 0.36 17.22 0.65 0.36 21.85 0.50 0.35 24.04 0.70 0.19 15.63 0.49 0.46 27.44

Chl 0.64 0.44 21.24 0.51 0.43 26.02 0.29 0.42 29.24 0.69 0.21 17.93 0.29 0.54 32.28
Flav 0.61 0.45 24.84 0.47 0.45 29.61 0.32 0.41 32.47 0.44 0.27 22.63 0.45 0.47 31.85

RS NDRE 0.72 0.39 21.73 0.74 0.32 18.41 0.73 0.26 18.35 0.74 0.18 14.81 0.51 0.45 27.34
NDVI 0.57 0.48 28.37 0.55 0.41 27.36 0.50 0.35 27.65 0.50 0.25 22.97 0.47 0.47 32.41

PNA
(kg ha−1)

SPAD SPAD 0.36 52.96 82.88 0.54 41.29 58.97 0.23 50.33 65.98 0.34 46.28 56.56 0.30 49.14 80.28
Dualex NBI 0.72 35.06 65.43 0.67 34.63 44.69 0.53 39.32 38.80 0.57 37.34 35.46 0.59 39.32 57.96

Chl 0.50 46.95 77.54 0.52 41.78 59.44 0.24 50.07 56.16 0.53 38.86 39.77 0.38 47.87 74.69
Flav 0.50 46.22 78.85 0.52 41.89 63.11 0.44 43.10 51.64 0.48 41.07 39.66 0.48 44.09 72.33

RS NDRE 0.87 24.09 20.56 0.75 30.26 24.00 0.76 27.96 21.18 0.64 36.39 36.21 0.68 34.72 32.53
NDVI 0.82 28.22 33.07 0.65 35.41 34.41 0.57 37.59 33.69 0.62 37.24 37.99 0.62 37.50 36.91
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3.4. Relationship between the Optimal Index of Each Sensor and N Nutrition Index

The NBI index performed consistently well for the assessment of leaf (LNC and
LNA) and plant (PNC and PNA) N status across three Dualex-based indices during all
growth stages, and the default vegetation index NDRE of the RS sensor also displayed a
consistently high correlation with LNC, LNA, PNC, and PNA. Hence, the optimal index
(SPAD, NBI, and NDRE) of the SPAD meter, Dualex, and RS sensor were selected for
establishing the relationship with NNI. Based on the data collected from experiments 1–3,
the quantitative exponential relationship between the SPAD, NBI, NDRE, and NNI were
systematically analyzed, and the 10-fold cross-validation results were showed in Table 5.
The NDRE of the RS sensor performed best for monitoring NNI across different cultivars
at jointing (R2 = 0.75–0.96, RMSE = 0.14–0.19, RE = 13.72–29.27%), booting (R2 = 0.73–0.97,
RMSE = 0.09–0.24, RE = 10.04–24.18%), flowering (R2 = 0.76–0.86, RMSE = 0.12–0.20, RE
= 12.19–24.69%), filling (R2 = 0.74–0.96, RMSE = 0.07–0.21, RE = 10.18–28.02%), and all
(R2 = 0.67–0.87, RMSE = 0.12–0.26, RE = 18.53–24.39%) growth stages, followed by the
Dualex-based index of NBI, with R2 of 0.53–0.88, 0.59–0.87, 0.33–0.87, 0.72–0.84, and 0.56–
0.75, RMSE of 0.13–0.29, 0.11–0.33, 0.15–0.33, 0.13–0.19, and 0.16–0.29, RE of 19.33–36.40,
16.53–48.32, 16.74–52.83, 12.78–23.49, and 21.25–43.45 for NNI estimation across seven
cultivars at jointing, booting, flowering, filling, and all growth stage, respectively. The
SPAD had a slightly worse performance for estimating NNI at jointing (R2 = 0.29–0.81,
RMSE = 0.16–0.48, RE = 19.65–77.65%), booting (R2 = 0.38–0.84, RMSE = 0.18–0.37, RE =
18.51–63.60%), flowering (R2 = 0.26–0.81, RMSE = 0.23–0.39, RE = 24.47–62.99%), filling
(R2 = 0.48–0.87, RMSE = 0.13–0.28, RE = 15.45–45.56%), and all (R2 = 0.37–0.73, RMSE =
0.18–0.37, RE = 27.28–59.45%) growth stages. The seven cultivars performed differently
at different growth stages, the XM30 had a consistent well validation results based on
SPAD (R2 = 0.64–0.81, RMSE = 0.20–0.24, RE = 21.74–34.38%), NBI (R2 = 0.73–0.87, RMSE
= 0.15–0.19, RE = 16.68–23.04%), and NDRE (R2 = 0.83–0.96, RMSE = 0.13–0.16, RE =
13.89–22.62%) at single and all growth stages. The YM15 performed poorly at jointing stage
(R2 = 0.29–0.75, RMSE = 0.13–0.16, RE = 22.62–27.51%), while it achieved a relatively good
performance at booting (R2 = 0.72–0.89, RMSE = 0.10–0.18, RE = 10.75–18.54%), flowering
(R2 = 0.81–0.87, RMSE = 0.13–0.23, RE = 21.56–45.14%), and filling (R2 = 0.72–0.77, RMSE =
0.12–0.15, RE = 15.92–23.49%) stages among three optimal sensor indices. Therefore, the
exponential relationship between the SPAD, NBI, NDRE, and NNI across seven cultivars
using data from experiments 1–3 was constructed and shown in Figure 4, which had an R2

value of 0.41–0.65 for SPAD, 0.66–0.85 for NBI, and 0.76–0.87 for NDRE at single and all
growth stages.

3.5. N Diagnosis of Winter Wheat Based on the SPAD, NBI, and NDRE at Different
Growth Stages

To evaluate the diagnosis accuracy of the SPAD, NBI, and NDRE models, experimental
plots in Experiment 1–3 were divided into three categories: N deficient (NNI < 0.95), N
optimal (0.95 ≤ NNI ≤ 1.05), and N excessive (NNI > 1.05) based on the diagnosis threshold
values. The results in Table 6 indicated that the diagnosis accuracy ranged from 0.54 to 0.71
for SPAD, 0.66 to 0.84 for NBI, and 0.72 to 0.86 for NDRE. The kappa coefficient ranged
from 0.30 to 0.52 for SPAD, 0.42 to 0.72 for NBI, and 0.53 to 0.75 for NDRE across all growth
stages. Based on the evaluation criteria, the NBI and NDRE models performed moderately
well for the diagnosis of N status during each growth stage; the SPAD model performed
moderately well at the jointing and booting stages, but had fair diagnosis agreement at the
flowering and filling stages.
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Table 5. Ten-fold cross-validation results for the pair-wise exponential relationship between the SPAD, NBI, NDRE, and NNI across seven cultivars at different growth stages in
experiment 1–3.

Index Cultivar
Jointing Stage Booting Stage Flowering Stage Filling Stage All Stage

R2 RMSE RE (%) R2 RMSE RE (%) R2 RMSE RE (%) R2 RMSE RE (%) R2 RMSE RE (%)

SPAD

XM30 0.81 0.22 34.38 0.70 0.22 21.74 0.64 0.24 24.47 0.76 0.20 26.01 0.73 0.21 31.36
HM20 0.31 0.48 77.65 0.41 0.32 52.62 0.58 0.28 48.29 0.48 0.28 45.56 0.48 0.33 55.81
YM15 0.29 0.16 27.51 0.72 0.18 18.54 0.81 0.23 45.14 0.77 0.13 20.78 0.63 0.18 32.28
YM16 0.32 0.22 52.65 0.45 0.27 63.60 0.78 0.36 62.99 0.78 0.20 29.82 0.56 0.29 59.45
ZM12 0.67 0.42 27.09 0.84 0.25 18.51 0.36 0.39 29.42 0.78 0.17 15.45 0.44 0.37 27.28
YM23 0.79 0.42 29.93 0.38 0.37 29.04 0.26 0.27 26.18 0.87 0.20 17.45 0.42 0.37 27.91
NM13 0.50 0.28 19.65 0.68 0.24 29.45 0.56 0.28 29.08 0.78 0.14 15.67 0.41 0.28 27.95

All vari-
eties 0.40 0.36 48.06 0.53 0.27 35.75 0.35 0.30 38.68 0.50 0.20 26.44 0.37 0.30 38.41

NBI

XM30 0.83 0.18 23.04 0.87 0.15 16.68 0.75 0.18 16.74 0.77 0.15 18.94 0.73 0.19 21.56
HM20 0.85 0.13 19.35 0.64 0.18 23.03 0.78 0.15 22.58 0.78 0.13 20.76 0.74 0.15 21.90
YM15 0.55 0.13 24.46 0.87 0.11 16.53 0.87 0.20 40.36 0.72 0.15 23.49 0.75 0.16 28.27
YM16 0.79 0.17 36.40 0.54 0.24 48.32 0.75 0.33 52.83 0.77 0.13 18.37 0.58 0.25 43.45
ZM12 0.66 0.29 21.47 0.76 0.23 22.69 0.49 0.28 21.96 0.78 0.13 12.78 0.64 0.24 21.25
YM23 0.88 0.24 20.47 0.59 0.33 25.54 0.33 0.27 24.07 0.84 0.19 16.18 0.65 0.29 23.27
NM13 0.53 0.28 19.33 0.76 0.19 20.40 0.58 0.26 24.52 0.78 0.13 14.19 0.56 0.24 22.46

All vari-
eties 0.78 0.22 23.12 0.71 0.22 27.03 0.54 0.23 28.44 0.72 0.15 17.73 0.65 0.23 26.43

NDRE

XM30 0.96 0.14 13.94 0.95 0.13 13.89 0.83 0.15 17.53 0.85 0.16 22.62 0.87 0.16 18.53
HM20 0.87 0.18 19.91 0.73 0.17 19.43 0.81 0.13 15.62 0.74 0.17 28.02 0.75 0.16 21.44
YM15 0.75 0.15 22.62 0.89 0.10 10.75 0.86 0.13 21.56 0.76 0.12 15.92 0.72 0.16 24.39
YM16 0.83 0.15 29.27 0.97 0.09 10.04 0.83 0.14 24.69 0.96 0.07 10.18 0.85 0.12 20.12
ZM12 0.91 0.18 15.28 0.77 0.22 20.23 0.76 0.20 16.75 0.75 0.17 15.22 0.71 0.24 20.68
YM23 0.93 0.19 13.72 0.74 0.24 18.44 0.84 0.12 12.19 0.83 0.21 18.15 0.67 0.26 19.93
NM13 0.81 0.17 16.47 0.79 0.21 24.18 0.79 0.15 15.26 0.86 0.10 11.66 0.70 0.20 20.47

All vari-
eties 0.87 0.17 18.48 0.79 0.18 18.11 0.81 0.15 17.31 0.79 0.14 16.82 0.73 0.20 20.66



Sensors 2021, 21, 5579 11 of 17Sensors 2021, 21, x FOR PEER REVIEW 12 of 18 
 

 

 
Figure 4. The exponential relationship between the SPAD and N nutrition index (NNI) across experiments 1–3 at (a) jointing, (b) booting, (c) flowering, (d) filling, and (e) all growth 
stages/the exponential relationship between the NBI and N nutrition index (NNI) across experiments 1–3 at (f) jointing, (g) booting, (h) flowering, (i) filling, and (j) all growth stages/the 
exponential relationship between the NDRE and N nutrition index (NNI) across experiments 1–3 at (k) jointing, (l) booting, (m) flowering, (n) filling, and (o) all growth stages. Black 
lines indicate regression lines. 

Figure 4. The exponential relationship between the SPAD and N nutrition index (NNI) across experiments 1–3 at (a) jointing, (b) booting, (c) flowering, (d) filling, and (e) all growth
stages/the exponential relationship between the NBI and N nutrition index (NNI) across experiments 1–3 at (f) jointing, (g) booting, (h) flowering, (i) filling, and (j) all growth stages/the
exponential relationship between the NDRE and N nutrition index (NNI) across experiments 1–3 at (k) jointing, (l) booting, (m) flowering, (n) filling, and (o) all growth stages. Black lines
indicate regression lines.
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Table 6. Areal agreement and kappa coefficient for SPAD, NBI, and NDRE at different growth stages.

Index
Areal Agreement Kappa Coefficient

Jointing Booting Flowering Filling Jointing Booting Flowering Filling

SPAD 0.71 0.70 0.54 0.61 0.52 0.50 0.30 0.34
NBI 0.84 0.77 0.66 0.71 0.72 0.61 0.42 0.49

NDRE 0.86 0.84 0.80 0.72 0.75 0.69 0.65 0.53

The N diagnosis maps based on the SPAD, NBI, and NDRE models at each of the
growth stages during 2016 are shown in Figure 5. The N diagnosis data of each field
plot were variable across the growth stages, with a large variation in winter wheat N
status observed at differing values of N application. The N diagnosis map based on NBI
and NDRE had similar performance, which showed that experimental plots with 270 or
360 kg N ha−1 were well- or over-fertilized, which fall into the N optimal or N excessive
categories, respectively, across different growth stages. In contrast, experimental plots with
0 or 90 kg N ha−1 showed deficient fertilization, falling into the N deficient category at each
growth stage. The N diagnosis map based on SPAD showed a relatively worse diagnosis
results, which classified several low N treatments (90 kg N ha−1) as N excessive category at
the jointing and flowering stages, and classified several high N treatments (360 kg N ha−1)
in the N-deficient category at the filling stage. Overall, the sensor values at each of the
experimental plot showed varying crop growth and N status performance due to variable
N rates.
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Figure 5. N diagnosis maps (experiment 1) based on the SPAD at the (a) jointing, (b) booting, (c) flowering, and (d) filling
stage. N diagnosis maps based on the NBI at (e) jointing, (f) booting, (g) flowering, and (h) filling stage. N diagnosis maps
based on the NDRE at (i) jointing, (j) booting, (k) flowering, and (l) filling stage. V1 and V2 in (a) represent XM30 and HM20
cultivars. N1, N2, N3, and N4 in (a) represent 0, 90, 180, 270, and 360 kg N ha−1 treatments, respectively, in Experiment 1.
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4. Discussion
4.1. Wheat N Status Assessments Based on the Leaf and Canopy Sensors

The SPAD meter consists of a single leaf spectrometer and uses a red spectrum at
650 nm to estimate the chlorophyll concentration in the leaves, which significantly correlates
with crop N status [13]. In Figure 3a, the SPAD value increased as wheat growth progressed,
then remained high under high N levels (270 and 360 kg N ha−1), which may have a
saturated or near-saturated status in conditions of high N supply. Yue et al. [14] indicated
that the response of the SPAD readings to wheat PNC showed a saturated phenomenon
with an N supply that gradually increased to excessive amounts, i.e., to 420 kg N ha−1,
consistent with our study. The Dualex uses two near-infrared (710 and 850 nm) bands to
estimate the chlorophyll content. Chlorophyll fluorescence (375 nm) of the sensor can be
used to monitor leaf flavonoid content [37]. Zhang et al. [17]. showed that the Dualex (R2 =
0.87) outperformed the SPAD meter for estimations of rice chlorophyll (R2 = 0.77), and could
mitigate the influence of saturating conditions under high N concentrations. Figure 3c
showed wheat crops under N deficiency accumulate higher levels of Flav, the response
of which contrasts Chl (Figure 3b). Gabriel et al. [22]. indicated that complementary
polyphenol information (as Flav) can improve maize N deficiency predictions. The NBI
index performed relatively better than the other two Dualex-based indices (Chl and Flav)
for LNC (Table 4: R2 = 0.36–0.79, RMSE = 0.39–0.67, RE = 13.43–20.02%), LNA (Table 4: R2

= 0.49–0.70, RMSE = 14.35–23.50 kg ha−1, RE = 48.33–67.38%), PNC (Table 4: R2 = 0.49–0.76,
RMSE = 0.19–0.46, RE = 15.63–27.44%), and PNA (Table 4: R2 = 0.53–0.72, RMSE = 34.63–
39.32 kg ha−1, RE = 35.46–65.43%) estimation across single and all growth stages. The NBI
can partially alleviate the influence of gradients along the plant leaf, and can accentuate the
difference amongst the levels of plant N deficit due to the inverse dependence between Chl
and Flav on the plant N nutritional status [38]. Previous studies have also shown that the
NBI performed well for the assessment of N status and growth in muskmelon, consistent
with this study [39].

The measured area of the SPAD meter was 6 mm2 and the sampling area of each
plot was 540 mm2 based on our measurement method (90 individual measurements in
each experiment plot). For Dualex, the sampling area was 1800 mm2 (the measured area
was 20 mm2). The smaller sampling area for the SPAD meter was susceptible to factors
such as blade veins and internal variation of the field. Accordingly, the SPAD values were
less accurate for the estimation of crop N nutrition. The field of view of the RS sensor
is 45◦ by 10◦ and the scan width of sensor perpendicular to the flight direction is 0.66 m
(measurement height of 0.80 m). As a result, the scan area was a minimum of 5.94 square
meters for each plot (e.g., Experiment 3). The larger sampling area in each plot was more
representative of crop growth status. The NDRE derived from the RS sensor was closely
associated with LNC (Table 4: R2 = 0.61–0.79, RMSE = 0.39–0.53, RE = 11.84–15.79%), LNA
(Table 4: R2 = 0.66–0.87, RMSE = 12.39–19.79 kg ha−1, RE = 24.72–42.12%), PNC (Table 4: R2

= 0.51–0.74, RMSE = 0.18–0.45, RE = 14.81–27.34%), and PNA (Table 4: R2 = 0.64–0.87, RMSE
= 24.09–36.39 kg ha−1, RE = 20.56–36.21%) at single growth stage and across all growth
stages. Other studies indicated that the active canopy sensor (r = 0.73–0.86) displayed a
higher accuracy in predicting the grapevine biomass and yield compared to the chlorophyll
meter (r = 0.62–0.76) [40], which is consistent with this study.

4.2. Wheat N Nutrition Diagnosis Based on the Optimal Indices (SPAD, NBI, and NDRE) of
Three Sensors

The estimation and diagnosis of N nutrition is a key consideration in precision wheat
management [41]. NNI acts as an optimal N diagnostic indicator, with the development of
remote sensing technologies making real-time estimations of NNI possible. In this study,
the NNI diagnosis models based on the optimal indices (SPAD: R2 = 0.41–0.65; NBI: R2

= 0.66–0.85; NDRE: R2 = 0.76–0.87) of three sensors were conducted during each growth
stage, permitting the N diagnosis at all stages of wheat growth development. During
the construction of the model, the R2 of the relationship between NNI and NDRE at the
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flowering (Figure 4: R2 = 0.83) and filling (Figure 4: R2 = 0.76) stages were slightly lower
than during the jointing (Figure 4: R2 = 0.87) and booting (Figure 4: R2 = 0.87) stages, which
may be due to the emergence of a spike that influenced the estimated performance of the
NDRE models at the late growth period. Similar results have also been shown in studies of
rice and wheat [28,42]. The 10-fold cross-validation results of the relationship between three
optimal indices and NNI across seven wheat cultivars showed that the Dualex-based NBI
performed better than SPAD, and NDRE of RS canopy sensor performed better than two
leaf-sensor indices at single and all growth stages. The seven wheat cultivars performed
differently at different stage, which may be due to the difference of variety characteristics
and climatic condition among different years [43,44]. The XM30 had a consistent good
performance at each growth stage, the seedling of XM30 half creep flat on the ground
with dark green and board leaves, which had a strong tilling ability and relative loose
plant type. Winter wheat N status can be diagnosed based on NNI predictions using
established diagnostic models and NNI threshold values. The NBI model (Table 6) had an
areal agreement of 0.66 to 0.84 and a kappa coefficient of 0.42 to 0.72 across different growth
stages. Similar studies have shown that the NBI measured using a Multiplex 3 sensor
performs well for the diagnosis of rice N status during stem elongation (areal agreement =
75%, kappa coefficient = 0.595) and heading (areal agreement = 80%, kappa coefficient =
0.590) stages [45]. The NDRE model (Table 6: areal agreement = 0.72–0.86, kappa coefficient
= 0.53–0.75) based on the RS sensor performed to a relatively higher level than the SPAD
and NBI model, which also indicated that the larger sampling area by the canopy optical
sensor was considerably more representative for wheat growth status [39]. Other studies
have shown that the NDRE model based on the RS sensor can accurately measure rice N
status at the panicle initiation and jointing stage (areal agreement = 0.55, kappa coefficient
= 0.30) and heading growth stage (areal agreement = 0.76, kappa coefficient = 0.54) [46].

The N diagnosis plot maps based on the spectral indices directly reflected the N
status of each plot (Figure 5), which may assist farmer for precise crop N management.
As an example, the N diagnosis map and NNI diagnosis model could be coupled with
the fertilization topdressing model to consider both temporal and spatial variability of
crop growth and N nutrition [47,48], after which the N management decisions could be
optimized to improve N use efficiency and increase economic benefits [49]. The spectral
sensing method could non-destructively quantify and visualize the real time crop growth
status compared to traditional leaf color-based diagnosis and chemical diagnosis, such as
Kjeldahl digestion, which required laborious and time-consuming preparation [37]. The
handheld spectral sensing used in this study was relatively limited when used for data
collection in a large area compared to drone- and tractor-based sensing; the tractor-based
Yara N-sensor was successfully used to estimate maize aboveground N uptake (R2 =
0.57–0.84) and dry matter yields (R2 = 0.67–0.91) at different growth stages [50]. Argento
et al. [51] used the spectral index of NDRE derived from a UAV-mounted multispectral
camera to guide N fertilizer application for winter wheat in a 2-hectare area, and to evaluate
the sensitivity of NDRE with wheat dry matter (R2 = 0.72), NNI (R2 = 0.75) across different
growth stages. In addition, the combination of ground and areal remote sensing data may
be a promising method in crop growth monitoring, Zheng et al. [52] demonstrated the
integration (R2 = 0.72–0.75) of ground-based narrow band vegetation indices with UAV-
based textural information exhibited a significant improvement for rice PNC estimation
compared to individual UAV data (R2 = 0.59–0.70). Due to the time and labor required for
synchronous sensor data and agronomic indicators, this study analyzed growth stages that
were initiated at the jointing stage. Monitoring frequency prior to the jointing stage can be
increased in future research to improve these diagnosis models. In addition, similar studies
should be performed for different wheat cultivars in other eco-sites, further enhancing the
practicability of the optical sensors during field production.
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5. Conclusions

Our results demonstrate that three portable optical sensors (SPAD meter, Dualex, and
RS sensor) could be used to estimate and diagnose the N status of wheat. The Dualex-based
NBI had a relatively well performance among four leaf-sensor indices, while NDRE of RS
sensor performed best for LNC, LNA, PNC, and PNA estimation across different growth
stages due to larger sampling area of canopy sensor. The areal agreement of the NNI
diagnosis models ranged from 0.54 to 0.71 for SPAD, 0.66 to 0.84 for NBI, and 0.72 to 0.86
for NDRE, and kappa coefficient ranged from 0.30 to 0.52 for SPAD, 0.42 to 0.72 for NBI, and
0.53 to 0.75 for NDRE across all growth stages. We conclude that the use of sensor-based
diagnostic models is appropriate for the rapid and non-destructive diagnosis of N nutrition
of winter wheat.
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