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A B S T R A C T   

Magnetic resonance imaging (MRI) is a fundamental tool in the diagnosis and management of neurological 
diseases such as multiple sclerosis (MS). New portable, low-field strength, MRI scanners could potentially lower 
financial and technical barriers to neuroimaging and reach underserved or disabled populations, but the sensi-
tivity of these devices for MS lesions is unknown. We sought to determine if white matter lesions can be detected 
on a portable 64mT scanner, compare automated lesion segmentations and total lesion volume between paired 
3T and 64mT scans, identify features that contribute to lesion detection accuracy, and explore super-resolution 
imaging at low-field. In this prospective, cross-sectional study, same-day brain MRI (FLAIR, T1w, and T2w) scans 
were collected from 36 adults (32 women; mean age, 50 ± 14 years) with known or suspected MS using Siemens 
3T (FLAIR: 1 mm isotropic, T1w: 1 mm isotropic, and T2w: 0.34–0.5 × 0.34–0.5 × 3–5 mm) and Hyperfine 64mT 
(FLAIR: 1.6 × 1.6 × 5 mm, T1w: 1.5 × 1.5 × 5 mm, and T2w: 1.5 × 1.5 × 5 mm) scanners at two centers. Images 
were reviewed by neuroradiologists. MS lesions were measured manually and segmented using an automated 
algorithm. Statistical analyses assessed accuracy and variability of segmentations across scanners and systematic 
scanner biases in automated volumetric measurements. Lesions were identified on 64mT scans in 94% (31/33) of 
patients with confirmed MS. The average smallest lesions manually detected were 5.7 ± 1.3 mm in maximum 
diameter at 64mT vs 2.1 ± 0.6 mm at 3T, approaching the spatial resolution of the respective scanner sequences 
(3T: 1 mm, 64mT: 5 mm slice thickness). Automated lesion volume estimates were highly correlated between 3T 
and 64mT scans (r = 0.89, p < 0.001). Bland-Altman analysis identified bias in 64mT segmentations (mean =
1.6 ml, standard error = 5.2 ml, limits of agreement = –19.0–15.9 ml), which over-estimated low lesion volume 
and under-estimated high volume (r = 0.74, p < 0.001). Visual inspection revealed over-segmentation was 
driven venous hyperintensities on 64mT T2-FLAIR. Lesion size drove segmentation accuracy, with 93% of le-
sions > 1.0 ml and all lesions > 1.5 ml being detected. Using multi-acquisition volume averaging, we were able 
to generate 1.6 mm isotropic images on the 64mT device. Overall, our results demonstrate that in established MS, 
a portable 64mT MRI scanner can identify white matter lesions, and that automated estimates of total lesion 
volume correlate with measurements from 3T scans.   
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1. Introduction 

Multiple sclerosis (MS) is a complex inflammatory and degenerative 
disease of the central nervous system (Longo et al., 2018). MS causes 
demyelinating lesions, typically assessed using magnetic resonance im-
aging (MRI). Imaging features related to white matter lesions (WMLs), 
such as number, volume, and dissemination in space and time, are key 
diagnostic criteria of MS (Thompson et al., 2018) and determine treat-
ment courses and clinical trial eligibility (Filippi et al., 2019). Early 
diagnosis leads to better clinical outcomes, including delayed disease 
progression and reduced severity (Noyes and Weinstock-Guttman, 
2013). 

High-field strength MRI (1.5–3T) plays a crucial role in the diagnosis 
and management of MS. The 2021 consensus recommendations from the 
MAGNIMS, NAIMS, and CMSC working groups endorsed high-field MRI 
for MS diagnosis (Wattjes et al., 2021). 3T MRI is preferred over 1.5T 
because these scanners offer higher lesion detection rates and shorter 
acquisition times (Wattjes et al., 2021), although this has not been 
shown to lead to earlier diagnosis (Hagens et al., 2019; Hagens et al., 
2018). Today, 1.5T devices remain the most common diagnostic MRI 
scanners in the United States. The working groups explicitly do not 
recommend using scanners with a field strength below 1.5T. 

Although MS affects ~ 800,000 people in the United States (Wallin 
et al., 2019) and likely > 2.5 million people globally (Tullman, 2013), 
the significant cost, infrastructure, and technical requirements associ-
ated with traditional high-field strength systems limits access to MRI 
worldwide (Marques et al., 2019). The scarcity is particularly felt in low- 
resource, sparsely populated, and rural areas (Ogbole et al., 2018). In 
some countries, the majority of MRI systems are low-field strength 
(<1T), while in others there are no available scanners at all (Ogbole 
et al., 2018; Geethanath and Vaughan, 2019). In the West African re-
gion, there are <100 MRI units serving a population larger than the 
United States, with a majority of the available devices being low-field 
strength (Ogbole et al., 2018; Jimeno et al., 2022). Portable, low-field 
MRI could play a significant role in providing imaging services in 
areas where even 1.5T scanners are out of financial reach. Even within 
the United States 60% of rural hospitals lack on-site MRI (Ginde et al., 
2008). As the lack of diagnostic imaging can lead to delayed diagnosis 
and treatment, which result in worsening health disparities (Maru et al., 
2010), there is renewed interest in low-field MRI as a lower-cost and 
potentially portable alternative to high-field MRI for neurologic disease 
generally (Wald et al., 2020). 

Recent improvements in hardware as well as image reconstruction 
and processing algorithms (Campbell-Washburn et al., 2019) have made 
low-field MRI promising in contexts where modest resolution is suffi-
cient for diagnostic purposes (Danni et al., 2020). The clinical utility of 
portable low-field MRI has been investigated for bedside monitoring in 
intensive care settings, where patients may not be stable enough to 
transport for traditional imaging (Sheth et al., 2021; Mazurek et al., 
2021; Turpin et al., 2020). In the outpatient treatment of diseases such 
as MS, portable low-field MRI has the potential to increase access to MRI 
technology and enable more frequent monitoring of disease activity 
(Scarpazza et al., 2020). However, to achieve a diagnostically useful 
signal-to-noise ratio (SNR), low-field sequences typically require larger 
voxel sizes or longer scan times. It remains unknown to what extent 
lower image resolution and differences in tissue contrast associated with 
very low magnetic field strength will affect WML detection on these new 
portable devices. 

In this study, we assessed the feasibility of portable low-field MRI for 
MS lesion identification and lesion volume estimation. We collected 
paired same-day 3T and 64mT brain MRI scans from adults with known 
or suspected MS at two different institutions. We used standard pro-
tocols (designed to meet MS consortium guidelines) for clinical Siemens 
3T imaging and standard sequences (developed by Hyperfine to provide 
typical tissue contrasts for general brain imaging in reasonable resolu-
tion and scan time) at 64mT (Wattjes et al., 2021; Wattjes et al., 2015). 

We then compared lesion detection between scanners using both manual 
and automated measurements. We anticipated that tissue contrast 
would be sufficient to detect MS lesions at 64mT but sensitivity for small 
lesions would be reduced due to the lower resolution of the low field 
sequences. Finally, we explored a simple approach for super-resolution 
imaging of small lesions based on multi-acquisition image averaging. 

2. Materials and methods 

2.1. Participants & imaging 

Among adult outpatients undergoing clinical 3T brain MRI for 
known or suspected MS between October 2020 and April 2021, 36 pa-
tients (Fig. 1) were recruited at site A (N = 21) and site B (N = 15). All 
patients received same-day 3T and 64mT MRI. Demographic informa-
tion was collected from clinical notes and included age, sex, race, clin-
ical phenotype, disease duration, Expanded Disability Status Scale 
(EDSS), and current disease modifying therapy (Table 1). This study was 
approved by each site’s institutional review board, and patients pro-
vided written, informed consent. 

High-field MRI was performed on 3T scanners (Siemens, Erlangen, 
Germany). Each site used a standardized, whole-brain imaging protocol, 
which included 3D T1-weighted (T1w), T2-weighted (T2w), and 3D T2- 
FLAIR sequences (Fig. 2A). Sequence parameters are listed in Table 2. 
Total scan time was 11:06 min at site A and 20:15 min at site B. Patients 
at site B received gadolinium (gadobutrol, 0.1 mmol/L) prior to 3T 
scanning and 64mT scans were obtained after the contrast-enhanced 3T 
scans with mean post-gadolinium duration of 58 ± 21 min. Same-day, 
low-field MRI was performed on portable 64mT Swoop MRI systems 
(Hyperfine, Guilford, CT). Whole-brain 3D fast spin-echo T1w, T2w, and 
T2-FLAIR scans, analogous to those acquired at 3T, were collected 
(Fig. 2B). The 64mT imaging incorporates undersampling and deep- 
learning based reconstruction to increase SNR and decrease scan time. 
Total scan time was 21:22 min. 

Fig. 1. Flow chart of study participants. Abbreviations: multiple sclerosis (MS), 
clinically isolated syndrome (CIS), neuromyelitis optica (NMO). 
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2.2. Manual review and lesion measurement 

MRI scans were reviewed for WMLs by two neuroradiologists (DSR 
and JMS, 19 and 8 years of experience, respectively), and images with 
significant artifacts or were excluded from subsequent analysis. 
Maximum diameters (Dmax) of the smallest and largest WML visually 
detectable at each field strength were manually measured by a 

neuroradiologist (JMS) and a neurologist (SVO) with MS MRI expertise 
(3 years of experience) using ITK-SNAP (Yushkevich et al., 2006). All 
measurements were made on T2-FLAIR scans. Lesions were assessed in 
axial planes as well as sagittal and coronal reformatted images, and 
Dmax measurements were made on the plane with the largest lesion 
diameter. In confluent periventricular lesions, Dmax was measured 
perpendicular to the ventricle. Low-field imaging was evaluated prior to 
3T scans to avoid interpretation bias, and image sets were reviewed 
separately. Inter-rater reliability was assessed using two-way random, 
single-measure intraclass correlation coefficients (ICC) with 95% con-
fidence intervals (CI) reported. Patients who did not meet the McDonald 
criteria for dissemination of lesions in space were excluded from sub-
sequent analyses (Thompson et al., 2018). 

2.3. Quantifying image quality 

Image quality was assessed using four quantitative metrics: Lesion 
conspicuity, SNR, contrast-to-noise-ratio (CNR), and variance of the 
Laplacian. Lesion conspicuity quantifies lesion intensity relative to 
normal appearing ipsilateral white matter. WMLs and normal appearing 
ipsilateral white matter regions were manually segmented on 3T and 
64mT imaging using ITK-SNAP (Yushkevich et al., 2006). We calculated 
lesion conspicuity as the ratio of the difference and the sum of mean 
intensity in the two segmentations: 

Conspicuity =
μL − μWM

μL + μWM
, (1)  

where μL is the mean intensity in the lesion segmentation and μWM is the 
mean intensity of the normal appearing ipsilateral white matter seg-
mentation. 

SNR and CNR are related measures that place mean lesion and white 
matter intensity in context to image noise. SNR compares the mean in-
tensity of a signal to background noise, while CNR compares the contrast 
between two signals to background noise (Magnotta and Friedman, 

Table 1 
Patient Demographics. Demographic information and clinical history for 36 
consecutive MS patients included in the study. An asterisk indicates a significant 
difference between sites. Abbreviations: Expanded disability status scale (EDSS), 
relapsing-remitting multiple sclerosis (RRMS), primary progressive multiple 
sclerosis (PPMS), secondary progressive multiple sclerosis (SPMS), clinically 
isolated syndrome (CIS), radiologically isolated syndrome (RIS), neuromyelitis 
optica (NMO), idiopathic transverse myelitis (ITM).   

Total 
(N =
36) 

Site A (N = 21) Site B (N = 15) 

Age (years) 49.6 ±
14.2 

45.3 ± 13.6 * 55.7 ± 12.7 * 

Sex (women/ 
men) 

32/4 19/2 13/2 

Race/ethnicity 
(White/Black/ 
Hispanic) 

26/9/1 14/7/0 12/2/1 

Disease duration 
(years) 

13.7 ±
11.2 

10.2 ± 9.6 * 18.5 ± 11.5 * 

EDSS (0–10) 1.5 
(IQR =
2.0) 

1.5 (IQR = 2.0) 2.0 (IQR = 1.25) 

Phenotype  RRMS (18), CIS (1), 
NMO (1), RIS (1) 

RRMS (10), SPMS (2), 
CIS (1), ITM (1), PPMS 
(1) 

Current disease 
modifying 
therapy  

ocrelizumab (9), 
natalizumab (2), other 
(6), none (4) 

dimethyl fumarate (6), 
ocrelizumab (3), other 
(3), none (6)  

Fig. 2. MS lesions on 3T and 64mT pulse sequences. Paired 3T (A) and 64mT (B) images from a 66-year-old woman with stable RRMS. Sequences include T1w (left), 
T2w (center), and T2-FLAIR (right). Images from both scanners show deep gray matter lesions and periventricular white matter lesions. Note also the superior sagittal 
sinus is hyperintense in the 64mT T2w and T2-FLAIR sequences, but not at 3T. 
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2006). We calculated SNR and CNR as: 

SNR =
μL

σAIR
(2)  

CNR =
|μL − μWM |

σAIR
(3)  

where σAIR is the standard deviation in a region of air surrounding the 
patient. Sampling air is meant to be representative of background noise 
in the images, however acquistion and reconstruction methods that 
impact the statisitical and spatial noise distribution can lead to over-or- 
underestimation of SNR. While only region-of-interest-based methods 
for SNR calculation were possible in this dataset, more robust difference 
measures should be evaluated in the future (Dietrich et al., 2007). 

Variance of the Laplacian quantifies boundary sharpness and has 
been shown to be a robust measure of image focus (Pech-Pacheco et al., 
2000; Pertuz et al., 2013). Variance of the Laplacian (ϕ) was calculated 
as: 

ϕx,y,k =
∑k+1

f=k− 1

∑

(i,j)∈Ω(x,y)

⃒
⃒ΔMIf (i, j)

⃒
⃒ (4)  

where ΔMIf is the Laplacian matrix of the image. Higher variance of the 
Laplacian corresponds to less image blurring. We registered each pa-
tient’s 3T image to the 64mT acquisition and calculated ϕ for both im-
ages to compare relative image blurring at low-field. 

2.4. Automated lesion segmentation 

The same WML segmentation pipeline was applied to 3T and 64mT 
images. Images were preprocessed using N4 bias correction (Tustison 
et al., 2010), and each T2-FLAIR volume was rigidly registered to the 
corresponding T1w volume using   Advanced Normalization Tools 
(ANTs) (Tustison et al., 2021; Avants et al., 2009). A brain mask was 
obtained using Multi-Atlas Skull-Stripping (MASS) (Doshi et al., 2013). 
To enable comparisons across patients, image intensities were normal-
ized within each sequence using White Stripe (Shinohara et al., 2014). 
Lesion segmentation was performed using the Method for Inter-Modal 
Segmentation Analysis (MIMoSA) (Valcarcel et al., 2018; Valcarcel 
et al., 2018), an automated pipeline developed for 3T data that leverages 
shared information (coupling) between modalities to produce proba-
bility maps of WMLs (Fig. S1). To generate binary lesion masks all 
probability maps were thresholded at 0.2, a value manually selected 
based on prior empirical evidence. 

2.5. Automated segmentation evaluation 

Estimation of total lesion volume was the primary performance 
measure compared between 3T and 64mT segmentations. Two lesion 
volume estimates were obtained for each patient by calculating lesion 
segmentation volumes for the respective scanners. The relationship 

between volume estimates was assessed using Pearson’s correlation. 
Bland-Altman plots were used to determine agreement and assess for 
systematic scanner biases. 

Similarity between segmentation masks was assessed using the Dice- 
Sørensen coefficient (Dice), which measures the overlap between two 
images (X and Y): 

Dice =
2|X ∩ Y|

|X| + |Y|
(5) 

Dice scores range from 0 to 1, with 1 indicating perfect segmentation 
overlap. Prior to Dice calculation, 3T and 64mT images were coregis-
tered using ANTs (Avants et al., 2009). While Dice score may not reflect 
segmentation quality when the number of target objects is not known a 
priori, this measure was chosen as it is widely used and allows for 
comparisons across studies (Oguz et al., 2018). All 3T and 64mT seg-
mentations were manually reviewed to verify overlapping regions were 
WMLs rather than false positive detections. 

2.6. Size and intensity analysis 

Connected-components analysis was used to identify individual le-
sions in automated 3T and 64mT segmentations (Boudraa et al., 2000). 
Sensitivity to individual lesions at low-field MRI was assessed using the 
true-positive rate (TPR), or the proportion of lesions correctly identified: 

TPR =
TP

TP + FN
(6)  

where true positives (TP) are defined as lesions where 64mT and 3T 
segmentations overlap and false-negatives (FN) are defined as lesions 
with 3T segmentation but no 64mT segmentation overlap. The false- 
discovery rate (FDR) was assessed as: 

FDR =
FP

FP + TP
(7)  

where false positives (FP) are defined as lesions with 64mT segmenta-
tion but no 3T segmentation overlap. Lesion overlap was defined as at 
least one shared voxel between the 3T and 64mT lesion segmentations. 
To understand the impact of lesion features on detection rates, TPR and 
FDR were plotted as a function of lesion size and normalized lesion in-
tensity (Shinohara et al., 2014). 

2.7. Super-resolution imaging 

Low-field MRI particularly necessitates optimizing trade-offs be-
tween SNR, scan time and image resolution, which may limit the min-
imum detectable lesion size. However, image quality and resolution can 
be increased by taking advantage of signal averaging and partial volume 
effects in multiple scans (Jovicich et al., 2009; Deoni et al., 2022). In two 
patients and one control participant with WMLs, we explored multi- 
acquisition volume averaging techniques. 

In the first patient, eight 64mT T2-FLAIR axial acquisitions (TE =

Table 2 
Sequence parameters for study scans. Abbreviations: Tesla (T), T1-weighted (T1w), T2-weighted (T2w), Fluid-attenuated inversion recovery (FLAIR), echo time (TE), 
repetition time (TR), inversion time (TI), fast spin echo (FSE), magnetization-prepared rapid gradient echo (MPRAGE), magnetization-prepared 2 rapid gradient echo 
(MP2RAGE).  

Sequence Site Field Strength (T) TE (ms) TR (s) TI (s) Resolution (mm) Scan-time (min:sec) Averages 

T1w MPRAGE A 3 2.48 1.9 0.9 1.0x1.0x1.0 4:18 1 
T1w MP2RAGE B 3 2.92 5 0.7, 2.5 1.0x1.0x1.0 8:30 1 
T1w FSE Both 0.064 6.26 1.5 0.3 1.5x1.5x5 4:52 1 
T2-FLAIR A 3 398 5 1.6 1.0x1.0x1.0 5:02 1 
T2-FLAIR B 3 352 4.8 1.8 1.0x1.0x1.0 7:15 1 
T2-FLAIR FSE Both 0.064 200 4 1.4 1.6x1.6x5 9:29 1 
T2w A 3 103 5.5 N/A 0.5x0.5x5.2 1:46 2 
T2w B 3 82 5 N/A 0.34x0.34x3.0 4:30 1 
T2w FSE Both 0.064 209 2 N/A 1.5x1.5x5 7:01 1  
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0.19 s, TR = 4 s, TI = 1.4 s, averages = 4, scan time = 6:03 min, reso-
lution = 1.8x1.8x5 mm) were collected with head repositioning between 
scans (total scan time: 48:24 min). In addition to slightly lower resolu-
tion, these acquisitions used greater undersampling to achieve a shorter 
scan time. Super-resolution images were iteratively generated for each 
additional acquisition by reslicing images to 1.8 mm isotropic voxel 
sizes, affine registration to the initial acquisition, and averaging to 
create a higher-resolution volume. Lesion conspicuity of a small 0.06 ml 
lesion was quantified for each iteration. 

In the second patient, three 64mT T2-FLAIR images were acquired in 
orthogonal slice-select directions (axial: TE = 0.19 s, TR = 4 s, TI = 1.4 s, 
averages = 4, scan time = 9:02 min, resolution = 1.6x1.6x5 mm, 
sagittal: TE = 0.23 s, TR = 4 s, TI = 1.4 s, averages = 4, scan time = 8:27 
min, resolution = 5x1.6x1.6 mm, coronal: TE = 0.21 s, TR = 4 s, TI =
1.4 s, averages = 4, scan time = 8:10 min, resolution = 1.6x5x1.6 mm). 
Images were resliced to 1.6 mm isotropic voxel sizes, registered to the 
initial acquisition, and averaged to create a single high-resolution vol-
ume. Lesion conspicuity was calculated for each individual acquisition 
and the super-resolution images. 

Imaging was also collected in a control participant with incidental 
nonspecific WMLs that are probably sequelae of chronic small vessel 
ischemia. In this case, we generated T1w, T2w, and T2-FLAIR super- 
resolution images from three sets of orthogonal acquisitions. The T2w 
and T2-FLAIR sequences again used greater undersampling to reduce 
scan time (T2w: axial = 2:53 min, sagittal = 1:59 min, coronal = 2:21 
min, total scan time = 7:13 min; T2-FLAIR: axial = 6:03 min, sagittal =
5:02 min, coronal = 6:02 min, total scan time = 17:07 min). Full 
sequence parameters are available in supplementary Table S1. 

2.8. Statistics and Data/Code availability 

All code related to this study is publicly available. The MIMoSA al-
gorithm is available in R as a Neuroconductor package and on GitHub 
(https://github.com/avalcarcel9/mimosa/). T-tests, Pearson’s correla-
tion, and summary statistics were calculated using scipy (v1.5.2) and 
numpy (v1.19.2) in Python (v3.8.5). Bland-Altman plots were visualized 
using pyCompare (v1.5.1) while boxplots and correlations utilized sea-
born (v0.11.0). Inter-rater reliability was calculated using irr (v0.84.1) 
in R (v4.0.3). A manuscript companion containing all analyses is 
available on GitHub (https://github.com/penn-cnt/Arnold_LF-MRI_ 
MS). The data generated in this study can be made available, with 
protected health information removed, upon reasonable request to the 
corresponding author and with a data sharing agreement between in-
stitutions in place. 

3. Results 

3.1. Patient demographics 

We collected data from 36 adults with known or suspected MS. The 
patient population had a mean age of 49.6 (SD: 14.2) years and was 
composed of 32 women and 4 men (Table 1). The mean duration of 
disease was 13.7 years (SD: 11.2), and patients had a median EDSS of 1.5 
(interquartile range = 2). Patients from site B were significantly older 
than those from site A (two-sample t-test, t = 2.2, p = 0.03, site A: 45.3 
years old, site B: 55.7 years old) and had a correspondingly longer 
duration of disease (two-sample t-test, t = 2.3, p = 0.03, site A: 10.2 
years, site B: 18.5 years). Additional demographic information is pro-
vided in Table 1. After initial scan review by clinicians, three patients 
were excluded from further analysis: One patient had 64mT image ar-
tifacts suspected to be caused by a large nearby metal structure (Fig. S2) 
and two patients did not meet the MS diagnostic criteria of having lesion 
dissemination in space (DIS) (Thompson et al., 2018). All other 64mT 
and 3T images were deemed to be of sufficient quality and free from 
interpretation-limiting motion artifacts. All subsequent analyses are 
based on the remaining 33 patients (Fig. 1). 

3.2. Manual measurements 

MS lesions on 64mT are characterized by T1w hypointensity and 
T2w/T2-FLAIR hyperintensity, similar to 3T imaging (Fig. 2). At 64mT, 
lesions were identified by at least one rater in 94% (31/33) of patients 
with confirmed lesions on 3T imaging. In one patient, only one rater 
identified lesions at 64mT; all other low-field ratings were concordant. 
The largest and smallest lesions in each scan were identified, and the 
Dmax was recorded. The 64mT scanner showed 100% sensitivity for 
detecting WMLs when there was at least one lesion with Dmax > 5 mm 
(31/33 patients, 94%). Across patients, there was no significant differ-
ence in Dmax for the largest lesions measured at 64mT (15.1 ± 5.9 mm) 
and 3T (14.8 ± 6.6 mm) (Fig. 3A). However, the mean Dmax for the 
smallest detected WML was significantly larger (paired t-test, t = 19.6, p 
< 0.001) on 64mT (5.7 ± 1.3 mm) compared to 3T (2.1 ± 0.6 mm) 
(Fig. 3B). There was no effect of scan site on Dmax measurements, 
however there was a significant difference between rater 1 (2.3 ± 0.5 
mm) and rater 2 (1.9 ± 0.6 mm) for the smallest lesion detected at 3T 
(paired t-test, t = 4.8, p < 0.001). No gadolinium enhancing WMLs were 
seen on 3T or 64mT imaging. 

3.3. Interrater reliability 

The smallest and largest lesion in each scan were independently 
measured by two raters to assess interrater reliability (Fig. 3). The ICC 
for each patient’s largest lesion measured at 3T and 64mT was 0.77 (CI 
= [0.58–0.88]) and 0.91 (CI = [0.83–0.96]) respectively, indicating 
high interrater reliability for large lesions on both scanners (Fig. 3A). 
Similarly, when measuring each patient’s smallest lesion there was a 
significant relationship between raters at both 3T (ICC = 0.62, CI =
[0.12–0.83]) and 64mT (ICC = 0.66, CI = [0.4–0.82]) (Fig. 3B). This 
indicates that measurements made by raters had a similar degree of 
reliability at 3T and 64mT. Of note, the average smallest lesions detected 
(3T: 2.1 ± 0.6 mm, 64mT: 5.7 ± 1.3 mm) approached the slice thickness 
for the respective sequences (3T: 1 mm, 64mT: 5 mm). 

3.4. Quantifying image quality 

To assess low-field image quality, we calculated lesion conspicuity, 
SNR, and CNR to quantify lesion visibility and the variance of the Lap-
lacian to quantify image blurring. In an analysis run on a subset of 10 
patients, we found lesion conspicuity was preserved in the T2-FLAIR 
low-field images (Fig. 4A, paired t-test, t = 0.14, p = 0.89). However, 
we found that SNR and CNR, which account for background noise, were 
both significantly lower in 64mT imaging (SNR: Fig. 4B, paired t-test, t 
= 4.36, p = 0.00184, CNR: Fig. 4C, paired t-test, t = 4.89, p < 0.001). 
This suggests there is similar lesion to tissue contrast between the low- 
field and high-field sequences, but more noise in low-field images. 
When assessing the relative focus of paired images across all subjects, we 
found low-field imaging was significantly more blurred than 3T images 
that were registered and resliced to match 64mT resolution (Fig. 4B-D). 
This effect was seen in T2-FLAIR (paired t-test, t = 11.6, p < 0.001), T1w 
(paired t-test, t = 9.5, p < 0.001), and T2w (paired t-test, t = 19.5, p <
0.001) acquisitions. Interrelated potential causes of blurring at low field 
include smaller matrix size/lower resolution, undersampling, patient 
motion, and high echo train length. 

3.5. Total lesion volume estimates 

To obtain more objective measures of lesion detection, 3T and 64mT 
image sets were processed with an automated lesion segmentation al-
gorithm. Initial qualitative review of segmentation overlays revealed 
similar patterns of lesion segmentation, particularly with respect to 
large periventricular lesions (Fig. 5). Quantitative comparisons indi-
cated that estimates of total lesion volume were highly correlated (r =
0.89, p < 0.001) (Fig. 6A). Mean lesion volume estimates were not 
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Fig. 3. Manual lesion size measurements and interrater reliability. Raters from each site independently measured the maximum diameter (Dmax) of the smallest 
lesion (Sm) and largest lesion (Lg) in 3T and 64mT imaging for all patients. (A) For the largest lesion measurements, there was no significant difference between 
raters at 3T (t = 1.3, p = 0.19) or 64mT (t = 1.2, p = 0.23); additionally, there was no difference between 3T and 64mT measurements (t = 0.04, p = 0.97). (B) For 
the smallest lesion measurements, there was a significant difference between raters for 3T measurements (t = 4.83, p < 0.001) although 64mT measurements were 
not significantly different (t = 1.67, p = 0.11); additionally, the diameter of the smallest lesion was significantly lower (t = 19.6, p < 0.001) when measured on 3T 
(mean 2.1 mm) compared to 64mT (mean 5.7 mm). (C) Across all lesions there was a strong correlation (r = 0.90, p < 0.001) between raters. There was significant 
intraclass correlation for the largest lesion at 3T (ICC = 0.77, CI = [0.58–0.88]), largest lesion at 64mT (ICC = 0.91, CI = [0.83–0.96]), smallest lesion at 3T (ICC =
0.62, CI = [0.12–0.83]), and smallest lesion at 64mT (ICC = 0.66, CI = [0.4–0.82]), indicating a high degree of agreement between rater measurements for both 3T 
and 64mT. 

Fig. 4. Quantitative comparison of lesion visibility and image blurring at 3T and 64mT. (A) Lesion conspicuity measures the intensity of a lesion relative to 
background tissue. Lesion conspicuity for the largest lesion was measured on 3T (light blue) and 64mT (dark blue) T2-FLAIR images for 10 patients. There was no 
significant difference in conspicuity between the scanners (paired t-test, t = 0.14, p = 0.89). (B) SNR compares mean lesion intensity to background noise. SNR was 
significantly higher in 3T images in the subset of 10 patients (paired t-test, t = 4.36, p = 0.00184). (C) Similarly, CNR, which compares the contrast between lesion 
and white matter to background noise, was also significantly higher in 3T imaging (paired t-test, t = 4.89, p < 0.001). (D-F) The variance of the Laplacian is a 
measure of image focus, with larger values indicating clearer images. We registered and resliced 3T to 64mT images and calculated this focus feature for both images. 
This process was carried out for (D) T2-FLAIR, (E) T1w, and (F) T2w sequences. Four subjects without T2w sequence pairs were excluded from panel D. For all 
sequences, low-field images were significantly more blurred than their resliced 3T counterparts (paired t-tests, T2-FLAIR: t = 11.6, p < 0.001, T1w: t = 9.5, p <
0.001, T2w: t = 19.5, p < 0.001). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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significantly different (paired-t-test, t = 1.0, p = 0.32) between 3T (11.9 
± 16.5 ml) and 64mT (13.5 ± 10.2 ml) images. Upon visual inspection, 
however, some discrepancies were noted, such as significant false- 
positive detections on 64mT imaging in veins and peripheral cortical/ 
subcortical artifacts (Fig. S3). 

A Bland-Altman plot for agreement between 3T and 64mT lesion 
volume estimates is presented in Fig. 6B. The mean difference was 1.6 ml 
with a 5.2 ml standard error of measurement, and the 95% limits of 
agreement were − 19.0 to 15.9 ml. There was a significant correlation (r 
= 0.74, p < 0.001) between pairwise differences and averages, indi-
cating that compared to 3T, the 64mT segmentations overestimate low 
lesion volumes and underestimate high lesion volumes. Visual inspec-
tion revealed that false-positives contributing to over-segmentation 
were predominantly due to flow-related high signal intensity in veins, 
hyperintensity in non-lesion structures (such as the pineal gland), and 
areas of artifactual peripheral high signal in cortical/subcortical tissue 
on 64mT FLAIR sequences (Fig. S3). 

3.6. Automated segmentation overlap 

Across patients, there was a wide range in overlap between 3T and 
64mT segmentation pairs (Dice: mean = 0.23, standard deviation =
0.21, max = 0.65, min = 0), with automated segmentations overlapping 
in 91% (30/33) of patients. Potential factors contributing to the overall 
low Dice score include false-positives and false-negatives on 64mT or 3T 
segmentations, registration errors between 64mT and 3T imaging, and 
differences in image resolution. Two patients had no segmentation 
overlap and one patient was excluded because the overlapping region 
was a hyperintense pineal gland, not a WML (Fig. S3 panel D). All three 
patients without lesion overlap were in the bottom 12% of total lesion 
volume, indicating algorithm performance may be poor for subjects with 
low lesion burden. Larger lesion size is frequently associated with higher 
Dice scores (Oguz et al., 2018). We found in our dataset that total lesion 

volume at 3T was highly correlated with Dice scores (r = 0.81, p <
0.001) (Fig. S4). Taken together, these results indicate that lesion seg-
mentation did not perform as well when patients had a low lesion 
burden. To characterize the full range of segmentation quality across the 
dataset, Fig. S5 illustrates segmentations from each quartile of the Dice 
distribution. 

3.7. Lesion sensitivity and false discovery 

In each segmentation, individual lesions were identified using 
connected-components analysis (Boudraa et al., 2000). For each lesion, 
volume and mean intensity were quantified. The true-positive rate (TPR) 
and false-discovery rate (FDR) were calculated across a range of lesion 
size and intensity thresholds (Fig. 7). The TPR increases dramatically 
with lesion size, reaching 93% for lesions > 1 ml and 100% for lesions >
1.5 ml. The FDR decreases with lesion size, reaching 36% for lesions > 1 
ml, 22% for lesions > 1.5 ml, and 3% for lesions > 2.5 ml. TPR also 
increases with mean lesion intensity, indicating that lesion intensity 
influences sensitivity; however, FDR remains high (>75%) indicating a 
large number of false positive detections across intensity thresholds. 
Examples of false positive detections can be seen in Fig. S3. 

3.8. Super-resolution imaging 

We explored super-resolution imaging approaches using two addi-
tional patients and one control participant. In one patient, a 3x4x5 mm 
(0.06 ml) subcortical lesion was evident near the left middle frontal 
gyrus on 3T (Fig. 8A) but not in a single axial low-field acquisition 
(Fig. 8D). After multi-acquisition volume averaging of 3 to 8 acquisi-
tions, the lesion became detectable on the low-field system, and lesion 
intensity relative to ipsilateral white matter steadily increased with 
additional acquisitions. With 8 vol averages, there was a 53% increase in 
lesion conspicuity, which was equivalent to 72% of conspicuity at 3T 

Fig. 5. Automated lesion segmentations at 3T and 
64mT overlap. (A) 64mT FLAIR images for three 
cases (left) with automated lesion segmentations 
generated from the 64mT images using MIMoSA 
overlaid (right). (B) Corresponding 3T FLAIR images 
for the same three cases (left) with 3T based seg-
mentations (right). Patients from top to bottom are a 
51-year-old female with RRMS, 44-year-old female 
with RRMS, and 71-year-old female with RRMS. All 
images were coregistered to 64mT T1-weighted 
images for comparison. Segmentations generated 
from 64mT and 3T scanners show similar patterns, 
although examples of false-positive segmentation in 
the sagittal sinus at 64mT can be seen in the top and 
bottom patients.   
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(Fig. 8B). 
In the second patient, a 0.12 ml right periventricular lesion could be 

seen at 3T (Fig. 9A) and in a single axial low-field acquisition (Fig. 9B). 
The lesion could be better appreciated by aligning separate axial, 
sagittal, and coronal acquisitions (Fig. 9C). After multi-acquisition vol-
ume averaging of 3 orthogonal acquisitions, the lesion in the super- 
resolution image had a similar appearance to the coregistered axial, 
sagittal, and coronal acquisitions (Fig. 9D). Lesion conspicuity was 
higher in the 3T image (0.18) compared to the 3 orthogonal acquisitions 
(axial = 0.11, sagittal = 0.09, coronal = 0.13). Super-resolution image 
conspicuity was 0.11 with linear interpolation and 0.13 with nearest- 
neighbor interpolation, comparable to the original acquisitions. 
Although conspicuity was not higher in the super-resolution image for 
this example, resolution was increased to 1.6 mm isotropic, facilitating 
multi-planar review in a single volume. 

In the control participant with incidental WMLs, we generated 
isotropic T1w, T2w, and T2-FLAIR super-resolution images (supple-
mental Fig. S7-9) using multi-acquisition volume averaging of three 

orthogonal acquisitions of each sequence (T1w = 16:50 min, T2w =
7:13 min, T2-FLAIR = 17:07 min, total scan time = 41:10 min, full scan 
parameters in supplementary Table S1). The longest individual acqui-
sition was 6:03 min, making collection of these images more clinically 
feasible. 

4. Discussion 

In this study, we compared manual and automated lesion detection 
in paired 3T and portable 64mT brain MRI scans from patients with MS 
at two sites. On visual inspection of 64mT images, neuroradiologists 
were able to detect white matter lesions in 94% (31/33) of patients with 
discernable 3T lesions. An automated lesion segmentation algorithm 
detected overlapping lesions in 91% (30/33) of patients, and estimates 
of total lesion volume were highly correlated between 3T and 64mT 
scans (r = 0.89, p < 0.001). We investigated effects of lesion size on 
manual and automated detection, causes of false positive automated 
detections, and super-resolution imaging to increase resolution and 

Fig. 6. Total lesion volume measured at 3T and 64mT shows agreement. (A) 3T and 64mT total lesion volume estimates were strongly correlated (Pearson’s cor-
relation, r = 0.89, p < 0.001). However, when compared to y = x there is a clear bias towards over-segmentation at low levels of total lesion volume. (B) A Bland- 
Altman plot illustrates the level of agreement between 3T and 64mT segmentation volumes (bias − 1.6 ml, standard error of measurement = 5.2 ml, 95% limit of 
agreement − 19.0 to 15.9 ml). The Pearson’s correlation (r = 0.74, p < 0.001) in dark blue further indicates over-segmentation at 64mT when lesion volume is low 
and under-segmentation when lesion volume is high. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.) 

Fig. 7. Lesion size and intensity influence detection rate. (A) The detection rate, or true positive rate (TPR), steadily increases with lesion size, with 93% detected at 
> 1 ml, and all lesions >1.5 ml being detected. The false discovery rate (FDR) decreases with lesion size, with 36% false discovery rate at > 1 ml, 22% at > 1.5 ml, 
and 3% at > 2.5 ml. Though the x-axis was limited to 4 ml for illustrative purposes, lesions > 20 ml were found in the dataset. (B) To analyze the relationship between 
lesion intensity and detection rate, image intensity values were first normalized using White Stripe (Shinohara et al., 2014). While detection rate increases as mean 
lesion intensity increases, the FDR remains high (>75%) across lesion intensities. The high number of false positive detections was driven by hyperintense veins and 
peripheral signal artifacts, as seen in Fig. S3. 
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lesion conspicuity at low-field. Our results suggest that portable 64mT 
imaging could have diagnostic utility in the context of MS, but further 
optimization and testing are needed. 

Our efforts are motivated by recent advances in hardware develop-
ment and reconstruction software that address the reduced SNR and 
resolution associated with low-field MRI. Though the earliest MRI 
scanners were low field strength, commercial systems have predomi-
nantly trended towards higher field strengths, with low-field systems 
relegated to niche applications (Marques et al., 2019; Campbell- 
Washburn et al., 2019; O’Reilly et al., 2021). Currently, there is 
renewed commercial interest in developing low-field MRI systems 
(Sarracanie et al., 2020), including Hyperfine’s portable 64mT Swoop 
system, Synaptive Medical’s 0.5T Evry system, and Siemens’s 0.55T 
Magnetom Free.Max system, all of which have received FDA clearance 
since 2020. As older and more recent literature indicate that very low- 
field systems can detect relatively subtle brain pathologies, including 
demyelinating disease (Orrison et al., 1991; Mateen et al., 2021; Arnold 
et al., 2022), we sought to investigate the sensitivity of the FDA-cleared 
portable 64mT MRI for MS lesions. 

We found that clinicians could identify lesions on 64mT scans in 94% 
of patients with discernible lesions at 3T. Not surprisingly, the smallest 
detected lesion size was significantly larger at 64mT (5.7 ± 1.3 mm) 
compared to 3T (2.1 ± 0.6 mm). Lesion conspicuity depends not only on 
the inherent contrast between a lesion and surrounding tissue but also 
on the relative size or volume of the lesion with respect to the imaging 
resolution. Thus, imaging parameters should be optimized to maximize 
lesion-to-background contrast, although this can be challenging as MS 
lesions are known to have varying levels of myelination and tissue 
composition. Alternatively, one can improve the imaging resolution to 
reduce partial volume effects for better visualization of small lesions. 
Even though our 64mT sequences were not tailored for MS WML 
detection and might be optimized further, we found the lesion-to- 
background contrast of larger lesions to be comparable to 3T. Spatial 
resolution seemed to be the limiting factor for detecting small lesions, as 

the average voxel volume of the FLAIR images is about 13 times larger at 
64mT than at 3T. Such low resolutions are used to compensate for the 
loss of SNR, which scales inversely with field strength and particularly 
accentuates the trade-off between resolution and scan time at low field. 
We used general purpose 64mT protocols developed by the scanner 
manufacturer to provide reasonable SNR and resolution with scan times 
for each sequence of <10 min. 

Importantly, resolution can be increased through longer scan times 
or more acquisitions with averaging. We demonstrate this in our work 
combining multiple axial acquisitions, where we were able to resolve a 
lesion that was not evident on individual scans. The current limitations 
on clinical scan time are workflow constraints and patient motion and 
discomfort. However, the lower operational costs and decreased claus-
trophobia of some lower field strength devices may make longer scan 
sessions feasible. Advantages of acquiring multiple acquisitions instead 
of a single long acquisition include that information is obtained from 
each separate scan, any individual motion-degraded scan can be dis-
carded, and scanning can continue as needed, tolerated, or to fill the 
time allowed. In addition, repositioning or a rotating field of view can 
take advantage of partial volume to increase resolution. An elegant 
version of this approach that we also illustrate combines orthogonal 
anisotropic images for super-resolution scans (Deoni et al., 2022). This 
strategy also has the advantage that individual MS lesions may be cross 
referenced between the original separate acquisitions or better seen in 
one plane or another due to their orientation, for example lesions 
perpendicular to the ventricular margin. Finding the right balance of 
resolution, sampling strategy, averaging, orientation and acquisition 
time will be an important goal of future work. 

Whether gadolinium can be used to assess contrast-enhancing lesions 
on the 64mT device remains unknown. In our study cohort, we saw no 
contrast-enhancing lesions at 3T or 64mT, and contrast was not sepa-
rately administered for low field scans. At lower field strengths, already 
short tissue T1-relaxation times reduce the benefit from T1 shortening 
contrast agents. A higher gadolinium dose (Desai and Runge, 2003), 

Fig. 8. Multi acquisition image averaging can increase lesion conspicuity and resolution. This figure depicts a 3x4x5 mm (0.06 ml) subcortical left frontal white 
matter lesion in a 53-year-old woman with stable RRMS and compares 64mT FLAIR images generated from multi-acquisition image averaging to 3T imaging. The 
lesion is readily apparent on 3T imaging (A); however, it could not be discerned in a single 64mT acquisition (D). Volume averaging of multiple acquisitions with 
repositioning between scans did reveal the lesion on the low-field system (B & C). The lesion was discernible for N ≥ 3 multi acquisition averages. The lesion was 
manually segmented on 3T, and the ratio of mean lesion intensity to ipsilateral adjacent white matter (WM) is given as an estimate of lesion conspicuity (red dot). In 
64mT imaging, the ratio steadily increases with additional acquisition averages (blue dots). With 8 vol averages, there was a 53% increase in lesion conspicuity. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

T.C. Arnold et al.                                                                                                                                                                                                                               



NeuroImage: Clinical 35 (2022) 103101

10

alternative higher relaxivity contrast agents (Desai and Runge, 2003; 
Bendszus et al., 2020), optimization of post-injection scan timing, and 
further pulse sequence optimization for contrast may be useful for low- 
field MRI. However, even at higher doses, low-field devices may have 
reduced sensitivity to contrast-enhancing lesions (Ertl-Wagner et al., 
2001). 

With clear advantages in resolution and scan time, gadolinium 
sensitivity, and brain and spinal cord imaging, high field MRI should at 
present remain the tool of choice for confirming and following MS. 
Where high field MRI is available, low field MRI should be viewed as 
complementary and not a replacement. Given its lower cost and ease of 
use, the most promising role for portable MRI in this context may be 
follow-up point-of-care imaging in established or suspected cases, where 
confirmatory high field imaging can be obtained when needed. In clin-
ically isolated syndrome, earlier or more frequent portable MRI could 
support an MS diagnosis if able to show dissemination in time (Rovira 
et al., 2009). For established MS, portable MRI could permit earlier or 
more frequent imaging either for clinical changes, assessment of therapy 
response, or detection of treatment complications, such as progressive 
multifocal leukoencephalopathy (Scarpazza et al., 2020). Importantly, 

unenhanced imaging alone captures virtually all progressive disease on 
3T MRI (Mattay et al., 2018; Sadigh et al., 2019; Eichinger et al., 2019). 
Though this is facilitated by high resolution and automated subtraction 
methods at 3T, if 64mT imaging can detect one or more new lesions or 
lesions of a threshold size felt to be clinically significant, then potentially 
lower sensitivity to gadolinium will be less of a detriment. How exactly 
to integrate low-field MRI into the longitudinal follow-up of MS patients 
requires additional research. Further studies should assess low-field MRI 
sensitivity for new or growing lesions over time. 

Lower costs and infrastructure requirements of portable low-field 
MRI could expand clinical options for patients in low and middle in-
come countries and rural areas with little access to MRI (Maru et al., 
2010). Diagnostic utility of portable MRI in such settings will have to 
address questions of sensitivity, disease prevalence, and access to ther-
apeutics. Patients with traditional relative MRI contraindications, 
including metal implants, pacemakers, and claustrophobia, may also 
benefit from reduced device interactions and open design at lower field 
strengths (Klein, 2016). While this will require additional safety de-
terminations, recent work demonstrates that  pacemaker leads and 
metallic guidewires can be safely imaged at 0.55T with minimal 
radiofrequency-induced heating (Campbell-Washburn et al., 2019). 
Additionally, most MS patients will experience mobility impairment, 
which can impact quality of care (Sutliff, 2010). Mobile MRI units could 
bring imaging to patients, providing otherwise unavailable service to 
sparsely populated areas and individuals who cannot travel (Shen et al., 
2021; Deoni et al., 2022; Deoni et al., 2021). 

Low-field MRI also offers the potential to conduct large-scale studies 
or screening of high-risk individuals at lower cost. In MS, high-risk 
asymptomatic family members have an increased incidence of neuro-
logical dysfunction and neuroimaging findings associated with MS (Xia 
et al., 2017). Additionally, patients with radiologically isolated syn-
drome (i.e., patients who meet MS criteria radiologically but are clini-
cally asymptomatic) are known to be at high risk for development of 
clinical MS (Hosseiny et al., 2020). However, studies of asymptomatic 
individuals require large sample sizes, which cause recruitment and cost 
restraints. The reduced cost of low-field MRI could significantly impact 
the type of population based and longitudinal studies available to re-
searchers by increasing sample sizes and allowing for more distributed 
recruitment outside academic medical centers (Deoni et al., 2022; Deoni 
et al., 2022). While making novel study designs (such as enrolling 
disabled patient populations) feasible, there are significant challenges, 
including lower resolution and reduced sensitivity, which must be 
addressed when planning such studies. 

While machine learning methods for MS lesion segmentation have 
yet to consistently outperform manual segmentation, they reduce the 
cost, time, and subjectivity associated with manual labeling (Valcarcel 
et al., 2018; Valcarcel et al., 2018). Combining low-field MRI with 
automated techniques can further address barriers to MRI access and 
image interpretation. Additionally, automated segmentation could serve 
as a biomarker for determining eligibility or endpoints in clinical trials 
or as a starting point for further manual refinements. In our work, the 
average Dice overlap between automated 3T and 64mT segmentations 
was only 0.23, with three subjects having no overlap. The low overlap 
was driven in part by peripheral artifacts and flow-related venous 
hyperintensities on 64mT FLAIR imaging, which also resulted in a 
higher number of false positives (22% for lesions > 1.5 ml) despite 
comparatively high lesion sensitivity (100% for lesion > 1.5 ml). Pulse 
sequences or reconstruction could be further optimized to remove arti-
facts and increase resolution. The 64mT system uses a transmit/receive 
head coil and 3D acquisitions without modifications to reduce flowing 
spins. More practically, high-field lesion detection algorithms can be 
retrained or tuned to address differences in image quality and tissue 
contrast between field strengths. 

The current study has several limitations. Our findings suggest that 
portable 64mT FLAIR scans are sensitive for white matter lesions in MS 
and more generally, but we focused on patients with established MS and 

Fig. 9. Super-resolution images generated from orthogonal slice directions. 
This figure demonstrates a super-resolution approach using anisotropic image 
acquired in orthogonal slice directions (axial, sagittal, and coronal). The patient 
is a 69-year-old man with stable RRMS. (A) 3T FLAIR imaging demonstrates a 
right periventricular lesion (conspicuity = 0.18) in the three orthogonal planes. 
(B) 64mT imaging of the same lesion (conspicuity = 0.11) using an axial FLAIR 
acquisition with sagittal and coronal reformatted images. (C) Corresponding 
axial, sagittal, and coronal slices from separate acquisitions in each direction 
(conspicuity: axial = 0.11, sagittal = 0.09, and coronal = 0.13) registered to the 
axial image by affine transformation. (D) Corresponding super-resolution im-
ages generated by averaging the coregistered axial, sagittal, and coronal ac-
quisitions in C (conspicuity: linear = 0.11, nearest-neighbor = 0.13). 
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did not assess the specificity of MS lesion detection relative to other 
disease processes or normal controls. In addition, sensitivity at the pa-
tient or lesion level will depend on the lesion volume and size distri-
bution (Commowick et al., 2018). We used automated 3T segmentation 
as ground truth, though complete labeling accuracy is challenging even 
at high field, and we considered lesion overlap and volume rather than 
lesion counts. We only evaluated a single lesion segmentation method, 
and results may not generalize to other algorithms. Indeed, our findings 
indicate that both image acquisition strategies and segmentation 
methods can be further optimized to increase the sensitivity and accu-
racy of low field lesion detection for larger prospective studies. More 
accurate SNR measurements require multiple acquisitions (Dietrich 
et al., 2007), which were not available in this study design. We did not 
assess longitudinal imaging or the ability to detect new or active lesions. 
Gadolinium was only administered at one of the two sites and was not 
administered directly for 64mT imaging. As discussed above, given that 
none of the patients in our cohort had gadolinium-enhancing lesions on 
their high-field scans and the post-contrast delay before each 64mT scan, 
we cannot assess whether contrast enhancing lesions can be seen at 
64mT. 

5. Conclusion 

In conclusion, increased imaging capabilities and potential porta-
bility of low-field MRI systems warrants their re-evaluation across a 
range of pathologies and indications. We found that a portable 64mT 
scanner was sensitive to brain WMLs in MS patients and that an auto-
mated algorithm designed for 3T image segmentation could be applied 
to the 64mT data. Although additional work will be needed to evaluate 
portable low-field MRI systems and their capacity to carry out specific 
clinical functions, our findings suggest promising avenues to more 
accessible imaging technologies for MS around the world. 
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