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Abstract

Cellular senescence occurs in response to diverse stresses (e.g., telomere shortening, DNA 

damage, oxidative stress, oncogene activation). A growing body of evidence indicates that 

alterations in multiple components of endocytic pathways contribute to cellular senescence. 

Clathrin-mediated endocytosis (CME) and caveolae-mediated endocytosis (CavME) represent 

major types of endocytosis that are implicated in senescence. More recent research has also 

identified a chromatin modifier and tumor suppressor that contributes to the induction of 

senescence via altered endocytosis. Here, molecular regulators of aberrant endocytosis-induced 

senescence are reviewed and discussed in the context of their capacity to serve as senescence-

inducing stressors or modifiers.
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1. Introduction

Cellular senescence is characterized by: i) irreversible cell cycle arrest, ii) altered 

metabolism iii) altered morphology, and iv) the senescence-associated secretory phenotype 
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(SASP) that involves secretion of multiple cytokines, chemokines and growth factors 

(Hernandez-Segura et al., 2018; Ito et al., 2017; Rodier and Campisi, 2011). Senescence is 

thought to be beneficial in tissue remodeling in wound healing and to suppress 

tumorigenesis (Rodier and Campisi, 2011). However, cellular senescence also contributes to 

aging-related diseases (Baker et al., 2011; Childs et al., 2015; He and Sharpless, 2017; 

Munoz-Espin and Serrano, 2014). Senescence can also promote tumor progression via SASP 

(Lee and Schmitt, 2019; Rodier and Campisi, 2011). Senescence thus seems to play distinct 

roles depending on biological contexts.

Depending on cell types and context, senescence is broadly classified into replicative 

senescence (RS) and damage- or stress-induced premature senescence (SIPS) (Ben-Porath 

and Weinberg, 2005; Toussaint et al., 2000). The observation on the growth arrest of long-

term cultured fibroblasts led to the discovery of RS (Hayflick and Moorhead, 1961) in which 

telomere erosion is a triggering factor. By contrast, SIPS occurs relatively rapidly, typically a 

few days, in response to oncogenic or oxidative stress. Once induced, these two forms of 

senescence show similar features as described above. Senescence also occurs 

physiologically during embryonic development where it is induced by TGFβ/Smad2/3 

signaling and leads to elimination of unneeded cells (Munoz-Espin et al., 2013). Senescence 

of endothelial cells is also seen during angiogenic remodeling of the vasculature, where it is 

important for pruning/normalization after robust angiogenesis (Binet et al., 2020).

Endocytosis is an essential biological process that transports a wide range of transmembrane 

receptors and their cargo from the cell surface to the interior, where they can be recycled to 

the plasma membrane, targeted to the lysosome for degradation, or targeted to other 

locations such as the Golgi or nucleus for specific functions (Sorkin and von Zastrow, 2009). 

Endocytosis has been extensively studied for signaling receptors such as epidermal growth 

factor (EGF) receptor, carriers such as transferrin receptors and adhesion receptors such as 

integrins and cadherins. Importantly, endocytosis of many receptors is an essential element 

of their signaling functions. For example, growth factor and cytokine receptors transduce 

distinct signals depending on their localization on the plasma membrane or endocytic 

vesicles (Sorkin and von Zastrow, 2009; Wang et al., 2002).

The two best characterized endocytic routes are clathrin- (CME) and caveolae-mediated 

(CavME) (Cremona and De Camilli, 1997; Doherty and McMahon, 2009; Nabi and Le, 

2003; Vieira et al., 1996). Caveolin-1 (Cav1), the major structural protein of CavME in non-

muscle cells, is upregulated in senescent cells (Park et al., 2000) whereas amphiphysin-1, a 

membrane curvature-generating protein critical in CME, was downregulated (Park et al., 

2001). Disrupting endocytosis directly by treating with dynasore, a dynamin inhibitor that 

blocks multiple endocytic mechanisms, or by genetic approaches using dominant negative 

forms of dynamin1, Rab5 and Rab7, induced cellular senescence, suggesting a causal 

relationship between endocytosis and senescence (Kang et al., 2020; Olszewski et al., 2014; 

Rajarajacholan et al., 2013). This review highlights the role of endocytic components and 

their regulatory mechanisms in cellular senescence.
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2. Clathrin-mediated endocytosis in senescence

CME occurs through recruitment and regulation of a group of adapter proteins that assemble 

in distinct steps and then mediate invagination and scission of the coated vesicle. These 

include amphiphysin 1 and 2, founding members of the N-BAR domain family that both 

sense and induce membrane curvature (Dawson et al., 2006; Peter et al., 2004). 

Amphiphysins recruit the dynamin GTPases that constrict the neck of the mature pit to 

induce scission (David et al., 1996), thus are essential for CME across a wide range of 

biological systems (Gallop, 2020; Wu et al., 2009).

Senescent fibroblasts specifically downregulate amphiphysin 1 among the CME 

components, coincident with reduced endocytosis of transferrin receptors (Park et al., 2001). 

Restoration of amphiphysin 1 rescued endocytic capacity in senescent cells (Park et al., 

2001), though its contribution to senescence was not established. A recent study found that 

the reduction in amphiphysin was due to its cleavage by calpain and that blocking this step 

inhibited senescence (Shin et al., 2020). These results provided stronger support for reduced 

CME as a functionally important step in senescence. Amphiphysin cleavage in turn 

depended on events at integrin-mediated adhesions that involved the βPIX/GIT complex.

2.1. The βPIX/GIT complex in senescence

Beta PAK-interacting nucleotide exchange factor (βPIX/ARHGEF7) activates Rac1 and 

Cdc42 GTPases (Manser et al., 1998). βPIX binds tightly to G protein–coupled receptor 

kinase-interacting proteins 1 and 2 (GIT1/2) (Manser et al., 1998; Premont et al., 1998), 

adapter proteins with ArfGAP activity. These complexes principally localizes at cell-matrix 

adhesion sites, focal adhesions (FAs), via an association with paxillin, where it regulates cell 

signaling, FA turnover and cell motility (Frank and Hansen, 2008; Kuo et al., 2011; Premont 

et al., 2004; Zhao et al., 2000; Zhou et al., 2016).

Previous studies demonstrated that βPIX and GIT mainly control FA disassembly (Kuo et 

al., 2011; Wilson et al., 2014). This process also involves microtubule targeting (Ezratty et 

al., 2005), integrin endocytosis (Chao and Kunz, 2009; Ezratty et al., 2009) and calpain-

mediated proteolysis of FA proteins (Chan et al., 2010; Cortesio et al., 2011; Franco et al., 

2004). Analysis of these proteins in senescent cells revealed a new link between these events 

(Shin et al., 2020). First, to understand whether reduced βPIX expression contributes to the 

senescent phenotype, both loss-of-function and gain-of-function studies were performed. 

Silencing βPIX in both cultured human diploid fibroblasts and in mouse lung induced 

senescence; conversely, overexpressing βPIX attenuated age-dependent senescent 

characteristics (Shin et al., 2020). GIT knockdown also induced senescence in cultured 

fibroblasts, though this was not confirmed in vivo (Shin et al., 2020).

When cellular βPIX and GIT are at normal levels, FA disassembly occurs at a regulated 

speed, which ensures physiological adhesion and migration (Fig. 1 left). However, βPIX 

decreases in senescent cells mediated by an unknown mechanism, which results in increased 

calpain cleavage of amphiphysin (Fig. 1 right panel, ①②). This occurs through decreased 

GIT1 levels, which destabilizes a paxillin-calpain complex that limits its activity toward 

amphiphysin. Declining βPIX in senescent cells thus inhibits CME by inactivating 
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amphiphysin. Active β1 integrin is a key cargo such that senescent cells retain surface active 

integrins (Fig. 1 right panel, ③). Senescent cells are thus hyper-adhesive, with persistent 

activation of the FAK, Rac1 and the NADPH oxidase (NOX) complex (Fig. 1 right panel, 

④). Reactive oxygen species (ROS) generated through this pathway induce cellular 

senescence. This study thus provides new connections between the morphological and 

biochemical aspects of senescence.

2.2. The tumor suppressor ING1 in senescence

The ING family of tumor suppressor genes (ING1-5) regulates cell proliferation, DNA 

repair, apoptosis and senescence (Archambeau et al., 2019; Ludwig et al., 2011). All 

members exhibit tumor suppressor function via modulation of chromatin structure, however, 

ING1 and ING2 are the only two members found to induce senescence (Abad et al., 2011; 

Garkavtsev and Riabowol, 1997; Li et al., 2011; Pedeux et al., 2005; Rajarajacholan et al., 

2013; Soliman et al., 2008). ING1 has four alternative splice isoforms with p47ING1a and 

p33ING1b the major forms in human tissues. Consistent with tumor suppressive function, 

ING1 expression is frequently decreased in tumors (Ohmori et al., 1999; Oki et al., 1999; 

Toyama et al., 1999) whereas both ING1a and ING1b are upregulated in senescent 

fibroblasts (Garkavtsev and Riabowol, 1997; Soliman et al., 2008) but the mechanism 

regulating their expression has not been described. Overexpression of ING1a or ING1b 

induced senescence in human fibroblasts (Abad et al., 2011; Goeman et al., 2005; 

Rajarajacholan et al., 2013; Soliman et al., 2008). Conversely, downregulation of ING1b by 

antisense RNA attenuated replicative senescence (Garkavtsev and Riabowol, 1997) and 

oncogene-induced senescence (Abad et al., 2011). It remains to be determined whether 

ING1a has a similar role. ING1b-induced senescence is p53 dependent (Fig. 2 ①) (Abad et 

al., 2011) whereas p53-dependence of ING2 varied between studies (Kumamoto et al., 2008; 

Pedeux et al., 2005). Isoform expression during replicative senescence also varies in 

different systems (Unoki et al., 2008). Downstream mediator(s) for ING2 are currently 

unknown.

Mice lacking both p31ING1 (p47ING1a in human) and p37ING1 (p33ING1b in human) 

displayed reduced cell proliferation and apoptosis, and increased susceptibility to 

tumorigenesis (Kichina et al., 2006). Unexpectedly, there was no difference in the lifespan of 

MEFs derived from ING1-deficient vs. wild type mice. In contrast, MEFs from ING1-

deficient mice generated by gene trap technology demonstrated impaired oncogenic stress-

induced senescence (Abad et al., 2007). The reason for the seemingly opposite findings from 

two different types of knockout mice is unclear.

The function of ING1a as an epigenetic regulator prompted analysis of genes whose 

expression is up- or downregulated. Several endocytosis-related genes were up-regulated 

(Rajarajacholan et al., 2013), including, most notably, rapid induction of intersectin 2 

(ITSN2) by >25-fold (Fig. 2 ②). ITSN2 is a multidomain scaffolding protein that facilitates 

clathrin-coated pit assembly through an interaction with epsin, a clathrin pit component, and 

with AP2, a clathrin adaptor complex (Herrero-Garcia and O’Bryan, 2017; Okamoto et al., 

1999). ITSN2 can also bind dynamin and synaptojanin, which are required to pinch off 

clathrin vesicles (Okamoto et al., 1999). Overexpression of ING1a drastically reduces 
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endocytosis of EGFRs in parallel with onset of the senescent phenotype through the Rb-E2F 

pathway (Rajarajacholan et al., 2013; Rajarajacholan and Riabowol, 2015) (Fig. 2 ③④), 

though other cargos remain to be tested. Other methods to block endocytosis yielded similar 

senescent features (Rajarajacholan et al., 2013), strengthening the link. How ING1a affects 

endocytosis is unknown but overexpression of ITSN2 seems a likely mediator, which might 

inhibit endocytosis via sequestering interacting proteins in inactive complexes or through its 

GEF activity for Cdc42 (Qualmann and Kessels, 2002) (Fig. 2 ③). Despite these limitations, 

results with ING1a offer a novel avenue for investigating the role of CME in cellular 

senescence.

3. Caveolae-mediated endocytosis in senescence

Caveolins are the major structural and functional constituents of caveolae, small flask-

shaped invaginations enriched in lipid raft components (cholesterol and sphingolipids, and 

lipid modified proteins) (Rothberg et al., 1992; Thomas and Smart, 2008). Caveolin proteins 

have a central hydrophobic sequence that inserts into plasma membrane while the N- and C-

termini are more hydrophilic; caveolin thus forms a hairpin-like structure with the central 

region buried in the membrane and the N- and C-termini in the cytoplasm (Williams and 

Lisanti, 2004). CAV1 is widely expressed and essential for caveolae in non-muscle cells 

(Thomas and Smart, 2008); CAV2 is a homologous gene that facilitates but is not sufficient 

for caveolae formation (Mora et al., 1999); CAV3 resembles CAV1 in sequence and function 

but is specific to cardiac and skeletal muscle (Tang et al., 1996). In addition to forming 

flask-shaped invaginations, caveolins can also form flat assemblies in the plasma membrane 

or exist in dispersed, non-caveolar states (Head and Insel, 2007; Pol A et al., 2020).

Caveolae mediate internalization of cargos such as virus particles, bacteria, toxins and lipid 

raft components (Nabi and Le, 2003; Parton and del Pozo, 2013). This process involves 

pinching off of vesicles by dynamin and delivery to endosomal compartments (Oh et al., 

1998). As caveolae are enriched in cholesterol and glycosphingolipids, alterations in their 

intracellular uptake via caveolae can affect lipid metabolism. Consistently, cholesterol 

depletion with methyl-β-cyclodextrin inhibits CavME and loss or mutation of Cav1 causes 

severe lipidodystrophy (Parton and del Pozo, 2013). CavME is a highly regulated process, 

which varies depending on the clustering of cargo, tyrosine phosphorylation of Cav1 by Src 

family kinases (SFKs), and actin reorganization (Kiss, 2012). Interestingly, disruption of 

integrin-mediated adhesion by cellular detachment from the substrate strongly triggered 

caveolar endocytosis with resultant depletion of lipid raft components from the plasma 

membrane (del Pozo et al., 2004, 2005). This process inhibited multiple plasma membrane 

signaling pathways including Erk MAP kinase, Akt and small GTPases, thus, mediating 

anchorage-dependent growth of adherent cells. Conversely, cav1−/− cells showed constitutive 

activation of Rac1 and other pathways, with poor cell polarity and directional migration 

(Grande-Garcia et al., 2007).

Cav1, the most widely studied caveolin isoform, binds and modulates activity or function of 

a great many signaling proteins (Patel et al., 2008). Relevant targets include receptor 

tyrosine kinases (RTKs), Src family kinases (SFKs) and nitric oxide synthase 3 (eNOS) 

among many others (Couet et al., 1997; Li et al., 1996; Shaul et al., 1996). These 
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interactions are generally through the Cav1 scaffolding domain (amino acids 82–101) (Bucci 

et al., 2000). A hydrophobic consensus target sequence in these proteins that binds the Cav1 

scaffolding domain has been identified but by no means accounts for all interactions. 

Deletion or overexpression of Cav1 thus alters a wide range of enzyme and signaling 

activities via direct effects as well as altered endocytosis (Boscher and Nabi, 2012).

An early study in long-term cultured HDFs revealed elevation of Cav1 and Cav2 protein 

levels as cells reached RS (Park et al., 2000). Cav1 was also elevated in multiple tissues of 

aged rats (Kang et al., 2006; Park et al., 2000). Despite the increased Cav1/2 protein, 

caveolae were reduced, as was the physical association of Cav1 with RTKs (Wheaton et al., 

2001). Cav1 levels also increased in response to hydrogen peroxide and UV irradiation 

(Volonte et al., 2002) in association with SIPS. Forced expression of Cav1 induced 

senescence in young fibroblasts (Park et al., 2000; Volonte et al., 2002) and human 

mesenchymal stem cells (Park et al., 2005). Conversely, downregulation of Cav1 reversed 

senescent phenotypes (Cho et al., 2003). Taken together, these data identify Cav1 as an 

important modulator of senescence in these cell types.

One important unanswered question concerns the relative roles of caveolar vs. non-caveolar 

caveolin. Caveolar caveolin forms a structure that may respond to mechanical forces or 

mediate membrane trafficking. Caveolin, most likely both in and out of caveolae, interacts 

with and modulates activities of many signaling molecules through its scaffolding domain. 

These interactions are thought to contribute to the senescence phenotypes through cell cycle 

arrest, hypo-responsiveness and generation of ROS (Fig. 3). Non-caveolar caveolins can be 

seen outside of caveolae in the plasma membrane, focal adhesions (FAs), the endoplasmic 

reticulum and the Golgi apparatus even in endothelial cells and fibroblasts that have 

abundant caveolae (Pol et al., 2020) (Fig. 3). Non-caveolar caveolins can be generated when 

caveolae are disassembled in response to mechanical stress (Sinha et al., 2011), when 

caveolins are overexpressed or when Cavins are lacking (Hayer et al., 2010; Parton and 

Howes, 2010) (Fig. 3, ①②). Non-caveolar caveolins may contribute to the generation of 

ROS and senescent morphology through integrin signaling (Fig. 3). However, distinguishing 

the interactions and functions of caveolar vs non-caveolar Cav1 is challenging, and their 

relative contributions to senescence are largely unknown.

Transgenic mice in which Cav1 was overexpressed in hippocampal neurons, showed 

improved retention of hippocampal learning and memory during aging (Mandyam et al., 

2017). These mice also showed extended survival in the SOD1G93A model of amyotrophic 

lateral sclerosis (Sawada et al., 2019). By contrast, endothelial-specific expression of Cav1 

impaired microvascular permeability and angiogenesis, and accelerated progression of 

atherosclerosis, a senescence-associated disease (Bauer et al., 2005; Fernandez-Hernando et 

al., 2009). Initial interpretations ascribed these effects to Cav1 inhibition of eNOS. However, 

a recent study found that endothelial-specific Cav1 deletion potently inhibited 

atherosclerosis even in eNOS−/− mice (Ramirez et al., 2019). These effects correlated with 

reduced inflammatory activation of the endothelial cells and increased autophagy (also anti-

inflammatory) (Zhang et al., 2020). However, endothelial senescence is also thought to 

contribute to atherosclerosis (Erusalimsky, 2009), thus, is another potential causative factor.
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Several possibilities can be considered for the distinct outcomes in different systems. 

Fibroblasts and endothelial cells have abundant caveolae covering up to 50 % of the cell 

surface (Cho et al., 2003; Binet et al., 2020). By contrast, caveolae in neurons are barely 

detectible, though Cav1 is readily detected and increases with age (Kang et al., 2006). 

Neurons are in a soft, unstressed mechanical environment, whereas endothelial cells and 

fibroblasts are mechanically stressed, consistent with a role for caveolae in 

mechanotransduction (del Pozo et al., 2020). Differential expression of Cav1-interacting 

molecules is also a likely contributing factor. As described below, Cav1 inhibits EGF 

receptor signaling, but promotes signaling through the insulin receptor and the neuronal 

TrKB receptor that mediates the stimulation with brain-derived neurotrophic factor 

(Mandyam et al., 2017; Sawada et al., 2019). Which of these effects mediates distinct 

outcomes in different cell types and environments remains to be determined.

Cav1 has complex effects in many settings. It can suppress or promote tumors depending on 

cell type and cancer stage (Gupta et al., 2014; Quest et al., 2008). Its deletion activates or 

inhibits a wide range of pathways (Boscher and Nabi, 2012). Which of these effects are due 

to caveolae vs non-caveolar functions, and which caveolar functions are mediated by 

endocytosis is not well understood. Overexpression of Cav1 in mouse embryonic fibroblasts 

induced cell cycle arrest at G0/G1 through the p53/p21 pathway (Galbiati et al., 2001), a 

common effector pathway in senescence. This may involve Cav1-mediated binding to Mdm2 

(Bartholomew et al., 2009) and Sirt1 (Volonte et al., 2015) (Fig. 3). Cav1 also directly binds 

the EGF receptor and sequesters it into caveolae, which may explain hypo-responsiveness to 

EGF in senescent cells (Park et al., 2000) (Fig. 3). Moreover, Cav1 interacts with and 

inhibits Nrf2 and TrxR1, thus, elevated Cav1 increases cellular ROS due to suppression of 

these anti-inflammatory mediators (Volonte and Galbiati, 2009; Volonte et al., 2013) (Fig. 

3). Notably, Cav1 in senescent cells regulates FAK and Rho GTPases to generate the typical 

hyper-adhesive senescent morphology, which is reversed by Cav1 knockdown (Cho et al., 

2004) (Fig. 3). The highly elevated activity of FAK and Rac1 results in elevated ROS 

production through the NADPH oxidase complex, which is causally implicated in 

senescence (Shin et al., 2020).

Together, these data clearly indicate a role for Cav1 in cellular senescence but to what extent 

it involves altered caveolar endocytosis is unknown. If anything, the data favor a role for 

non-caveolar functions. To our knowledge, the role of CavME per se in senescence, as 

opposed to other functions of Cav1 protein, has not been critically tested.

4. Signaling pathways linking endocytosis to senescence

Though the p16/Rb and p53 pathways are central for senescence of all types (Ben-Porath 

and Weinberg, 2005; Salama et al., 2014), additional signaling would seem to be required to 

explain the full senescent phenotype. Endocytosis impacts membrane receptor signaling, cell 

adhesion, migration and cytoskeletal organization, thus, is a good candidate. Senescent cells 

are typically large, flat, immobile cells with excessive actin stress fibers and focal adhesions 

(FAs). Bioinformatic analysis strongly implicated FA molecules in accelerated aging and 

aging-related diseases (Wolfson et al., 2009).
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FAs are initiated by integrin binding to extracellular matrix, which then link to the actin 

cytoskeleton. Integrin trafficking, including internalization, recycling and degradation, are 

critical for their function and signaling (Caswell et al., 2009; Paul et al., 2015). Integrins are 

internalized via CME and clathrin-independent pathways, including CavME, 

macropinocytosis and clathrin-independent carrier-mediated endocytosis (Moreno-Layseca 

et al., 2019). Several lines of evidence suggest a role for integrins in senescence (Goddeeris 

et al., 2003; Jun and Lau, 2010; Rapisarda et al., 2017), in which altered integrin endocytosis 

may be central.

Cellular senescence is associated with downregulation of CME via several mechanisms. 

First, decreased expression of βPIX and GIT1 altered the assembly of protein complexes 

within the focal adhesions, resulting in calpain-mediated degradation of the key endocytic 

adapter amphiphysin 1 (Shin et al., 2020) (Fig. 1 right, ②). Decreased amphiphysin 1 then 

limits integrin endocytosis (Fig. 4, ①), leading to accumulation of active integrins at the 

plasma membrane (Shin et al., 2020). These changes resulted in elevated and abnormal 

integrin signaling that drove cellular senescence (Fig. 4). The tumor suppressor ING1a also 

controls receptor endocytosis. The effect of ING1a on CME is mediated at least in part 

through aberrant expression of ISTN2, a guanine nucleotide exchange factor for Cdc42 

(Rajarajacholan et al., 2013) (Fig. 2); ISTN2 overexpression has been shown to dysregulate 

actin polymerization required for CME (Pucharcos et al., 2000). While these effects have not 

been linked specifically to integrin trafficking, the connection is intriguing.

Senescent cells have increased levels of Cav1 protein yet reduced or dysfunctional caveolae, 

suggesting diminished endocytic activity (Wheaton et al., 2001). Evidence indicates the 

inhibitory role of upregulated Cav1 in CavME (Lajoie and Nabi, 2007; Nabi and Le, 2003) 

and more directly in β1 integrin endocytosis (Vassilieva et al., 2008). It thus seems likely 

that upregulated Cav1 may extend the activation of integrin signaling, though the precise 

mechanism remains to be determined (Fig. 4, ③). Consistent with this, caveolar 

internalization of lipid raft components inhibits Cdc42 and Rac1 function; thus, cav1−/− 

fibroblasts, where this pathway is disabled, are very well spread but unpolarized and poorly 

migratory (del Pozo et al., 2005; Grande-Garcia et al., 2007), thus, sharing some features 

with senescent cells. The shift toward non-caveolar Cav1 may also contribute to the 

senescent phenotype (Fig. 3, ①②; Fig. 4, ④). Non-caveolar Cav1 has been reported to 

interact with integrins in association with the urokinase receptor (Wei et al., 1996, 1999), the 

SFK Fyn (Wary et al., 1996, 1998), galectin-3 (Goetz et al., 2008), and activated Rac1 

(Nethe et al., 2010) (Fig. 3). In all of these cases, this non-caveolar pool promoted integrin 

signaling. These older studies thus fit well with recent findings on the importance of 

elevated integrin signaling in the senescent phenotype (Shin et al., 2020). We therefore favor 

a model in which a shift from caveolar to non-caveolar Cav1 contributes to aspects of the 

senescent phenotype through changes in both endocytic and non-endocytic mechanisms 

(Fig. 4).

These findings raise the possibility that multiple mechanisms of cellular senescence may 

converge on receptor endocytosis, with integrins emerging as potentially central regulators. 

Whether this speculation will be borne out by the data remains to be determined, but the 

tools to address these questions are in hand and answers are likely in the near future.
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5. Conclusion and future prospects

Re-examination of the literature on senescence and endocytosis in light of recent findings 

supports the concept that aberrant endocytosis contributes to cellular senescence via multiple 

mechanisms. Notably, the data implicating integrins fits well with bioinformatic analysis of 

senescence and aging-related diseases (Wolfson et al., 2009), and with the well-known 

hyper-adhesive senescent phenotype. Persistently activated integrin signaling can explain 

many features of senescent cells, including Rho GTPase-dependent morphological changes, 

prominent actin stress fibers and focal adhesions, and ROS-mediated oxidative stress. Key 

questions for future research include the roles of Cav1 in both caveolar and non-caveolar 

forms, the mechanism of βPIX downregulation during senescence; the role of reduced 

endocytosis in ING1a-induced senescence; and whether any of these events offer 

opportunities for intervention in age-related diseases.

Considering the enormous complexity of endocytosis and senescence, the identification of 

additional components contributing to the aberrant endocytosis-induced senescence pathway 

will provide more insights into these events. These findings may also facilitate the discovery 

of therapeutic targets for senescence-related diseases.
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Fig. 1. 
A model for the role of βPIX/GIT complex and CME in senescence. βPIX/GIT complex and 

calpain 2 localize to focal adhesions by binding to paxillin, which inhibits calpain 2 binding 

to paxillin, thus preventing calpain 2-mediated cleavage of amphiphysin 1 (left panel). 

Internalization of β1 integrin via CME maintains normal integrin signaling (left panel). 

Reduced levels of the βPIX/GIT complex in senescent cells allow calpain 2 binding to 

paxillin, resulting in cleavage of amphiphysin 1 (right panel, ①②). Excessive accumulation 

of cell surface active β1 integrin results in persistent and abnormal signaling, including 

excessive ROS, which accelerates senescence (right panel,③④).
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Fig. 2. 
A model for ING1-induced senescence. ING1b regulates p53 function and epigenetic control 

by modulating chromatin structure (①②). ING1a upregulates ITSN2 through epigenetic 

control (②), which in turn inhibits CME (③). This may result in activation of integrin 

signaling, while inhibiting EGFR signaling. Downstream of these signaling events, the 

p16/Rb pathway induces cell cycle arrest and senescence (③④). It is yet unclear whether 

ING1b also blocks CME via ITSN2.
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Fig. 3. 
A model for Cav1-induced senescence. In general, caveolar Cav1 recruits signaling 

molecules mediated by interactions with its scaffolding domain and sequesters them into an 

inactive state. Non-caveolar Cav1 can be produced by dissociation of caveolae in response to 

mechanical stress (Sinha et al., 2011) (①), or when caveolins are overexpressed (Hayer et 

al., 2010; Parton and Howes, 2010) (②). This pool can translocate to focal adhesions where 

it can form oligomers with β1 integrin, which results in integrin activation (Kawabe et al., 

2004). Non-caveolar Cav1 is also present in diverse cellular compartments where it regulates 

distinct pathways including integrin activation and function (Head and Insel, 2007; Pol et al., 

2020).
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Fig. 4. 
A model for the central role of integrin activation in aberrant endocytosis-induced 

senescence. Reduced βPIX/GIT complex and upregulated ING1a inhibit CME, which results 

in activation of integrin signaling (①②). Caveolar and non-caveolar Cav1 contribute to 

integrin activation, though it is unclear to what extent they do (③④). This model highlights 

the complex interplay between key endocytic proteins and senescence regulators. Overall, 

reduced endocytosis that deregulates signaling of membrane receptors may be a common 

mediator for multiple senescence pathways.
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