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Many hostile scenarios exist in real-life situations, where cooperation is disfavored and the collective
behavior needs intervention for system efficiency improvement. Towards this end, the framework of soft
control provides a powerful tool by introducing controllable agents called shills, who are allowed to follow
well-designed updating rules for varying missions. Inspired by swarm intelligence emerging from flocks of
birds, we explore here the dependence of the evolution of cooperation on soft control by an evolutionary
iterated prisoner’s dilemma (IPD) game staged on square lattices, where the shills adopt a particle swarm
optimization (PSO) mechanism for strategy updating. We demonstrate that not only can cooperation be
promoted by shills effectively seeking for potentially better strategies and spreading them to others, but also
the frequency of cooperation could be arbitrarily controlled by choosing appropriate parameter settings.
Moreover, we show that adding more shills does not contribute to further cooperation promotion, while
assigning higher weights to the collective knowledge for strategy updating proves a efficient way to induce
cooperative behavior. Our research provides insights into cooperation evolution in the presence of
PSO-inspired shills and we hope it will be inspirational for future studies focusing on swarm intelligence
based soft control.

ooperation is omnipresent in real-world scenarios and plays a fundamental role for complex organization

structures, ranging from biological systems to economic activities of human beings. However, it seems to

be at variance with natural selection of Darwin’s evolutionary theory', which implies fierce competition for
survival among selfish and unrelated individuals®. Hence, understanding the emergence and sustainability of wide
spread cooperative behavior is one of the central issues in both biology and social science. This problem is often
tackled within the framework of evolutionary game theory’~. As the most stringent situation of reciprocal
behavior through pairwise interactions, the prisoner’s dilemma (PD) has long been considered as a paradigmatic
example for studying the dilemmas between individual interests and collective welfare. In its original form, the PD
is a two-player non-zero-sum game, where each player decides simultaneously whether to cooperate (C) or defect
(D) without knowing a priori how its opponent will act. There are four possible outcomes for this game: (1)
mutual cooperation (C, C) yields the largest collective payoft by offering each a reward R, (2) mutual defection (D,
D) pays each a punishment P, and (3) the mixed choices (C, D) or (D, C) give the defector a temptation T and the
cooperator the suck’s payoft $, with the payoff ranking satisfying T>R>P>S and 2R>T + §°. The dilemma is
given by the fact that although the collective payoff would be maximized if both cooperated, it is best for a rational
player to defect no matter what strategy its opponent chooses in a single round, making defection the only
equilibrium. To allow the evolution of cooperation in the PD, suitable extensions have been proposed accord-
ingly. One possible way out is direct reciprocity” in the iterated prisoner’s dilemma (IPD) game'®, where players
meet more than once, keep in mind the results of previous encounters and play repeatedly. Under this circum-
stance, reciprocity is regarded as a crucial property for winning strategies, including, but not limited to, Tit for Tat
(TFT)"'', generous TFT (GTFT)", win-stay lose-shift'®'”, to name but a few. Secondly, placing players on spatial
networked structures, e.g., the square lattice, the small-world network, the scale-free network as well as diluted
and interdependent networks'®*, has been acknowledged to be a new route to promotion and maintenance of
cooperative behavior without any other assumptions or strategy complexity**. Though this is not universally
true*”¢, spatial interactions do provide cooperators an opportunity to agglomerate and grow, by which coop-
erators can finally resist exploitation by defectors and survive extinction in most cases”**. Finally, other mechan-
isms favoring cooperation include co-evolution of the network structure along with playing rules***, the ability to
move and avoid nasty encounters’, the freedom to withdraw from the game*”*%, and punishment and reward**>.
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While the various mechanisms have achieved significant success
in interpreting the evolution of cooperation, they are largely based on
the assumption of particular networks of contacts and rules of local
interaction. In other words, previous works mainly focus on which
scenario favors cooperation. In the meanwhile, however, there exist
many hostile scenarios in real life situations, where cooperation is
disfavored and hence the undesirable outcomes need to be controlled
for system efficiency improvement or disaster avoidance. For
example, cooperative communications have been considered to be
a promising transmit paradigm for future wireless networks, in
which the interactions between neighboring nodes can be modeled
via the evolution of cooperation. However, when the cost to coop-
erate exceeds a threshold, individual nodes tend to refuse to offer help
to others, thus posing a great challenge to cooperation emergence as
well as the performance of the whole system*’. Generally, this prob-
lem becomes especially difficult when it is hard or even impossible to
change the underlying playing rules of the original individuals, such
as the behavior rules of crowds in a panic and the flying strategies of a
flock of birds*. It is therefore of great interest and practical signifi-
cance to design schemes that can effectively intervene in the collect-
ive behavior of a particular system, such that a proper equilibrium is
guaranteed given the local rules of individual players and the network
of contacts. Though many efforts have been devoted to pinning
control law design and theoretical analysis of differential equations
based control systems*>*’, few literature have studied its application
to complex systems of networked evolutionary games. To address
this particular issue, Han et al. have proposed a new framework
termed as soft control, which aims to induce desired collective beha-
vior out of a multi-agent system via introducing a few controllable
individuals, called shills, to the original population consisting of
normal individuals***. Within the framework, shills are treated
equally as normal agents by conforming to the basic playing rules,
but are allowed to adopt elaborated strategies and updating rules for
different mission objectives. Different from conventional distributed
control that focuses on designing local rules for each agent in the
network, soft control treats all the original individuals as one system
and the control law is only for the shills. In real-world applications,
there are two ways to account for the existence of shills: (i) under
some certain circumstance, particular individuals of the original
population turn into shills either voluntarily or forced by external
factors, e.g., men of high principle who stand out in chaotic scenes to
maintain order; (ii) additional individuals that are added to the ori-
ginal population to intervene in the macroscopic feature of the sys-
tem, e.g., a few detectors who sneak into a band of gangsters with the
purpose of making them confess*. So far, several preliminary pro-
posals have been advanced to control the macroscopic behavior of
multi-agent systems. For example, it has been proposed that a con-
trollable powerful robot bird might be used as a shill to drive flocking
of birds in airports, assuming the underlying dynamics of real birds
follows Vicsek model*”**. Another work by Wang studied soft con-
trol in the well-mixed population case, where frequency-based tit for
tat (F-TFT) was utilized as a shill’s strategy*®.

This paper goes beyond the updating rules of conventional evolu-
tionary game theory and considers instead a swarm intelligence
inspired strategy updating mechanism for shills. Generally, swarm
intelligence refers to the collective behavior of a decentralized, self-
organized natural system, such as a flock of birds trying to reach an
unknown destination, a colony of ants searching for the best path to
the food source, and a group of people brainstorming to come up
with a solution to a specific problem®'. Due to its decentralized dis-
tribution and self-adaption ability, swarm intelligence has provided a
good source of intuition for solutions to realistic problems and
several models have been proposed accordingly, among which
are particle swarm optimization (PSO) proposed by Eberhart in
collaboration with Kennedy***, ant colony optimization (ACO) by
Dorigo®®, and brain storm optimization (BSO) developed by

Shi***®. The fundamental concept of PSO is derived from the under-
lying rules that enable large numbers of birds to flock synchronously,
where each individual in the swarm is seen as a particle, moving in a
multi-dimensional space and searching for an unknown food source.
Following random initialization of position and velocity vectors,
each individual updates its state by combining one’s past experience
with some aspects of collective knowledge of the whole swarm in the
following generations. As the searching process carries on, the popu-
lation of particles, like a flock of birds foraging for food sources, move
closer to and can eventually find the optimum of the utility function.
Since miraculous swarm intelligence emerges from the simple and
self-organized particles in PSO, we introduce the strategy updating
mechanism to the shills and study whether a more desirable collect-
ive behavior could be induced in hostile environments. Furthermore,
other than assuming a well-mixed population which may not be
always true in real world systems, we extend soft control to a struc-
tured population, with each individual located on the vertex of a
square lattice and its interaction restricted to the immediate neigh-
bors along the social ties.

We address the above issue by introducing a model in which
normal individuals interplay with a small fraction of shills and study
what occurs depending on the frequency of each type of individuals
and relative parameters tuning the updating procedure. To be spe-
cific, we choose a finite IPD game played on a square lattice as our
strategic problem, where each individual adopts a stochastic strategy
and plays according to Markov process during each evolution time
step. All the details can be found in the Methods section. In what
follows, we will focus on the influence of PSO inspired soft control on
the evolution of cooperation under different settings by numerical
simulations. Firstly, we start our study by varying the game strength
from 1.1 to 2, in order to demonstrate that the proposed methodo-
logy takes effect upon cooperation promotion throughout a wide
range of conflict intensity. Following this, we proceed to study the
impact of strategy diversity resulting from soft control and find that
PSO mechanisms enable evolutionary outcomes to be less dependent
on random factors. Finally, we focus on the most unfavorable scen-
ario of cooperation and study how the two crucial parameters, the
shill fraction p and the weighting coefficient w, influence the evolu-
tion. We show that the frequency of cooperation can not only be
promoted by shills, but can also be controlled to an expected value by
choosing appropriate parameter settings.

Results

Numerical simulations are carried out on an L X L square lattice with
N=L? vertices and equal connectivity <z>=4. The results shown
were obtained for communities of N=10000 individuals. The equi-
librium results, including frequencies of cooperation f, and average
strategies <x>>, are averaged over the last 10% time steps after a
transient period of 300 time steps. This procedure is repeated 100
times for 100 independent random realizations of the game consid-
ered. The frequency of cooperation (or cooperation level) f, used to
evaluate the system performance is defined as the percentage of Cs of
all the actions taken by all individuals during one time step . As there
are 8TN actions in 4N T-IPD games, f, is calculated via

N

fc=ﬁ2w(i) (1)

i=1

where w(i) denotes the number of Cs during the interactions between
agent i and its four neighbors.

As shown in Figure 1(a), with a small fraction (p,=0.05) of PSO-
inspired shills introduced, the average cooperation level of the ori-
ginal population is greatly promoted, despite the fact that much
fiercer conflict arises between individual interests and collective wel-
fare when the temptation to defect b increases from 1 to 2. This
should be largely attributed to the global search ability of PSO, by
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which the shills can find more successful strategies and spread them
to the neighbors. In such a case, the temptation to defect b has a
negligible effect on the value of f. in the equilibrium, which, as a
matter of fact, only diminishes from 0.944 for b=1 to 0.933 for
b=2. On the other hand, although spatial reciprocity and iterated
interactions favor the emergence and maintenance of cooperation to
some extent, they cannot guarantee a desirable level of cooperation in
more defection-prone environments as the game intensity b grows.
Expectedly and as shown by red circles in Figure 1(a), we observe a
gradual decline of f,, which finally drops below the initial level
(f.0=0.5) of cooperation as b approaches its maximum limit of 2. It
is also important to note that direct reciprocity emerging from iter-
ated interactions does effect the evolutionary outcome, as we find
that similar results cannot be obtained for one-shot IPD with b=1.

As each individual adopts a stationary Markov strategy (po, pe pa)
(see Methods), we examine the average state <x>=(<po>, <p.>,
<pq>) reached by the population in the equilibrium in Figure 1(b),
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each element of which denotes the average probability for a random
individual to cooperate in the first stage of the IPD, the conditional
probability to cooperate when the last move of the opponent is C or D
respectively. For p;=0.05 and 1<b<2, the individuals come to a
consensus of Markov strategy approximate to (1,1,0), which can be
viewed as TFT. Actually, TFT has been proven the simplest and the
most successful strategy in the IPD game, via which one offers to
cooperate initially, punishes defectors and reward cooperators in the
successive rounds with “an eye for an eye”. Hence, desirable social
welfare can always be achieved in such a case, as shown by blue
squares in Figure 1(c). On the contrary, the original population
without shills results in a worse strategy, in which one tends to
cooperate with smaller probabilities as b grows. As a consequence,
the average payoff an individual receives for each action diminishes
from 0.9 to 0.4, as shown by the red circles in Figure 1(c). To have a
better understanding of the evolution process, we plot the coopera-
tion frequency as a function of time steps ¢ in Figure 1(d) for both
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Figure 1 | Comparison of evolution characteristics between cases with (p,=0.05) and without shills (p,=0). (a): average level of cooperation in
dependence of b. (b): average Markov strategy of the population as a function of b. (c): average payoffs of one action in dependence of b. (d): evolution of
cooperative behavior concentration over time step ¢ for b=2. We observe that while the spatial structure and iterated interactions contribute to the
promotion of cooperation in PD games compared with one-shot games in a well-mixed population, soft control with a small proportion (p;=0.05) of
shills can further enhance cooperation levels even in strongly defection-prone environments, resulting in an average strategy of TFT. All trajectories are
averaged over 100 independent realizations of the game considered, whose parameter setting is L=100, T=50, ©®=0.95, and the maximum evolution

generation Gy, =300.
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cases. Due to the random initialization for strategies, the evolution-
ary curves both start from f.=0.5, an equal probability for each agent
to cooperate or defect in the first generation. Similar to the cases in
most literature'*, the evolution courses follow the pattern of endur-
ance and expansion: defectors take advantage of the random arrange-
ments at the early stage and can thus make the greatest profits by
exploiting cooperators. It enables defectors to spread across the
population such that only little clusters of cooperators exist and a
decline of f, is observed in the critical time step. Restarting from the
lowest point, where an ordered distribution of cooperators and
defectors is reached, clusters of cooperators begin to expand until a
new equilibrium between cooperation and defection is achieved, so
we see a rise of cooperation levels which gradually converge to a
stable state.

It is also found that, without soft control, the outcome of one
random run of the simulation is more dependent on the initial strat-
egy profile and its distribution, as is shown in Figure 2. For p,=0, the
stationary outcomes of five runs diverge significantly from the aver-
age performance value in Figure 2(b), whereas the dramatic deviation
is removed by the proposed soft control mechanism with p;=0.05 in
Figure 2(a). This finding is easy to understand if we analyze the
evolutionary dynamics of the two cases. On the one hand, as the
players in the original population adopt the updating rule of uncon-
ditional imitation (see the Methods section for the detailed defini-
tion), which means strategies are produced by copying the old ones
and thus no new acting tactics are created, the strategy diversity
without soft control is highly dependent on the initial strategy profile.
As a consequence, the outcome of one random simulation makes
little sense in representing the evolution dynamics, for it is more
sensitive to randomness. Yet, as more runs of simulations are carried
out, the result gradually converges to a value which can be used to
approximate the average cooperation level within a specific para-
meter setting. On the other hand, with PSO inspired soft control,
new strategies are adaptively generated to maximize the potential
payoff by considering simultaneously the most profitable strategy
in the past and the best strategy of the neighbors, enabling the strat-
egy variety to be less dependent of randomness brought about by the
initialization operation. In sum, while promoting cooperation in
strongly hostile environments, the proposed approach can lower
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the impact of random factors by adding to the strategy diversity in
the population.

The effect of shills in the boost of cooperation can be partly com-
prehended by the comparison between the evolution courses of
cooperation frequencies for the whole population and the individuals
within the neighborhood of shills. Focusing on Figure 3, we have two
important findings: firstly, while both cases experience a decreasing
phase of cooperation due to invasion of defectors in the early stage,
the individuals adjoining to shills do maintain a higher level of
cooperation; secondly, however, as cooperative behavior spreads
with the evolution carrying on, the existence of shills hampers its
further expansion. These results demonstrate that, although shills
facilitate propagation of cooperation by exploring the strategy space,
especially in the endurance period when the individuals are mostly
defectors, the current parameter setting (p,=0.05, =0.95) cannot
guarantee a global best strategy for shills in the equilibrium. Since the
shills imitate the updating mechanism in PSO, the results can be
interpreted as follows: unlike the normal agents who greedily switch
their strategies to the best one within the neighborhood or remain
unchanged, shills conduct effective search for potentially better strat-
egies in a continuous 3-dimension space, which helps to increase the
fraction of cooperation in shills and their neighbors in the early stage.
On the other hand, as =0.95 is used to balance the weight between
one’s best strategy in the history as well as the most profitable strategy
within its neighborhood, shills tend to take into account more history
information when updating strategies, which plays a less important
role for payoff improvement in the current situation. As a result,
while the average strategy of the whole population converges appro-
ximately to TFT, the shills result in an reacting rule <x>=
(0.58,0.55,0.26) as shown in Figure 3(b), which makes the average
payoff of individuals within shills’ neighborhood lower than the
average level of the whole system. Hence, we argue that, while shills
facilitate the propagation of cooperative behavior across the network,
relying more on history information (w=0.95) does not contribute
to maintenance of cooperation within their neighborhood.

This reasoning is fully supported by the results shown in Figure 4,
where we plot the dependence of the frequency of cooperation on
both w and p, with b=2. For p;<0.25, all 0<w<1 induces a higher
level of cooperation compared to the average value f.=0.4556738

Time step t

Figure 2 | Evolution of the cooperation level over time steps with and without soft control in 5 random runs for b=2. (a): p;=0.05, »=0.95.

(b) ps=0. The blue, thicker trajectories indicate average performance of five simulation runs and the rest represent outcomes of 5 independent runs. The
red dotted line in panel (a) shows the average cooperation frequency with noises included in the strategy updating process for shills. It can be
observed that without soft control, the outcomes of one-shot run is dependent on randomness with a large value of the standard deviation. On the
contrary, soft control not only makes the outcome undisturbed by randomness, but is also robust to noises in the updating process.
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Figure 3 | Evolution characteristics of shills. (a): evolution of the frequency of cooperation for different individuals for p,=0.05, ©®=0.95, and b=2. The
blue line represents the frequency averaged over the whole population, while the red-dotted curve corresponds to the average cooperation of individuals
within the neighborhood of shills. (b): average strategy of shills in the equilibrium as a function of the temptation to defect b. While shills promote the
propagation of cooperative behavior across the network, relying more on history information (w=0.95) cannot maintain cooperation within their

neighborhood.

achieved by the original population, while the promotion of coopera-
tion is guaranteed only by w not exceeding a threshold w, for
ps>0.25. This should be attributed to the different impacts of w
and p;, on the evolutionary outcome. Firstly, for a fixed value of o,
adding more shills does not contribute to further enhancement of
cooperation and there exists a moderate boundary value that war-
rants the best promotion of cooperation. When p; is small (e.g.,
ps=0.05), the cooperation level is enhanced jointly by the few shills
and the majority of normal agents, among whom the shills act as
pioneers by exploring potentially profitable strategies and the normal
agents within the neighborhood of shills spread the successful ones
by unconditional imitation. Although more shills being incorporated
adds to the strategy diversity of the fundamental population, it how-
ever slows down the strategy propagation at the same time, for the
proportion of normal agents is reduced. Therefore, it becomes more
difficult for the population to reach a consensus without effective
diffusion of strategies by enough normal agents. For this reason, as p,
grows from 0.05 to 0.4, it takes the network a much longer time to
stabilize and the stationary state shows up as an equi-amplitude
oscillation process as shown by the red line in Figure 5(a).
However, the amplitude of the oscillation decreases as more neigh-
borhood information is used when w=0 is chosen. It is also worth-
while to note that our results verify the judgment made by the
authors in*, as they believe there will be a critical value of shill
numbers to achieve the best soft-control goal. Secondly, for a given
fraction p; of shills, smaller values of ® lead to stronger boosts of
cooperation in contrast with larger ones as shown both in Figure 4
and Figure 5(b), suggesting that it benefits the population as a whole
to learn from others in such a dynamical environment. In particular,
=0 can always results in the situation of global cooperation, in
which f.=1. This is different from the case in°, where all players
follow the same updating rule of PSO and the most significant ben-
efits are warranted by =0.99 in scenarios strongly unfavorable for
cooperation. The reason can be found when we compare our model
of soft control with the optimization process using PSO. When
searching for an optimal solution to a particular problem in the
feasible space, each particle is faced with a static environment in term
of the fitness function, i.e., each strategy corresponds to a fixed pay-
off. However, in the evolutionary game scenario, the payoff each

individual receives depends on both its own strategy as well as the
strategy of its opponent. In other words, the best strategy in the
history is not necessarily a good choice for the current situation. In
such a case, history information plays a less important role in updat-
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Figure 4 | Dependences of cooperation frequencies on p; for different
values of @ with b=2. Each curve with markers shows the frequency of
cooperation in the equilibrium as a function of p; for different w, and the
blue dotted line represents the average cooperation level f,=0.456738,
which is achieved by the original population without shills introduced. It
can be observed that: (i) for all 0<w<1, cooperation cannot be further
promoted by adding more shills; (ii) for all p;<0.4, smaller o facilitates the
promotion of acooperation compared with larger values. We draw the
conclusion that assigning higher weights to collective knowledge of the
neighborhood swarm is a better choice in strategy updating for
cooperation enhancement, whereas simply sticking to one’s history
memory results in low cooperation level. The results are averaged over100
independent realizations and the parameter setting is: L=100, T=50,
Gmax=300.
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ing strategies of shills towards the highest cooperation promotion of
the population. On the other hand, the strategies in the neighbor-
hood provide more useful information. As a consequence, assigning
higher weights to the collective knowledge of the neighbors via small
o proves an effective way of inducing cooperation in such defection-
prone environment.

Discussion

In this paper, we have investigated the impact of PSO inspired soft
control on the evolution of cooperation in a networked IPD game.
Following the concept of soft control, we introduce shills into the
original population without violating the underlying rules and guide
the strategy updating of shills by PSO mechanisms, which make use
of history information and the collective wisdom gained by the
swarm to search for the most profitable strategy. Through intensive
simulations, we demonstrate that the cooperation level can be con-
trolled to particular values by selecting control parameters p; and o
appropriately. Specifically, we have shown that, on the one hand, it
does not contribute to further cooperation promotion to add more
shills but suppresses the propagation of cooperative behavior instead.
Hence, we draw the conclusion that there exists an optimal boundary
value guaranteeing the best promotion of cooperation for such an
evolutionary network. On the other hand, we have found that relying
more on the collective knowledge of the neighbors during strategy
updating of shills always results in a stronger promotion of coopera-
tion, while blindly sticking to one’s history information hinders the
emergence and sustainability of cooperation in the population.
Besides, it is shown that the incorporation of shills enables the evolu-
tionary outcome to be less dependent of random factors of the
evolution.

As the first step to introduce swarm intelligence to soft control in a
spatial evolutionary game, our research sheds some light on the role
of PSO inspired shills in evolution dynamics of cooperation and
provides a useful tool to intervene in collective behavior of self orga-
nized individuals, with the purpose of promoting cooperative beha-
vior to a desirable level. Furthermore, this study can also be used to
interpret the emergence of cooperation in a structured population of
unrelated individuals, since special individuals acting like shills in
soft control have been widely observed in natural systems. However,
much work related to soft control remains to be carried out and our
future work will focus on the following three aspects. In the first

place, it is interesting to introduce other swarm intelligence mechan-
isms to soft control and study their impacts on cooperation evolu-
tion, such as ACO and BSO. Additionally, we will extend the
networked structure to more realistic models and particularly study
the dependence of the evolution of cooperation on the distribution of
shills. Finally, we will conduct research on algebraic formulation and
global dynamics analysis of evolutionary game with soft control.

Methods

For the calculations, we consider an evolutionary T-stage IPD game located on an
L X L square lattice with periodic boundary conditions, where each player occupies a
site of the graph and interacts with its four nearest neighbors. Following a large
portion of literature, we parameterize the payoff matrix of the one-shot PD by
RS 1—-0b
(r)=(520)

with b being the only free parameter to control the dilemma strength. Thus, the
dilemma grows weaker as b approaches 0 and stronger confliction arises between
individual interests and social welfare when b increases towards infinite. Note that b
must be greater than 0 to conform to the definition of the PD game. Two types of
individuals are involved in our model, namely normal individuals in the original
population and shills added additionally for cooperation promotion, whose fractions
are denoted by p,, and p; respectively, satisfying p,, + p,=1. The initial distribution of
shills is generated randomly and remains unchanged for the rest evolution duration.

Initially, each player is randomly assigned a stationary Markov decision strategy
x=(po> P pa)**; each element of which is drawn uniformly from the region between 0
and 1. Specifically, p, is the probability for an agent to offer cooperation at the first
stage, p. and p4 denote respectively the conditional probability of an agent to coop-
erate when the its opponent cooperates and defects in the previous encounter
respectively. It is worth mentioning that for each individual, the strategy does not
change with time during each time step. The evolution is carried out by implementing
a synchronous update process: at each time step t, every individual i accumulates its

payoff IT;(t) by means of pairwise interaction with all the neighbors in its neigh-
borhood U;

)

I(6)= > mij(t)

JjeU;

®3)

where ; (1) is the instaneous payoff of individual i playing a T-stage IPD game
against its neighbor j; following this, each individual will simultaneously attempts to
adapt its strategy with the purpose of maximizing its potential probability of success
in future generations. Within the framework of soft control, shills are treated
equally as normal individuals by complying to the basic playing rules for consid-
eration of avoiding deception and exploitation by normal agents*. Only in one
certain aspect are shills different from normal agents, i.e., shills are allowed to adopt
elaborated strategies and updating rules, which is of the paramount importance for
desirable collective behavior induction. Based on this, we assume that normal indi-
viduals follow the updating process of unconditional imitation”’, where the best
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strategy in a normal individual’s neighborhood is selected as the strategy at the next
time step ¢ + 1

xi(t+1)=x;(t)
R { arg maxic = I1;,if | arg maxe = I = 1 (4)

min{u|u € arg max;ey+; [}, else

where set U*(i) includes individual i besides its neighbors and | A| denotes the element
number of set A. On the contrary, shills follow a more complex updating mechanism,
which is inspired by swarm intelligence emerging from bird flocks searching for food
sources: each shill is considered to be a particle moving in a multi-dimensional space
R[0,1]%, interacting with its neighbors, and adopting its strategy by combining some
aspects of its memory as well as heuristic information from its neighbors. Specifically,
each shill updates its strategy x;(t) following

x(t+ 1) =x;(t)+vi(t+1) (5)

Vit + 1) =vi(t) + (! () — x:1(D) + (1 — ) (e () — x,(1)) (6)

where v,(t + 1) i the velocity vector of agent i at time step ¢ + 1, x7(¢) is the best-ever
strategy of agent i throughout its history, and x!(¢) denotes the best strategy in its
neighborhood at time step t. In our model, the initial velocity vector of each shill is
randomly generated in the continuous 3-dimensional space R[—1,1]*. The weighting
coefficient o is utilized to keep a balance between one’s own past information and
swarm wisdom of the neighborhood. According to equations (5) and (6), a shill tends
to stick to its own memory and make decisions based on its best ever strategy when @
is close to 1. Nonetheless, it takes into more consideration the swarm intelligence of its
neighbors as o approaches 0. In particular, a shill copies its best action in the past
when w = 1 and imitates the current best strategy in the neighborhood with the
highest performance IT when o = 0.

In the Results section, the proportion of shills p,, the game strength b, and the
weighting parameter o are considered as crucial parameters in investigating the
evolution of cooperation under the framework of soft control.
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