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Abstract: Alcohol use disorder (AUD) is a major global mental health challenge. Knowledge concern-
ing mechanisms underlying AUD and predictive biomarkers of AUD progression and relapse are
insufficient. Recently, addiction research is focusing attention on the oxytocin system. However, to
our knowledge, blood concentrations of the oxytocin receptor (OXTR) have not yet been studied in
AUD. Here, in sex-separated analyses, OXTR serum concentrations were compared between early-
abstinent in-patients with AUD (113 men, 87 women) and age-matched healthy controls (133 men,
107 women). The OXTR concentrations were correlated with sex hormone and oxytocin concentra-
tions and alcohol-related hospital readmissions during a 24-month follow-up. In male patients with
AUD, higher OXTR concentrations were found in those with an alcohol-related readmission than in
those without (143%; p = 0.004), and they correlated with more prospective readmissions (ρ = 0.249;
p = 0.008) and fewer days to the first readmission (ρ = −0.268; p = 0.004). In men and women, OXTR
concentrations did not significantly differ between patients with AUD and controls. We found
lower OXTR concentrations in smokers versus non-smokers in female patients (61%; p = 0.001) and
controls (51%; p = 0.003). In controls, OXTR concentrations correlated with dihydrotestosterone (men,
ρ = 0.189; p = 0.030) and testosterone concentrations (women, ρ = 0.281; p = 0.003). This clinical study
provides novel insight into the role of serum OXTR levels in AUD. Future studies are encouraged to
add to the available knowledge and investigate clinical implications of OXTR blood concentrations.

Keywords: oxytocin receptor; alcohol relapse; alcohol use disorder; alcohol dependence

1. Introduction

Alcohol use disorder (AUD) is among the most prevalent global mental health chal-
lenges [1]. To date, we lack sufficient understanding of the mechanistic underpinnings of
AUD and the role of predictive biomarkers of AUD progression.

Recently, the scientific community has increased its focus on the oxytocin (OXT)
system, which is composed of a central and peripheral distribution of the nonapeptide OXT
and the OXT receptor (OXTR). The OXT system mediates a vast number of both animal
and human behavioral and physiological effects, including regulation of socio-sexual and
socio-emotional behavior in addition to hedonistic feeding and drug-seeking behaviors [2].
The OXTR is expressed in multiple brain regions. High levels of OXTR mRNA expression
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were observed in the amygdala [3], an area of the brain that has a critical role in mediating
anxiety and stress-responsiveness. OXT and the OXTR are involved in regulation of anxiety,
stress, and reward-related behaviors [2,4,5].

Addiction research is focusing its attention on the role of the OXT system since studies
have shown its involvement in mechanisms relevant to the development and maintenance
of addiction. These addiction-related systems include dopamine signaling, activation of
gamma-aminobutyric acid (GABA)-ergic interneurons, glutamate signaling in the brain, and
activation of the hypothalamic–pituitary–adrenal (HPA) [6,7] and hypothalamic–pituitary–
gonadal (HPG) axes [8]. Via reduction of increased symptoms of stress, anxiety, and social
isolation commonly associated with alcohol withdrawal [9–11], increased OXT system
activity could potentially lead to a reduction in the severity of withdrawal symptoms [12,13]
and thereby aid in the prevention of alcohol addiction relapse.

The OXTR has been localized to the mesolimbic dopamine system, which is an es-
sential mediator of the reward neurocircuitry, involved in promoting the development
of addiction [2,7]. Rodent models suggest that intracerebroventricular administration of
OXT reduces alcohol consumption in addition to alcohol-induced dopamine efflux in the
nucleus accumbens (NAc) [14,15]. The OXTR is found in the NAc, ventral tegmental
area (VTA) projecting to the NAc [16], medial prefrontal cortex (mPFC), amygdala, and
hippocampus. Additionally, OXTR is present on dopamine neurons that project from
the VTA to mPFC [16,17]. Interestingly, recent investigations have found evidence of an
OXTR/dopamine 2 receptor complex (OXTR-D2R) within the NAc. In this area, OXT acts
as an allosteric agonist that leads to an increase in D2R affinity. Activation of D2R reduces
drug-seeking behavior, and DR2 undergoes significant downregulation following chronic
drug exposure [5]. Hence, the OXTR–D2R interaction after its activation by OXT may cause
a reduction in drug-seeking behavior [18].

The OXT system also influences GABAergic interneurons. They express excitatory
Gq-coupled OXTR in the NAc, hippocampus, and PFC. Hence, OXT may influence drug
seeking behavior and dopaminergic signaling through these GABAergic interneurons by
increasing the inhibitory tone within these brain areas [5]. In addition, it is known that
OXTR is located on GABAergic interneurons in the NAc [19], which in turn regulate drug-
seeking behaviors [20]. Hence, it may be posited that OXT impacts drug-seeking behavior
directly through interactions with the OXTR on GABAergic interneurons. This process
occurs in areas that are critical to dopamine signaling and addiction processes [5].

OXT signaling is also relevant to glutamatergic neurons projecting from the PFC to the
NAc and VTA, which are thought to regulate cue-induced reinstatement of drug-seeking
behaviors [21]. OXT causes a decrease in methamphetamine-induced glutamate release by
binding to the OXTR [22]. The OXT–OXTR interaction is thought to attenuate changes in
glutamatergic neurotransmission partially via regulation of glutamatergic receptors in the
PFC after acute methamphetamine administration in mice. Moreover, the administration
of the selective OXT inhibitor atosiban entails opposite effects by antagonizing the effects
of OXT [22]. The importance of the glutamatergic system in the treatment of AUD is
highlighted by the application of acamprosate, a glutamate modulator that is used in
clinical practice to prevent alcohol-related relapses [23].

Finally, interactions between the OXT system and the HPA [6] and HPG [8] axes are
established. Concurrent stress-induced release of OXT within the paraventricular nucleus
of the hypothalamus and plasma corticosterone was measured [24], and OXT is believed
to exert an inhibitory function on the hypothalamic expression of corticotropin releasing
factor as well as on HPA axis activation [25]. Moreover, the OXT system interfaces with the
HPG axis by interacting with sex hormones and their respective receptors [8], which in turn
are involved in AUD [26–32]. For example, the administration of androgens and estrogens
to castrated rats increases OXTR mRNA in the ventromedial hypothalamus [33,34]. In an
OXTR-dependent manner, allopregnanolone, the primary metabolite of progesterone, and
to a lesser extent also 17-beta-estradiol, evoke a robust Ca2+ influx in postnatal but not
adult supraoptic nucleus neurons leading to the release of OXT. This effect is opposite in
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the peripheral nervous system in which allopregnanolone and progesterone inhibit the
GABA-induced Ca2+ increase in embryonic dorsal root ganglion neurons [35].

Thus, OXT and OXTR blood concentrations are of great interest to human research.
Blood concentrations can be easily measured. Central and peripheral OXT concentrations
correlate with each other after intranasal OXT administration and in stressful situations [36].
In addition to its expression in brain regions, the OXTR has also been found in numerous
peripheral cells and tissues, including adrenal medulla cells [37], macula densa cells of the
renal cortex [38], cardiomyocytes [39], osteoclasts and osteoblasts [40], adipocytes [41], and
the myometrium [42]. Moreover, the OXTR was quantified in the blood, especially in pe-
ripheral blood mononuclear cells, such as lymphocytes and macrophages at mRNA [43–45]
and protein [44,45] levels. To our knowledge, no published data on serum or plasma OXTR
protein concentrations in humans or animals except for pregnant women [46] are available
and the relationship between central and peripheral OXTR levels in humans is unknown.
An indication of a differential regulation is provided from male mice exposed to 6 h cold
stress with an increased expression in the brain versus a decrease in testis [47].

A strong need for biomarkers to predict the outcome of patients with AUD following
alcohol withdrawal exists, and a line of studies suggests that the OXT system might provide
such predictors. Hansson et al. [48] found evidence that intracerebroventricular adminis-
tration of OXT reduces cue-induced alcohol relapse-like behavior in alcohol-dependent
male rats but not in female rats [49]. In a randomized cross-over trial, the administration
of intranasal OXT caused a decrease in the connectivity of the NAc in an fMRI alcohol
cue–exposure paradigm [50], which is important as higher striatal cue-exposure has been
established to predict relapse [51]. A recent human study observed higher OXT concentra-
tions as a predictor of more readmissions and fewer days to the first readmission during
a 24-month period in male patients with AUD [52]. Notwithstanding, we lack important
information about the potential of the easily accessible OXTR blood concentrations to
predict the outcomes following withdrawal treatment in AUD patients. Such knowledge
would inform the establishment of future prevention and treatment strategies.

Aims of the Study

To summarize, the literature indicates that the OXT system influences neurobiological
mechanisms of addictive behaviors and may also serve as a predictor of relapse in patients
with AUD. As far as we know, this study is the first one to investigate cross-sectional
and longitudinal differences in OXTR serum concentrations in in-patients with AUD and
healthy control subjects, along with use of OXTR concentrations to predict alcohol-related
readmissions. As the HPG axis interacts with the OXT system, and data on androgens,
progesterone, and estrogens were available in this cohort [29,31,32], we also explored
associations between the measured OXTR concentrations and sex hormone concentrations.
Research on AUD in women has been neglected so far. Hence, we actively recruited a
sex-balanced cohort and conducted sex-specific analyses to provide the urgently needed
evidence separated for men and women.

2. Results
2.1. Demographic Characteristics

The male and female groups of in-patients with AUD did not significantly differ from
the sex-specific healthy control group in terms of age, fasting status, and postmenopausal
status. As expected, relative to sex-specific healthy controls, the male and female patients
showed higher carbohydrate-deficient transferrin (CDT) levels (men, 194%; women, 132%)
and were more likely smokers (odds ratio [OR] for men, 12.6; for women, 14.5; Table 1).
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Table 1. Demographic characteristics of the male and female groups of in-patients with AUD and
healthy controls.

AUD Group Control Group AUD Group vs.
Control Group

N M/F IQR N M/F IQR U or χ2 p

Men
Age (years) 113 48 40 53 133 48 38 56 7369 0.794 #

Fasting (%) 103 16 127 24 2.8 0.097 +

Alcohol concentration at
admission (‰) 108 1.7 0.5 2.4 -

Number of previous
withdrawal treatments 89 6 2 12 -

CDT (nephelometry, %) 113 2.8 1.9 4.0 132 1.5 1.3 1.7 1636 <0.001 #

AUDIT score - 125 4 3 6
Smokers (%) 104 78 133 22 73.8 <0.001 +

FTND score 99 5.0 3.0 7.0 130 0.0 0.0 3.0 2556 <0.001 #

24-month alcohol-related
readmissions

Risk 113 0.67
Total number 113 2 0 4 -

Latency (days) 113 285 57 ≥730 -
Women

Age (years) 87 48 42 55 107 49 39 55 4542 0.772 #

Fasting (%) 80 18 101 26 1.8 0.184 +

Postmenopausal status (%) 73 51 100 44 0.8 0.384 +

Alcohol concentration at
admission (‰) 85 1.2 0.1 1.8 -

Number of previous
withdrawal treatments 58 5 2 11 -

CDT (nephelometry, %) 87 1.9 1.6 2.5 107 1.5 1.3 1.6 1415 <0.001 #

AUDIT score - 96 3 2 4
Smokers (%) 78 77 107 19 62.3 <0.001 +

FTND score 75 5.0 0.5 7.0 103 0.0 0.0 2.0 1757 <0.001 #

24-month alcohol-related
readmissions

Risk 87 0.53
Total number 87 1 0 3 -

Latency (days) 87 625 90 ≥730 -

The table shows the valid number of subjects analyzed (N), medians (M) or relative frequencies (F), interquartile
ranges (IQR), and the results of # Mann-Whitney U and + χ2 tests. AUD, alcohol use disorder; AUDIT, Alcohol
Use Disorders Identification Test; CDT, carbohydrate-deficient transferrin; FTND, Fagerström Test for Nicotine
Dependence. p < 0.05 in bold.

2.2. Oxytocin Receptor Blood Concentrations

In both men and women, the OXTR concentrations did not significantly differ between
patients with AUD and healthy control subjects, and the OXTR concentrations also did not
significantly change during early withdrawal (from baseline to follow-up, Table 2).

We found higher (143%) baseline OXTR concentrations in male patients with any
alcohol-related readmission during the 24-month follow-up than in male patients without
any readmission (p = 0.004). Assigning individuals with OXTR concentrations equal or
above the Youden cut-off point of 0.351 ng/mL to the group with readmission resulted
in a sensitivity of 0.71 and a specificity of 0.59 (area under the curve 0.666, standard error
under the non-parametric assumption 0.056, p = 0.003). In male patients, higher baseline
OXTR concentrations also correlated with more prospective alcohol-related readmissions
(ρ = 0.249; p = 0.008) and fewer days to the first readmission (ρ = −0.268; p = 0.004)
(Figure 1). However, OXTR levels were not significantly associated with markers of alcohol
dependence history or severity (alcohol concentration at admission, number of previous
withdrawal treatments, lifetime and daily ethanol consumption, and liver parameters
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(glutamic-oxaloacetic transaminase (GOT), glutamic-pyruvic transaminase (GPT), gamma-
glutamyl transferase (GGT) activities; data not shown) and had thus a predictive value
independent from easily accessible markers in clinical practice.

Table 2. Cross-sectional and longitudinal comparison of oxytocin receptor blood concentrations
between male and female in-patients with alcohol use disorder and healthy control subjects.

AUD Group Control Group AUD vs.
Control Group T0 vs. T1

N M IQR N M IQR U p # z p §

Men
OXTR T0 113 0.417 0.273 0.642 133 0.437 0.288 0.678 7351 0.769 −0.62 0.533
OXTR T1 94 0.479 0.261 0.635 6239 0.980

Women
OXTR T0 87 0.470 0.317 0.749 107 0.428 0.230 0.758 4175 0.218 −1.37 0.172
OXTR T1 69 0.465 0.281 0.664 3469 0.500

The table shows medians (M) and interquartile ranges (IQR) and results of # Mann–Whitney U and § Wilcoxon-
tests. AUD, alcohol use disorder; OXTR, oxytocin receptor (ng/mL); T0, baseline during early abstinence; T1,
direct follow-up at median 5 days following T0.
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Figure 1. Oxytocin receptor (OXTR) blood concentrations predict 24-month alcohol-related hospital
readmissions in male in-patients with alcohol use disorder. We found higher baseline OXTR concen-
trations in in-patients with a prospective alcohol-related hospital readmission than in those without
readmission (A). Higher baseline OXTR concentrations predicted more alcohol-related readmissions
during the 24-month period (B) and fewer days to first alcohol-related readmission (C). The graphs
present medians with interquartile range and p value from a Mann–Whitney U test (A) and ρ and
p values from Spearman correlations and best-fit lines from regression analysis with 95% confidence
intervals (B,C).

To assess the predictive potential of both parameters, receptor and ligand of the OXT
system, we subdivided the male patients depending on the male-specific Youden cut-off
points into low- and high-risk groups of alcohol-related hospital readmission during the
24-month follow-up period. Whereas in the group of the male patients with low OXTR
serum concentrations, 51.4% of those with low OXT concentrations and 42.9% with high
OXT concentrations were readmitted, the rates increased to 69.4% and 87.9% for high OXTR
combined with low and high OXT levels, respectively (Table S1). These data support a
significant interaction of both parameters and could suggest a functional role of serum
OXTR with a complex adaptation within the system.

In female patients, baseline OXTR concentrations were not significantly associated
with alcohol-related readmission during the 24-month follow-up (Tables S2 and S3).

Smoking behavior was not found to be significantly associated with OXTR concen-
trations in male patients or male control subjects. However, OXTR concentrations were
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lower in smoking versus non-smoking female patients (61%; p = 0.001) and control groups
(51%; p = 0.003) (Table S4), and the levels were also negatively associated with Fagerström
Test for Nicotine Dependence (FTND [53,54]) scores in female patients (N = 75; ρ = −0.414;
p < 0.001). In accordance with the change in OXTR binding densities in specific brain re-
gions [55] with growing age, we found that lower baseline OXTR concentrations correlated
with higher age in healthy control subjects (men, ρ = −0.192; p = 0.027; women, ρ = −0.246;
p = 0.011; Table S5).

In terms of sex hormones, higher OXTR concentrations correlated with higher di-
hydrotestosterone concentrations in male controls (ρ = 0.189; p = 0.030) and with higher
testosterone concentrations in female controls (ρ = 0.281; p = 0.003). Beyond those find-
ings, no significant correlations between OXTR concentrations and dihydrotestosterone,
testosterone, estradiol, or progesterone concentrations were found (Table S6). Blood OXTR
concentrations also did not significantly differ between men and women either in patients
(baseline or follow-up) or in controls (data not shown).

Finally, we found a significant correlation between baseline OXTR concentrations and
baseline OXT concentrations in the male patient group (N = 113; ρ = 0.331; p < 0.001), but
not in the other groups (female patients: N = 87; ρ = 0.008; p = 0.942; male controls: N = 133;
ρ = −0.052; p = 0.554; female controls: N = 107; ρ = 0.065; p = 0.505).

3. Discussion

A growing body of evidence highlights a role of the OXT system in AUD. However, to
our knowledge, this study is the first one to systematically assess OXTR blood concentration
as a peripheral marker for the activity of the OXT system in patients with AUD compared
to healthy controls. We used a unique cross-sectional, longitudinal, and sex-separated
study design. To counteract the significant underrepresentation of women in AUD research,
in this study we actively enrolled a relatively large sample of women with AUD in order to
provide separate evidence for men and women. Particularly in the context of AUD and the
OXT system, large sex-dependent effects have been reported. These differences highlight
the importance of sex-separated investigations and, for example, limit the performance of
randomized clinical trials with OXT-based interventions in male AUD patients only [49].

AUD often runs a chronic course with frequent relapses and alcohol-related hospital
readmissions. This study established higher baseline OXTR concentrations in male patients
with at least one alcohol-related hospital readmission during the 24-month follow-up than
in patients without any readmission (143%). In male patients, higher baseline OXTR blood
concentrations were also found to correlate with a higher number of readmissions during
the follow-up and fewer days to the first readmission. Notably, OXTR concentrations
appear to provide an independent predictive value and were not a surrogate marker of
routinely collected anamnestic or clinical laboratory parameters of alcohol consumption. In
contrast, in female patients, baseline OXTR concentrations were not significantly associated
with any parameters of alcohol-related readmission. Our previous work on AUD shows
an association of higher baseline OXT concentrations with more readmissions during the
24-month period and fewer days to the first readmission also in male patients [52]. These
results are strengthened by the combined predictive effect of OXT and OXTR levels for
the readmission rate in the present study. The data indicate that in male patients with
AUD, a higher activity of the OXT system may serve as a predictor of alcohol-related
hospital readmission. The sex-specific effects observed here also highlight the importance
of conducting AUD research separately for men and women.

While we have previously detected elevated levels of OXT in both male and female
patients with AUD, which normalized during early withdrawal [52], we did not observe a
significant difference in OXTR concentrations between male and female AUD in-patients
and healthy controls. In addition, OXTR concentrations did not significantly change during
early withdrawal, namely from baseline to the at median 5-day follow-up. However, a
power analysis indicated that our cohort was sufficiently large to detect differences with
small to medium effect sizes of Cohen’s d values of 0.36 and 0.41 (G*Power; 2-tailed, α error
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probability 0.05, power 0.80) for men and women, respectively. On the one hand, OXTR
binding sites for radiolabeled ornithine vasotocin analog were markedly upregulated in
brain tissues of deceased male alcohol-dependent patients (ventral striatum and nucleus
caudatus) and male rats (caudate putamen) most likely caused by the reduced OXT ex-
pression (detected by immunoreactivity) in hypothalamic paraventricular and supraoptic
nuclei [48]. These changes were not present in female alcohol-dependent patients and
rats [49]. On the other hand, a similar lack of group differences between subjects with
AUD and controls as in our study was found for OXTR mRNA expression levels in all
five analyzed brain regions of post-mortem samples (NAc, VTA, PFC, amygdala, and
hippocampus), whereas OXT mRNA was significantly higher only in the PFC of AUD
patients compared to controls and correlated positively with daily alcohol intake and
drinks per week [56]. This finding might suggest that in contrast to the OXT hormone
levels, the blood concentrations of the corresponding receptor do not respond to chronic
alcohol consumption or withdrawal treatment, possibly leading to a shift in the balance of
ligand and receptor. Underlying mechanisms might involve desensitization of the OXTR.
However, it might also be that long-term abstinent patients with AUD differ from healthy
control subjects and that these differences disappear during chronic alcohol consumption.
Moreover, brain and blood OXTR concentrations could be differentially regulated as ob-
served at the mRNA level in mice exposed to cold stress [47], and they may follow different
time courses, possibly also lagging behind OXT levels. Future research is needed to clarify
this issue.

Furthermore, we assessed whether smoking status is associated with OXTR concen-
trations. We found lower OXTR concentrations in female AUD patients (61%) and control
group (51%) smokers as opposed to non-smokers. In the female patients, lower OXTR
concentrations were also associated with higher severity of smoking as indicated by FTND
scores. The analyses were conducted separately in the patient and control groups to show
that the observed effects of smoking are independent from alcohol use. The observed
association between lower OXTR concentrations and smoking in women are supported by
a recent finding of lower OXT concentrations in smoking in comparison to non-smoking
women [52]. From a mechanistic point of view, smoking-induced alterations in HPA axis
activity might account for this association. Elevated cortisol levels in smokers versus
non-smokers are well-established [57] and preclinical research demonstrated that environ-
mental stressors downregulate OXTR expression in both peripheral and brain tissues of
zebrafish [58]. On the other hand, Kanamori et al. [59] reported increased OXTR concentra-
tions in the uterine myometrium in smoking versus non-smoking pregnant women and
positive correlations with the number of daily cigarettes consumed and the concentration
of exhaled carbon monoxide. This observation may seem initially contradictory. However,
these findings do not necessarily indicate a theoretical inconsistency as they may high-
light the diverse regulation and function of the OXTR expression in various peripheral
tissues. Certainly, future research is needed to enlighten the mechanisms underlying the
observed lower OXTR blood concentrations in smoking versus non-smoking women. In
our male AUD and control groups, smoking behavior was not significantly associated with
OXTR concentrations.

For validation purposes, we analyzed the effect of age and found that lower OXTR
blood concentrations correlated with higher age in healthy control subjects. These findings
are in line with changes in OXTR binding densities observed in specific brain regions with
growing age [55]. The fact that OXTR concentrations did not correlate with higher age in
patients with AUD might be due to an interfering effect caused by AUD.

Due to the known interactions of the OXT system with steroid hormones [8,35], we
were interested in associations between OXTR concentrations and sex hormones. We
observed positive correlations with dihydrotestosterone in male controls and with testos-
terone in female controls. Our data did not yield a significant association of estradiol or
progesterone with OXTR concentrations, suggesting a more crucial role of the androgen
system in AUD. The sex-specific dihydrotestosterone and testosterone findings could be
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explained by the fact that dihydrotestosterone is produced in greater abundance in men,
while in the female population a greater quantity of dihydrotestosterone is found in its
inactive form, bound to sex hormone-binding globulin [60]. Our clinical observation of
higher OXTR concentrations in subjects with higher androgen concentrations is supported
by a preclinical study demonstrating that the administration of testosterone propionate and
estrogen benzoate in castrated rats leads to an increase in OXTR mRNA in the ventromedial
nucleus of the hypothalamus [33,34]. Together with evidence for a role of androgens in
AUD [30,61], this study’s findings corroborate an interplay between the OXTR and the an-
drogen systems in the development and maintenance of AUD. Future studies are required
to gain deeper insights into the interactions of dihydrotestosterone and testosterone with
the OXTR at a molecular level and how these mechanisms differ between men and women
in the context of addictive disorders.

Strengths and Limitations

The cross-sectional (AUD versus control group), longitudinal (baseline, direct 5-day
follow-up, 24-month readmission follow-up), and sex-separated design makes this study,
to our knowledge, the first of its kind to assess the concentrations of OXTR in the blood of
in-patients with AUD. Therefore, in this exploratory set-up, we report nominal p values
without correction for multiple testing. By measuring alcohol-related hospital readmission,
we addressed a clinically and economically relevant parameter. However, alcohol-related
hospital readmissions are only a proxy for relapses. Moreover, we used a naturalistic setting,
by recruiting mostly within a non-university hospital. The recruitment of a sex-balanced
cohort with many female in-patients allowed us to conduct sex-separated analyses. Since
the female population is highly underrepresented in AUD and neuropeptide research, we
focused our attention on this often neglected but highly burdened cohort.

Limitations of the present study include, firstly, the associational study design, which
does not allow for making causal inferences. Since no literature on the differences between
peripheral and central OXTR concentrations is available, further research is needed to
investigate how associations with blood OXTR concentrations may translate to brain
function in AUD patients. Additionally, the female samples with AUD patients and healthy
controls were balanced in terms of postmenopausal status because the activity of the
OXT system is influenced by the menstrual cycle status [62]. Nevertheless, we had an
insufficient sample size of premenopausal women to accurately account for fluctuations
in the hormonal profile that occur during the menstrual cycle and are known to influence
behavior [63]. The OXT system plays an important socio-sexual and socio-emotional role,
and we did not account for and investigate bonding behavior, anxiety regulation, and
adverse childhood experiences [6,44]. Moreover, we did not assess (epi)genetic patterns
of the OXTR [64] as additional confounding factors. In age-mixed generally healthy
adults, lower levels of OXTR promoter methylation and hence assumed higher OXTR
transcription and expression were related to larger amounts of alcohol consumption in
addition to reported associations with the rs53579 polymorphism [65].

Future studies should investigate the possible role that the OXTR blood concentrations
may play and whether the OXTR is relevant in the development and maintenance of AUD.

4. Materials and Methods
4.1. Study Description

This study is part of the Neurobiology of Alcoholism (NOAH) project [29,31,32,52,66–75].
The participants were recruited at the psychiatric departments of the Klinikum am Eu-
ropakanal Erlangen and the Universitätsklinikum Erlangen in Germany.

Our in-patient group included 200 patients who met the diagnostic criteria for AUD ac-
cording to the fifth edition of the Diagnostic and Statistical Manual of Mental Disorders [76]
and alcohol dependence according to the tenth revision of the International Classification
of Diseases [77] after screening 988 candidates. Patients with psychiatric co-morbidities,
including substance use other than alcohol or nicotine or severe somatic illness, were ex-
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cluded from the study. A baseline study visit during early abstinence (24–72 h of abstinence)
was conducted during which blood was drawn and behavioral parameters were assessed.
Subsequently, a direct follow-up at a median of five days after the first visit took place.
During the second visit, another blood sample was drawn, and a panel of psychometric
testing was administered. Daily ethanol intake and lifetime consumption were determined
using the Lifetime Drinking History, a structured interview based on Skinner [78]. We
grouped the patients into current smokers versus non-smokers. A thorough analysis of the
patients’ electronic records at both study centers for 24 months was conducted to survey
alcohol-related hospital readmissions (parameters: “number of readmissions”, “days to
first readmission”). For statistical analysis, days to first readmission were set to 730 days in
patients without any alcohol-related readmission during the 24-month observation period.
For the control group, participants were recruited via distribution of online advertisements,
letters, and flyers. Following a multi-step screening procedure of 1215 subjects, 240 control
subjects were included, all without any psychiatric morbidity or severe somatic illness
and no psychiatric or psychotherapeutic treatment as in-patients during lifetime or as
out-patients during the previous 10 years. Participants were excluded when indications
of some mental illnesses were found using an adapted screening interview based on the
German SCID-I (see Figure 1 in [52] for details). The German version of the 10-item Alcohol
Use Disorders Identification Test (AUDIT [79]) was used to assess potential problems of
alcohol consumption. Severity of tobacco dependence in patients and controls was assessed
with the FTND. Non-smokers were coded with FTND scores of “0”.

4.2. Determination of Oxytocin Receptor, Oxytocin, and Sex Hormone Blood Concentrations, and
Routine Laboratory Parameters

To minimize circadian effects, all blood samples were drawn in the morning (7:30 a.m.–
11:00 a.m.). The blood vials were centrifuged for 10 min at 2000× g, and serum aliquots
were transferred to −80 ◦C for storage. OXTR concentrations were quantified using the
Human Oxytocin Receptor ELISA Kit from MyBioSource (MBS2506767, MyBioSource, Inc.,
San Diego, CA, USA) based on the sandwich enzyme-linked immunosorbent assay (ELISA)
principle. Of the serum samples, 90 µL were applied in parallel to a standard curve ranging
from 0.1 ng/mL to 5 ng/mL. All assays were performed in duplicates by the same operators
using the same lots of reagents with a standard curve included on every 96-well plate.
The coefficients of variation were 8% for intra-assay and 12% for inter-assay. The ELISA
quantification methods for serum OXT, dihydrotestosterone, testosterone, estradiol, and
progesterone have already been published [29,31,32,52]. From separately collected serum
vials, routine markers of alcohol consumption including CDT were determined by the
Central Laboratory of the Universitätsklinikum Erlangen, Germany (DIN EN ISO 15189
accredited). Blood alcohol concentrations were calculated from breath alcohol content that
was determined and documented upon admission to the hospital (except for one patient
who underwent a direct measurement).

4.3. Statistical Analyses

We used IBM SPSS for Windows 27.0 (SPSS Inc., Chicago, IL, USA) and Graph Pad
Prism 5 (Graph Pad Software Inc., San Diego, CA, USA) and report medians, interquartile
range (IQR), and frequencies for descriptive statistics (SPSS custom tables function). Be-
cause the OXTR concentrations deviated significantly from normal distribution according
to the Kolmogorov–Smirnov test (in the total group and the sex-separated subgroups of
patients and controls), non-parametric methods were employed. To compare frequencies
of nominal variables and metric variables and to test for correlations, we used χ2, Mann–
Whitney U, Wilcoxon and Spearman method, respectively. To identify the thresholds of
OXTR and OXT concentrations that best separated subjects with an alcohol-related read-
mission from those without (including area under the curve, Youden cut-point, and related
sensitivity and specificity), receiver operating characteristic curves (ROC) were computed.
p < 0.05 for two-tailed tests was considered significant. Because of the importance of sex
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differences in science [80] and particularly in AUD [30,81], we analyzed men and women
separately.

5. Conclusions

As far as we know, the present study described for the first time a difference between
blood OXTR concentrations in in-patients with AUD and healthy controls. We identified
several important findings: (1) higher OXTR blood concentrations in male patients with
alcohol-related readmission during the 24-month follow-up than in patients without any
readmission, and an association of higher baseline OXTR concentrations in male patients
with more prospective alcohol related-readmissions and fewer days to the first readmission;
(2) lower OXTR concentrations in smokers versus non-smokers in the female patient and
control groups; (3) a correlation of lower baseline OXTR concentrations with higher age in
male and female healthy control subjects; and (4) correlations between OXTR concentrations
and levels of androgens in both male and female healthy controls. These results provide
novel insights into the role of OXTR in AUD. Future studies are necessary to build on the
available knowledge of the possible clinical implications of the peripheral blood OXTR in
addiction research.
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