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Abstract: Colorectal cancer (CRC) is one of the most lethal cancers worldwide. If detected on time,
surgery can expand life expectations of patients up to five more years. However, if metastasis has
grown deliberately, the use of chemotherapy can play a crucial role in CRC control. Moreover, the
lack of selectivity of current anticancer drugs, plus mutations that occur in cancerous cells, demands
the development of new chemotherapeutic agents. Several steroids have shown their potentiality
as anticancer agents, while some other compounds, such as Taxol and its derivatives bearing a
carbamate functionality, have reached the market. In this article, the synthesis, characterization,
and antiproliferative activity of four steroidal carbamates on mouse colon carcinoma CT26WT
cells are described. Carbamate synthesis occurred via direct reaction between diosgenin, its B-ring
modified derivative, and testosterone with phenyl isocyanate under a Brønsted acid catalysis. All
obtained compounds were characterized by 1H and 13C Nuclear Magnetic Resonance (NMR), High
Resolution Mass Spectroscopy (HRMS); their melting points are also reported. Results obtained from
antiproliferative activity assays indicated that carbamates compounds have inhibitory effects on the
growth of this colon cancer cell line. A molecular docking study carried out on Human Prostaglandin
E Receptor (EP4) showed a high affinity between carbamates and protein, thus providing a valuable
theoretical explanation of the in vitro results.

Keywords: synthesis; steroidal carbamates; colorectal cancer; molecular docking

1. Introduction

Colorectal cancer (CRC) is one of the most widespread (worldwide) and lethal cancers
reported to date. It is the third most commonly occurring cancer in men and the second most
commonly occurring cancer in women. In 2018, the number of new CRC cases surpassed
1.8 million, while deaths reached 0.9 million. It is estimated that this year, 2 million new
cases will be diagnosed all over the world, with an estimate of nearly 1 million deaths.
Early detection of CRC can provide a 5-year survival rate of up to 90%, and surgery is
most often curative. However, if patients carry a distant metastasis at the time of diagnosis,
the 5-year survival rate drops to only 10% [1]. Almost half of patients with colon cancer
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will relapse, highlighting the need for improvement in current treatment regimens. To
investigate biological mechanisms underlying colon cancer progression and to design more
effective drugs, it is essential to develop effective therapies against CRC.

Mouse colon carcinoma CT26WT cells have been used as a model for the evaluation of
immunotherapy protocols in various immune response studies [2]. Furthermore, they are
frequently used as a model to investigate antitumor drug–drug interactions in combination
therapy schemes [3] and in the evaluation of new antitumor candidates. Used in over
500 published studies, CT26WT colon carcinoma cells are one of the most employed cell
lines in drug development [4,5].

Current anticancer drugs have several drawbacks, mainly a lack of selectivity towards
tumor cells [6]. On the other hand, cancer cells mutate, developing resistance towards
chemotherapeutic agents [7]. Thus, the need for new anticancer drugs is urgent, and
therefore the quest for novel agents is a very active research field. For many decades, natural
products have been used directly, such as Taxol (Figure 1), or as templates to synthesize
analogs, with anticancer activities depending on their chemical structures [8–10]. In this
context, steroids emerge as an attractive alternative since they are essential components
in cell membranes developing several physiological functions [11,12]. Lipophilic steroids,
such as diosgenin and testosterone (Figure 1), can easily enter most cells and interact with
intracellular receptors; they have been used as scaffold for synthesis of anticancer agents
against a wide range of cancer forms, including multi-drug-resistant cancers [13]. In the
case of diosgenin, several publications have reported its antitumor properties and, more
specifically, its ability to induce growth inhibition in different colon cancer cells [14–17].
On the other hand, testosterone, and its derivatives, are known as in vitro inhibitors of
mammary and prostate cancers [18–22].
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Figure 1. Structures of Taxol, Diosgenin, and Testosterone.

In addition to Taxol, which is a widely used anticancer drug [23], a series of steroidal
carbamates have recently been synthesized, and their anticancer, cytotoxic, and antitumor
properties have been evaluated [24–27] (Figure 2).

However, to the best of our knowledge, no studies on diosgenin- or testosterone-
carbamate derivatives have been published to date.

In the case of CRC, it is well established that colon carcinoma cells CT26 produce
prostaglandin E2 (PGE2), which induces cancer cell growth, migration, metastasis via
stimulation of the PGE2/EP4 receptor, and activation of extracellular signal-regulated
kinase (ERK) [28]. Recently, it has been proposed that the blockade of this receptor can
be used to ameliorate several human diseases, including cancer effects [29], and more
specific targeting of EP4 has been considered as a promising therapeutic approach for
CRC therapy [30,31]. Targeting receptors as cancer therapy is under extensive research,
and natural products have been tested as ligands for many receptors involved in cancer
development [32].

Thus, the synthesis of four steroidal carbamates, three derived from diosgenin and one
from testosterone, and the assessment of their cytotoxic activity in mouse colon carcinoma
CT26WT cells is described. In addition, a molecular docking study between these carba-



Int. J. Mol. Sci. 2022, 23, 8775 3 of 13

mates and the Human Prostaglandin E Receptor (EP4) has been performed. Theoretical
results are used to explain experimental in vitro activities.
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Figure 2. Recently reported in vitro and in vivo active steroidal carbamates [24–27].

2. Results and Discussion
2.1. Synthesis of Steroidal Carbamates

Synthesis of diosgenin derivatives 2 and 3 (Figure 3) have been previously reported [33].
Briefly, a diosgenin double bond is epoxidized, followed by enantioselective opening of
the obtained epoxides, and regioselective oxidation of the axial -OH group at C6. On the
other hand, synthesis of carbamate 4 was performed by reacting diosgenin with phenyl
isocyanate under Brønsted acid catalysis.
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Figure 3. Diosgenin derivatives 2 and 3, and steroidal carbamate 4.

Using this reaction, three new carbamates were synthesized, namely diosgenin car-
bamates 5 and 6, and testosterone carbamate 7 (Scheme 1). Conditions for condensation
reactions between hydroxysteroids and phenyl isocyanate under hydrochloric acid catalysis
are shown in Scheme 1.

All condensations were carried out in a chloroform solution at reflux temperature and
monitored by thin-layer chromatography (TLC) for 24–48 h. The pure compounds 5, 6, and
7 were separated from crude reaction mixtures by column chromatography with moderate
yields (55–68%). NMR spectra of compounds 5, 6 and 7 are given in Figure S1, Figure S2
and Figure S3, respectively.
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2.2. Antiproliferative Activity of Compounds 4, 5, 6, and 7 on CT26WT Cells

Cytotoxic effects of compounds 4, 5, 6, and 7 on CT26WT cells were evaluated by
assessing the alterations in cell morphology, and subsequently by measuring the 3-(4,5-
dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction. These assays
were used to determine the antiproliferative effects of carbamates on CT26WT cell growth
after 24 h of treatment. Results shown in Figure 4 indicate that all steroids exhibit inhibitory
effects on CT26WT cell growth in a concentration-dependent manner, and all differences
are statistically significant compared to untreated controls (p < 0.05).

Initial inhibitory effects of compounds 4, 5, 6, and 7 are observed at 25 µM, 12 µM,
6 µM, and 50 µM, respectively (Figure 4A–D). A comparison of cell viability in the presence
of carbamates at 25 µM indicates that the inhibitory activity follows the order: 7 < 4 = 5 < 6.
For the most active carbamate (6), an IC50 value of 26.8 µM was obtained, which is in
the same order of previously reported values in the literature for steroidal carbamates
derivatives [34,35].

On the other hand, morphological changes such as cell shrinkage, roundup, and
extensive cell detachment from the culture substratum were also observed, becoming
progressively visible with increasing concentrations of compounds 4–7, but were absent in
control cells (Figure 4Ea,b).
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Figure 4. Antiproliferative effects of 4–7 on CT26WT cells. Cells at the mid-log phase were seeded in
a 96-well plate at 1 × 104 cells density in 100 µL medium. After being cultured overnight, cells were
exposed to compounds 4, 5, 6, 7 (3, 6, 12, 25, 50 and 100 µM) and Placlitaxel (PTX) (50 µM) for 24 h.
The cells were incubated with MTT (5 mg/mL) for 4 h. Inhibitory effects of 4 (A), 5 (B), 6 (C) and 7 (D)
in cell viability of CT26WT cells were determined by the MTT assay. Data are presented as mean ± SD
(n = 3), results of an ANOVA, and the Dunnet Test. Significance: * p < 0.05, ** p < 0.01, *** p < 0.001 vs.
negative control (DMSO). (E) Representative pictures: (a) untreated cells, (b) morphological changes
induced by compound 6 at 50 µM.

2.3. Molecular Docking Study

Redocking experiments were carried out using the co-crystallized form of EP4 com-
plexed with ONO-AE3-208, an EP4 antagonist. Only slight structural differences were
found between the docked structure and its conformation in the experimental complex [36].
In these preliminary docking simulations, a low RMSD value (2.99 Å) was found, suggest-
ing the chosen parameters, such as location and size of the simulation box, were suitable.

Docking results obtained for 4, 5, 6, and 7 indicate that these compounds bind to EP4
with negative binding energies and a relatively large population of their clusters (Table 1).
According to Rosenfeld criteria [37], a binder will present low binding energy and a few
(max 2) different binding modes. In the case of compounds 4, 5, and 6, a small number
of different conformations with high population were obtained. On the other hand, four
clusters were found for 7, which is in good agreement with experimental results, suggesting
that this compound is the weakest growth inhibitor of CT26WT cell line. Despite these
outcomes, the energy obtained via docking experiments should be treated carefully because
it depends on several factors, such as the number and type of atoms and the number of
rotatable bonds of the tested ligand. This is the reason why contact-based analysis is useful
for understanding the biological behavior of analyzed compounds.
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Table 1. Binding energy and population of 4, 5, 6, and 7 into EP4 using AutoDock Vina [38].

Ligands Binding Mode Poses Number Energy (kcal/mol)

4
1 10 −9.76

2 10 −8.60

5
1 10 −7.43

2 9 −7.51

6
1 10 −8.29

2 9 −8.10

7

1 10 −8.90

2 3 −8.46

3 4 −8.52

4 3 −8.50

Afterwards, docking results were evaluated by performing automatic analysis of
poses using self-organizing maps (AuPosSOM). Ligands are clustered by considering the
similarity of their poses contact footprint with the EP4 receptor, and a tree map showing
contact footprint of all poses was obtained (Figure 5). For the sake of comparison, the
footprint of a co-crystallized inhibitor (ONO-AE3-208) has also been included. As displayed
in Figure 5, three major clusters were obtained, and the highest similarity with the ONO-
AE3-208 binding mode corresponds to compound 5 (Cluster 1. Figure 5). Only binding
modes 1 and 3 of compound 7 were considered for further analysis.
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A contact-based analysis using BINANA was performed to obtain an insight into
the kind and strength of ligand–receptor interactions (Table S1). As a general trend,
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only a few hydrogen bonds were found among the predicted conformations (Figure S4).
Compounds 4 (2) and 7 (1) exhibited polar interactions with T76 at 2.4 and 2.5 Å, re-
spectively, while 6 (1) formed a hydrogen bond (1.9 Å) with Y80. Interestingly, a polar
interaction between R316 and the hydroxyl group bound to C5 on the steroidal core of
compound 7 (2) was also observed. On the other hand, several van der Waals contacts
(<4.0 Å) were identified, with the most recurrent involving T76, Y80, R316, and V320; the
first three are crucial residues for ligand binding [27].

Binding modes of 4, 5, 6, and 7, are shown in Figure 6. Interestingly, in all poses except
for 5 (2), the N-phenyl-carbamoyl moiety was oriented towards residues of the second
transmembrane domain (TM2), while the steroid moiety was located between TM1 and
TM7 with the α-face of steroidal rings near to TM7 (Figure 6A). On the other hand, in
pose 5, (2) the N-phenyl-carbamoyl fragments were oriented towards TM1 and TM7 and
the steroidal moiety was also placed towards TM2 (Figure 6D). It is remarkable that only
6 (1) kept two short-distance interactions (<2.5 Å) with carbons at γ and δ positions of
R316 (Figure 6E,F), whereas 5 (2) formed a polar interaction with guanidine group of R316
at 2.4 Å. These interactions involved the proton from the 5-hydroxyl group, suggesting
B-ring functionalization with polar groups could be a positive feature in establishing strong
interactions with EP4. These results indicate that compound 6 should be the best EP4
antagonist, which is in line with the experimental data presented here.
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Theoretical volume values for compounds 4: 523.14, 5: 648.86, 6: 539.23, and 7: 395.30 Å3

were determined by Molinspiration [39]. Interestingly, binding modes obtained for com-
pounds with similar volumes such as 4 (Figure 7B,C) and 6 (Figure 7F), show that the
N-phenyl-carbamoyl fragment was located inside the cavity, similar to the co-crystalized
inhibitor (Figure 7A) where the steroidal moiety was blocking the active site entrance. Thus,
the lower antiproliferative activity of compound 5 could be attributed to its higher molec-
ular volume given by the two phenyl-carbamoyl groups. This structure does not fit into
the receptor cavity (Figure 7D,E) because of steric hindrance, and therefore gives a lower
number of common interactions with the control compound. On the other hand, compound
7, which had the lowest molecular volume, was inside the receptor cavity (Figure 7H) and
four different binding modes were found. These results suggest that molecules with large
or small volumes are not suitable for obtaining good modes of interaction with the receptor.
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3. Materials and Methods
3.1. General

All chemical reagents were purchased from Merck (Darmstadt, Germany), Fluka
(Darmstadt, Germany), or Sigma-Aldrich (St. Louis, MI, USA) and used without previous
purification. All solvents were distilled and stored over proper desiccants. Melting points
were measured on a BUCHI M-565 equipment. NMR spectra were recorded at 298 K on
400 NMR spectrometers, Varian Mercury (Varian, Palo Alto, CA, USA) and Avance Neo
400 Digital (Bruker, Rheinstetten, Germany), at 400 MHz and 101 MHz for 1H and 13C,
respectively. All spectra were referenced using the TMS signal or the residual peak of the
solvent. Chemical shifts (δ) are reported in ppm and coupling constants (J) are given in Hz.
A TripleToF 6600-1 (Sciex, MA, USA) mass spectrometer was used for high-resolution mass
spectrometry (HRMS). Silica gel (Merck, Darmstadt, Germany, 70–230 mesh) was used for
column chromatography and silica gel plates (Fluka, Darmstadt, Germany), and HF254 for
thin-layer chromatography (TLC). TLC spots were detected by heating after staining with
cerium molybdate in H2SO4. The cell viability analysis was conducted on a microplate
spectrophotometer (OMEGA) at 570 nm. All abbreviation used are listed in Table S2.

3.2. Methods of Synthesis
3.2.1. Synthesis of (25R)-5α-Hydroxy-spirostan-3β,6β-yl Phenylcarbamate (5)

To a solution of compound 2 (1.0 g, 2.2 mmol) in CHCl3 (50 mL), phenyl isocyanate
(2.44 mL, 22.3 mmol) and some drops of HCl (37% w/w in water) were added. The reaction
was refluxed for 48 h and followed by TLC (n-Hex/EtOAc 3:1). Next, the obtained solution
was concentrated to dryness. The crude product was purified by column chromatography
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(n-Hex/EtOAc 3:1) and compound 5 was obtained (0.84 g, 55% yield). Compound 5
white solid, m.p. 166–168 ◦C, Rf = 0.44 (CH2Cl2/EtOAc 6:1). 1H NMR (400 MHz, CDCl3)
(Figure S1) δ 7.40 (d, J = 8.0 Hz, 2H, H-2a), 7.36–7.23 (m, 6H, H-3a, H-2b, H-3b), 7.07 (t,
J = 7.2 Hz, 1H, H-4a), 7.03 (tt, J = 7.2 and 1.4 Hz, 1H, H-4b), 6.54 (s, 2H, NH), 5.30 (s, 1H,
C5-OH), 5.15 (tt, J = 11.0 and 5.4 Hz, 1H, H-3), 4.76 (d, J = 3.0 Hz, 1H, H-6), 4.39 (td, J = 8.4,
8.0 and 4.3 Hz, 1H, H-16), 3.51–3.43 (m, 1H, H-26 eq), 3.37 (t, J = 10.9 Hz, 1H, H-26 ax),
2.03–1.93 (m, 3H), 1.90–1.84 (m, 2H), 1.84–1.78 (m, 2H), 1.78–1.68 (m, 2H), 1.68 (s, 3H, H-19),
1.67–1.54 (m, 4H), 1.52–1.38 (m, 4H), 1.38–1.09 (m, 7H), 0.97 (d, J = 6.9 Hz, 3H, H-21), 0.80 (s,
3H, H-18), 0.78 (d, J = 6.3 Hz, 3H, H-27). 13C NMR (101 MHz, CDCl3) (Figure S1) δ 153.06
(NHCO-29), 152.74 (NHCO-30), 137.87 (C-1b), 137.68 (C-1a), 129.08 (C-3b), 129.00 (C-3a),
123.65 (C-4b), 123.33 (C-4a), 118.63 (C-2b and C-2a), 109.20 (C-22), 80.71 (C-16), 76.83 (C-6),
75.01 (C-5), 71.58 (C-3), 66.82 (C-26), 62.06 (C-17), 55.55 (C-14), 44.98 (C-9), 41.64 (C-20),
40.67 (C-13), 39.88 (C-12), 38.57 (C-10), 37.17 (C-4), 31.79 (C-1 and C-7), 31.65 (C-15), 31.38
(C-23), 30.44 (C-8), 30.29 (C-25), 28.79 (C-24), 26.97 (C-2), 20.86 (C-11), 17.11 (C-27), 16.66
(C-18), 16.59 (C-19), 14.47 (C-21). ESI-HRMS, calculated for C41H55N2O7: 687.4009 [M +
H]+ found: m/z 687.4047.

3.2.2. Synthesis of (25R)-5α-Hydroxy-6-oxo-spirostan-3β-yl Phenylcarbamate (6)

To a solution of compound 3 (1.0 g, 2.2 mmol) in CHCl3 (50 mL), phenyl isocyanate
(0.96 mL 1.12 mL, 8.8 mmol) and some drops of HCl (37% w/w in water) were added.
The reaction was refluxed for 24 h and followed by TLC (n-Hex/EtOAc 3:1). Next, the
obtained solution was concentrated to dryness. The crude product was purified via column
chromatography (n-hex/EtOAc 3:1) and compound 6 was obtained (0.86 g, 68% yield).
Compound 6 white solid, m.p. 264–266 ◦C, Rf = 0.32 (n-hex/EtOAc 3:1). 1H NMR (400 MHz,
CDCl3) (Figure S2) δ 7.32 (d, J = 7.7 Hz, 2H, H-2a), 7.29 (d, J = 7.1 Hz, 2H, H-3a), 7.09–7.00
(m, 1H, H-4a), 6.60 (s, 1H, NH), 5.04 (tt, J = 10.7 and 5.0 Hz, 1H, H-3), 4.41 (q, J = 7.8 and
6.3 Hz, 1H, H-16), 3.47 (ddd, J = 11.0, 4.6 and 1.9 Hz, 1H, H-26 eq), 3.36 (t, J = 10.9 Hz, 1H,
H-26 ax), 2.90 (s, 1H, C5-OH), 2.81–2.68 (m, 1H, H-7 ax), 0.97 (d, J = 6.8 Hz, 3H, H-27),
0.84 (s, 3H, H-19), 0.79 (d, J = 6.3 Hz, 3H, H-21), 0.75 (s, 3H, H-18). 13C NMR (101 MHz,
CDCl3) (Figure S2) δ 211.98 (C-6), 153.39 (NHCO), 137.83 (C-1a), 129.19 (C-3a), 123.69 (C-4a),
119.00 (C-2a), 109.42 (C-22), 80.64 (C-5), 80.48 (C-16), 71.70 (C-3), 67.00 (C-26), 62.18 (C-17),
56.20 (C-14), 44.48 (C-9), 42.65 (C-10), 41.96 (C-20) 41.76 (C-7), 41.22 (C-13), 39.71 (C-12),
36.92 (C-4), 32.96 (C-8), 31.70 (C-15), 31.49 (C-23), 30.42 (C-1), 29.70 (C-25), 28.93 (C-24),
26.76 (C-2), 21.37 (C-11), 17.27 (C-19), 16.56 (C-27), 14.59 (C-18), 14.18 (C-21). ESI-HRMS,
calculated for C34H48NO6: 566.3481 [M + H]+ found: m/z 566.3527.

3.2.3. Synthesis of 4-En-androst-17β-yl Phenylcarbamate (7)

To a solution of testosterone (1.0 g, 3.5 mmol) in CHCl3 (30 mL), phenyl isocyanate
(1.5 mL, 14 mmol) was added dropwise along with some drops of HCl (37% w/w in water).
The reaction mixture was refluxed for 36 h and followed by TLC (n-hex/EtOAc 5:1). Next,
the obtained solution was concentrated to dryness. The crude product was purified via
column chromatography (n-Hex/EtOAc 5:1) and compound 7 was obtained (0.95 g, 67%
yield). Compound 7 white solid, m.p. 290–291 ◦C. Rf = 0.53 (n-hex/EtOAc 5:1). 1H NMR
(400 MHz, CDCl3/DMSO-d6 6:1) (Figure S3) δ 7.78 (s, 1H, NH), 7.28 (d, J = 7.8 Hz, 2H,
H-2a), 7.16–7.07 (m, 2H, H-3a), 6.90–6.81 (m, 1H, H-4a), 5.56 (d, J = 1.7 Hz, 1H, H-4), 4.49
(t, J = 8.5 Hz, 1H, H-17), 2.33–2.19 (m, 2H), 2.24–2.10 (m, 2H), 2.06 (ddt, J = 15.7, 9.3 and
5.0 Hz, 1H), 1.88 (ddd, J = 13.4, 5.0 and 3.2 Hz, 1H), 1.77–1.66 (m, 2H), 1.62–1.49 (m, 2H),
1.51–1.38 (m, 2H), 1.34–1.23 (m, 1H), 1.23–1.14 (m, 1H), 1.19–0.98 (m, 2H), 1.04 (s, 3H, H-19),
0.99–0.92 (m, 1H), 0.92–0.86 (m, 1H), 0.81 (ddd, J = 12.2, 10.7 and 4.0 Hz, 1H), 0.73 (s, 3H,
H-18). 13C NMR (101 MHz, CDCl3/DMSO-d6 6:1) (Figure S3) δ 199.28 (C-3), 171.11 (C-5),
153.69 (NHCO), 138.40 (C-1a), 128.57 (c-3a), 123.54 (C-4), 122.58 (C-4a), 118.36 (C-2a), 82.68
(C-17), 53.43 (C-9), 49.91 (C-14), 42.25 (C-13), 38.38 (C-10), 36.43 (C-12), 35.38 (C-1), 35.14
(C-8), 33.66 (C-2), 32.49 (C-6), 31.19 (C-7), 27.39 (C-15), 23.12 (C-16), 20.28 (C-11), 17.13
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(C-19), 11.92 (C-18). ESI-HRMS, calculated for C26H34NO3: 408.2538 [M + H]+ found:
m/z 408.2555.

3.3. Anticancer Studies
3.3.1. Cell Line and Culture Condition

Mouse colon carcinoma CT26WT cells were acquired from the Immunology Molecular
Center, La Habana, Cuba. Cell cultures were grown in RPMI 1640 medium containing
10% fetal bovine serum (FBS), 100 IU/mL penicillin, and 100 µg/mL streptomycin. Cells
were kept in a humidified environment at 37 ◦C and an air atmosphere of 5% CO2. For
harvesting, cells were trypsinized using standard procedures.

3.3.2. Cell Viability Analysis

The MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay was
used to assess the effect of carbamates on the viability of CT26WT cells [40]. Briefly, cells at
the mid-log phase were seeded in a 96-well plate at 1 × 104 cells density in 100 µL medium.
After being cultured overnight, cells were exposed to compounds 4, 5, 6, and 7 (3, 6, 12,
25, 50, and 100 µM), and Paclitaxel (Taxol®) (50 µM). At the end of this period, cells were
incubated with MTT (Sigma, St. Louis, MO, USA) (5 mg/mL) for 4 h. The plates were
read in a microplate spectrophotometer (OMEGA) at 570 nm. The IC50 was determined
by fitting the viability percentage against concentration to a dose–response curve by using
six different concentrations. The percentage of viable cells was calculated as the relative
optical density compared to the control.

viability (%) =
OD values of treated samples

OD values of non − treated samples
× 100

3.4. Molecular Docking

The inhibition capacity of synthesized compounds to Human Prostaglandin E Receptor
EP4 (EP4) was predicted using molecular docking. The EP4 3D structure resolved by X-ray
diffraction PDB code: 5YWY resolution (R = 3.2 Å) [41] was downloaded from Protein
Data Bank (http://www.rcsb.org) The inhibitor ONO-AE3-208 that is the co-crystalized
ligand in 5YWY structure was used as the control compound. The 2D and 3D structures
of the synthetic ligands were obtained with ChemBioDraw Ultra 14.0 and optimized with
MOPAC 2016 (http://openmopac.net/) using AM1 semi-empirical Hamiltonian. Protein
and ligands PDB files were converted to PDBQT format using AutoDockTools. Partial
charges were calculated using the Gasteiger model. Nonpolar hydrogen atoms were
merged to the heavy atoms. In the case of ligands, rotatable bonds were set to default
using the TORSDOF utility in AutoDockTools [42]. All protein residues were kept rigid. A
simulation box of size 24 Å × 22 Å × 24 Å was built [38]. The center of the simulation box
was placed at the center of the active site.

Multiple rigid molecular docking simulations were performed using AutoDock Vina
1.1.2 program (Vina) [38]. The docking parameters were set to default except for the
following: exhaustiveness = 32 and num_modes = 2. Then, 10 independent runs were
carried out. The Vina-predicted enzyme–ligand complexes (20 docked poses per ligand)
were clustered using AuPosSOM [43,44]. This program grouped the ligands considering
the poses’ contact footprint with EP4 in comparison with ONO-AE3-208. The mean binding
energy (kcal/mol) was determined for each cluster. Then, a contact-based analysis of the
best-scoring pose in each group was carried out. Noncovalent interactions within ligands
and EP4 were determined using the Python-implemented computer algorithm BINANA
(Table S1) [45]. The binding modes of each ligand were represented using PyMOL 2.4.1.
(Figure S4).

http://www.rcsb.org
http://openmopac.net/
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4. Conclusions

The synthesis and full characterization of steroidal carbamates obtained from dios-
genin, including two of its derivatives, and testosterone have been described. The an-
tiproliferative effects of these compounds on mouse colon carcinoma CT26WT cells were
evaluated. Preliminary results show that all four carbamates possess antiproliferative
activity in a concentration-dependent manner (6 to 50 uM). Compound 6 turned out to
be the most active of this series, with a measured IC50 value equal to 26.8 uM, which
is in the same order of magnitude of those previously reported for steroidal carbamate
derivatives with anticancer properties. As a complement to this research, a molecular
docking study was performed using carbamates 4, 5, 6, and 7 as ligands and EP4 protein as
receptor. The obtained results show that all tested compounds exhibit a high level of affinity
towards this receptor. Analysis of poses and binding energies suggests that introduction of
hydroxyl and carbonyl substituents at position 5 and 6 in ring B of the steroidal core could
enhance antiproliferative activity via inhibition of the EP4 receptor. In summary, our results
indicate diosgenin and testosterone carbamates exhibit antiproliferative activity against
CRC, mainly via inhibition of the EP4 receptor. Additionally, this activity is determined
by the nature of substituent on the steroid chemical structure, and therefore these steroids’
carbamates can be used as a scaffold for developing potential anticancer agents.

Supplementary Materials: The supporting information can be downloaded at: https://www.mdpi.
com/article/10.3390/ijms23158775/s1.
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