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Background. Human leukocyte antigen (HLA) polymorphism influences innate and adaptive immune responses. Among het-
erosexual couples in the HPV Infection and Transmission Among Couples Through Heterosexual Activity (HITCH) cohort study, 
we examined whether allele sharing in a couple predicted the partners’ infections with the same human papillomavirus (HPV) type.

Methods. We tested genital samples from 271 couples for 36 HPV genotypes by polymerase chain reaction. We used direct DNA 
sequencing to type HLA-B07, -DRB1, -DQB1 and -G. Generalized estimating equations were used to examine the associations be-
tween the extent of allele sharing and HPV type concordance in which at least 1 of the partners was HPV positive.

Results. We identified 106 different HLA alleles. The most common HLA alleles among couples were G*01:01:01 (95.6%), 
G*01:01:02 (60.1%), DQB1*03:01 (57.2%), and DRB1*07:01 (46.9%). Allele sharing was as follows: 19.6% shared none, 43.2% shared 
1 only, 25.1% shared 2, and 12.5% shared 3–5. Irrespective of HLA class, grouped or in combination, the extent of allele sharing was 
not a significant predictor of type-specific HPV concordance in a couple (odds ratio, 1.1 [95% confidence interval, .5–2.1], for 3–5 
vs none).

Conclusions. We found no evidence that the extent of HLA allele concordance influences the likelihood of HPV transmission 
in newly formed heterosexual couples.
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Persistent human papillomavirus (HPV) infection causes 5% 
of all cancers worldwide. Nearly 10% of all female cancers, 
particularly cervical cancer, are caused by HPV [1, 2]. HPV 
is a common sexually transmitted infection in young women 
and men. Genital HPV infections are mostly transient and 
clear spontaneously in 12–24 months after acquisition [3, 4]. 
Characteristics that affect transmission of HPV infection in 
heterosexual couples are mostly behavioral, hormonal, or virus 
related [5]. Host genetic variation, particularly human leuko-
cyte antigen (HLA) polymorphism, is an important driver in 

HPV-associated cervical carcinogenesis [6]. However, little is 
known about the role of HLA polymorphism in the transmis-
sion of HPV within sexually active couples.

HLA genes influence innate and adaptive immune responses. 
The different HLA genes are classified into class I (HLA-A, -B, 
and -C) and class II (HLA-DRB and -DQB) alleles and the class 
Ib (HLA-G) alleles [7]. These different HLA alleles cluster in var-
ious genes that mediate antigen presentation and cell-mediated 
immune response by facilitating the recognition and clearance 
of virus-infected cells [8]. Sharing of HLA-B alleles seems to 
facilitate transmission of human immunodeficiency virus type 
1 (HIV-1) between serologically discordant heterosexual part-
ners [9]. Likewise, risk of vertical transmission of HIV-1 is in-
creased with HLA allele concordance between mother and child 
[10]. On the other hand, concordance of HLA-G alleles between 
mother and infant did not seem to affect vertical transmission of 
HPV infection between the mother and her neonate [11].

Among heterosexual couples in the HPV Infection and 
Transmission Among Couples Through Heterosexual Activity 
(HITCH) cohort study, we examined whether HLA-B07, -DRB1, 
-DQB1 and -G allele sharing in a couple predicted the partners’ 
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infections with the same HPV type. Our hypothesis was that 
HLA allele concordance would facilitate transmission of HPV 
infection by lowering the likelihood of HLA-mediated rejection 
of exfoliated HPV-harboring cells exchanged during sex.

MATERIALS AND METHODS

The HITCH study is a longitudinal cohort investigation con-
ducted at McGill University from May 2005 to January 2011 that 
enrolled young female university and junior college students 
(aged 18–24 years) and their male partners (at least 18 years old) 
whose sexual activity was initiated within the previous 6 months 
prior to enrollment. Study procedures have been described pre-
viously [12, 13]. In brief, participants completed computerized 
self-administered questionnaires and provided biologic samples 
for HPV assessment. Participants were asked to abstain from 
oral, vaginal, and anal sex for 24 hours prior to clinic visits. 
Women self-collected vaginal specimens using a Dacron swab 
and a clinic nurse collected penile and scrotal samples at each 
clinic visit for the men. The Linear Array HPV genotyping assay 
(Roche Molecular Systems) was used to detect 36 mucosal HPV 
genotypes (6, 11, 16, 18, 26, 31, 33, 34, 35, 39, 40, 42, 44, 45, 51, 
52, 53, 54, 56, 58, 59, 61, 62, 66, 67, 68, 69, 70, 71, 72, 73, 81, 82, 
83, 84, and 89). β-globin DNA was coamplified to assess DNA 
integrity. The ethical review committees of McGill University, 
Concordia University, and Université de Montréal approved the 
study. All participants provided written informed consent.

HLA Typing

Purified DNA from enrollment genital specimens collected at en-
rollment was used for HLA typing. HLA class I (B*07) was typed 
using polymerase chain reaction with sequence-specific primers 
as described previously [14]. HLA-DQB1 and -DRB1 alleles were 
determined by sequence-based typing with the Allele SEQR DRB1 
and Allele SEQR DQB1 assays (Abbott Molecular Diagnostics), 
respectively. HLA-G alleles were determined through direct 
DNA sequencing of the nucleotide regions encompassing the 
HLA-G exons 2–4 (1718 bp) as described previously [15]. The 
HLA-G 3ʹ untranslated region (UTR) genetic variants including 
the 14 bp deletion/insertion polymorphism was determined by 
DNA sequencing according to the protocol [16].

Statistical Analysis

Stata 12.0 software (StataCorp, College Station, Texas) was used 
for all statistical analyses. Genital HPV types, belonging to the 
genus Alphapapillomavirus, were categorized into 3 subgenera 
based on their phylogenetic relatedness, as follows: subgenus 
1: HPV types that cause genital warts or asymptomatic infec-
tions (6, 11, 40, 42, 44, and 54); subgenus 2: HPV types that 
have possible, probable, or proven carcinogenic effects (16, 18, 
26, 31, 33, 34, 35, 39, 45, 51, 52, 53, 56, 58, 59, 66, 67, 68, 69, 
70, 73, and 82); and subgenus 3: HPV types that cause mostly 
commensal vaginal infections (61, 62, 71, 72, 81, 83, 84, and 89) 
[17]. We combined the results for HPV type-specific positivity 

at enrollment and 4-month follow-up visits to derive a period 
prevalence estimate of HPV type-specific infections in females 
and males. Type-specific HPV concordance among partners 
in each couple (dyad) was restricted to couples positive for 
that type. For the sake of statistical precision, we only con-
sidered HLA alleles that were present in at least 5% of female 
or male participants. We analyzed type-specific HPV concord-
ance overall and grouped by HPV phylogenetic groups among 
couples according to the extent of allele sharing by HLA class 
and for all HLA polymorphisms combined. We used uncondi-
tional logistic regression for HLA level sharing and generalized 
estimation equations with logistic link for grouped HPV types.

RESULTS

We identified a total of 106 different HLA alleles among the 
evaluable 271 female and male participants. Table 1 shows the 
alleles that were prevalent in at least 5% of the participants. Since 
3 possibilities exist for each individual—that is, allele is absent, 
heterozygous (or heteroallelic), or homozygous (homoallelic)—
there are 3 × 3 = 9 possible combinations of allele sharing per 
couple. The most common HLA alleles among couples were 
G*01:01:01 (95.6%), G*01:01:02 (60.1%), DQB1*03:01 (57.2%), 
and DRB1*07:01 (46.9%), followed by other alleles that were 
present between 0% (not shown in table) and 37.6% among 
the couples. The HLA-G*14bp deletion occurred in 86.3% of 
the couples and the different HLA-G 3ʹUTR single-nucleotide 
polymorphisms (SNPs) ranged between 8.5% and 94.8%.

The number of couples by shared HLA alleles is shown in 
Table 2. To be sharing an HLA allele, the dyads both had to 
have at least 1 allele of a specific HLA type. The HLA alleles 
were grouped into different groups based on inclusiveness 
of the HLA classification. First, we considered sharing only 
for classical class I and II HLA loci (HLA-B*07, -DRB1, and 
-DQB1). A second grouping included sharing of nonclassical 
class I HLA-G loci. A third grouping considered the extent of 
allele sharing without distinction of HLA class. We further con-
sidered sharing of HLA-G alleles combined with the 3ʹUTR 
variants by creating 2 different sets as follows. The first set in-
cluded the 3ʹUTR 14 bp +3142 C/G and +3187 G/A together, 
based on knowledge of alleles that are in linkage disequilib-
rium. The second HLA-G group had all the HLA-G alleles and 
all HLA-G 3ʹUTR SNPs. The range of shared alleles varied be-
tween 0 and 6. Allele sharing among couples with all HLAs was 
as follows: 19.6% shared no alleles, 43.2% shared 1 only, 25.1% 
shared 2, and 12.5% shared between 3 and 5.

The type- and subgenus-specific HPV infection prevalence 
of the dyads is shown in Table 3. HPV-16 had the highest 
prevalence (22.88%), followed by HPV-84 (20.30%). Among 
types that were prevalent in at least 5% of the dyads, concord-
ance varied from 26.32% for HPV-40 to 71.43% for HPV-82. 
Subgenus 3 had the highest concordance among partners 
(56.08% [95% confidence interval, 46.78%–65.39%]).
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Table 1. Prevalence of Different Human Leukocyte Antigen (HLA) Allelesa and the HLA-G 3ʹ Untranslated Region Single-Nucleotide Polymorphisms Among 
271 Heterosexual Couples in the Human Papillomavirus Infection and Transmission Among Couples Through Heterosexual Activity (HITCH) Cohort Study

HLA 

HLA Genotype Concordance Among Couples (Frequencies Female/Male)

Ab/Ab Ab/Het Ab/Hom Het/Ab Het/Het Het/Hom Hom/Ab Hom/ Het Hom/Hom Total 

B*07 169 44 0 43 14 0 1 0 0 271

DRB1*01:01 222 20 1 26 2 0 0 0 0 271

DRB1*03:01 180 33 2 43 10 0 3 0 0 271

DRB1*04:01 216 30 0 21 3 0 1 0 0 271

DRB1*04:04 237 18 0 15 0 0 1 0 0 271

DRB1*07:01 144 63 3 43 16 1 1 0 0 271

DRB1*11:01 208 27 4 27 3 0 2 0 0 271

DRB1*11:04 224 20 2 21 3 0 1 0 0 271

DRB1*15:01 177 41 2 37 11 0 3 0 0 271

DRB1*16:01 243 13 1 11 1 1 0 0 1 271

DQB1*02:01 181 37 2 40 8 0 3 0 0 271

DQB1*02:02 174 50 4 32 9 1 1 0 0 271

DQB1*03:01 116 56 11 54 17 6 8 2 1 271

DQB1*03:02 175 34 5 44 7 1 5 0 0 271

DQB1*03:03 233 18 0 17 2 0 0 1 0 271

DQB1*04:02 242 9 0 16 2 0 2 0 0 271

DQB1*05:01 179 39 6 41 4 0 2 0 0 271

DQB1*05:02 237 16 1 13 1 1 1 0 1 271

DQB1*05:03 247 9 0 11 4 0 0 0 0 271

DQB1*06:02 174 36 3 40 14 0 3 1 0 271

DQB1*06:03 223 13 1 23 9 0 2 0 0 271

DQB1*06:04 235 17 0 17 2 0 0 0 0 271

G*01:01:01 12 43 16 49 69 24 15 29 14 271

G*01:01:02 108 48 8 55 29 4 12 7 0 271

G*01:01:03 218 26 0 23 3 0 1 0 0 271

G*01:03 219 27 0 25 0 0 0 0 0 271

G*01:04:01 179 42 3 33 10 0 2 2 0 271

G*01:06 213 32 1 20 5 0 0 0 0 271

G*14bp 37 40 21 41 58 16 20 23 10 266

+3001 C/T 248 4 0 9 5 0 0 0 0 266

+3003 T/C 155 30 12 43 9 2 9 3 3 266

+3010 G/C 130 5 52 7 1 5 52 4 11 267

+3027 C/A 234 17 0 12 3 0 1 0 0 267

+3035 C/T 207 32 0 23 4 0 1 0 0 267

+3142 C/G 55 22 27 25 41 31 27 28 11 267

+3187 G/A 14 14 26 15 25 47 29 38 59 267

+3196 C/G 129 32 8 34 25 9 20 8 2 267

Abbreviations: Ab, absent; Het, heterozygous; HLA, human leukocyte antigen; Hom, homozygous.
aOnly alleles with >5% prevalence among female or male participants are included.

Table 2. Number of Couples With Shared Human Leukocyte Antigen (HLA) Alleles or Shared HLA-G 3ʹ Untranslated Region Single-Nucleotide 
Polymorphisms in the Human Papillomavirus Infection and Transmission Among Couples Through Heterosexual Activity (HITCH) Cohort Study

No. of Shared 
Alleles 

No. of Couples Sharing Alleles According to Inclusiveness of 
HLA Classification No. of Couples Sharing HLA-G 3ʹUTR SNPs

HLA-B*07, -DRB1, -DQB1 Loci HLA-G Loci All HLA Loci HLA-G: 14 bp, +3142 C/G, +3187 G/A HLA-G: 14 bp and All 8 Different SNPs 

0 160 92 53 66 65

1 64 161 117 85 77

2 42 18 67 58 46

3 5 … 28 62 33

4 … … 5 … 38

5 … … 1 … 11

6 … … … … 1

Abbreviations: HLA, human leukocyte antigen; SNP, single-nucleotide polymorphism; UTR, untranslated region.
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Under the assumption that HPV type and subgenus con-
cordance implies transmission episodes within couples, we 
examined the effect of allele sharing on concordance among 
the 271 couples that were HPV positive. Allele prevalence could 
be complete (ie, both partners harboring the allele or partial) 
with only 1 member of the couple being positive for the allele. 
Table 4 shows odds ratios (ORs) of HPV infection concordance 
for the latter 2 categories relative to complete absence of the 

allele in the couple for HLA-B*07, -DRB1, and -DQB1 alleles. 
Similarly, Table 5 shows the equivalent results for HLA-G alleles 
and 3ʹUTR SNPs. A few entries in both tables indicated signifi-
cant associations between allele sharing and concordance (2 in 
Table 4 and 5 in Table 5). However, given the numbers of asso-
ciations examined in Table 4 (22 alleles × 4 HPV concordance 
outcomes × 2 sharing levels = 176 ORs) and in Table 5 (similar 
calculation for 15 alleles = 120 ORs), the 7 flagged associations 

Table 3. Type- and Group-Specific Human Papillomavirus (HPV) Prevalence and Couple Concordance Among the 271 Couples of the HPV Infection and 
Transmission Among Couples Through Heterosexual Activity (HITCH) Cohort Study

Subgenus and HPV Type F–/M– F–/M+ F+/M– F+/M+ Total 
Prevalence in  

Dyads Prevalence, % 
Concordance Within  

Positive Dyads, % (95% CI) 

Subgenus 1

  6 246 9 6 10 271 25 9.23 40.00 (23.40–59.26)

  11 268 1 0 2 271 3 1.11 66.67 (20.77–93.85)

  40 252 11 3 5 271 19 7.01 26.32 (11.81–48.79)

  42 230 13 8 20 271 41 15.13 48.78 (34.25–63.52)

  44 258 5 4 4 271 13 4.80 30.77 (12.68–57.63)

  52 246 2 9 14 271 25 9.23 56.00 (37.07–73.33)

  Subtotal 1500 41 30 55 1626 126 7.75 43.65 (31.63–55.57)

Subgenus 2

  16 209 15 11 36 271 62 22.88 58.06 (45.67–69.52)

  18 257 6 4 4 271 14 5.17 28.57 (11.72–54.65)

  26 271 0 0 0 271 0 0.00 …

  31 251 4 8 8 271 20 7.38 40.00 (21.88–61.34)

  33 262 4 3 2 271 9 3.32 22.22 (6.32–54.74)

  34 269 2 0 0 271 2 0.74 0.00 (.00–65.76)

  35 267 1 1 2 271 4 1.48 50.00 (15.00–85.00)

  39 240 12 5 14 271 31 11.44 45.16 (29.16–62.23)

  45 267 1 3 0 271 4 1.48 0.00 (.00–48.99)

  51 229 12 6 24 271 42 15.50 57.14 (42.21–70.88)

  53 234 13 8 16 271 37 13.65 43.24 (28.67–59.09)

  54 248 7 3 13 271 23 8.49 56.52 (36.81–74.37)

  56 246 11 7 7 271 25 9.23 28.00 (14.28–47.58)

  58 245 8 5 13 271 26 9.59 50.00 (32.06–67.94)

  59 248 6 5 12 271 23 8.49 52.17 (32.96–70.76)

  66 226 20 8 17 271 45 16.61 37.78 (25.11–52.37)

  67 243 9 10 9 271 28 10.33 32.14 (17.93–50.66)

  68 260 1 4 6 271 11 4.06 54.55 (28.01–78.73)

  69 271 0 0 0 271 0 0.00 …

  70 269 0 0 2 271 2 0.74 100.00 (34.24–100.00)

  73 249 7 6 9 271 22 8.12 40.91 (23.26–61.27)

  Subtotal 5261 139 97 194 5691 430 7.56 45.12 (38.73–51.50)

Subgenus 3

  61 250 10 4 7 271 21 7.75 33.33 (17.19–54.63)

  62 238 3 10 20 271 33 12.18 60.61 (43.68–75.32)

  71 271 0 0 0 271 0 0.00 …

  72 268 2 0 1 271 3 1.11 33.33 (6.15–79.23)

  81 263 1 0 7 271 8 2.95 87.50 (52.91–97.76)

  82 257 4 0 10 271 14 5.17 71.43 (45.35–88.28)

  83 266 1 1 3 271 5 1.85 60.00 (23.07–88.24)

  84 216 19 8 28 271 55 20.30 50.91 (38.08–63.62)

  89 221 10 10 30 271 50 18.45 60.00 (46.18–72.39)

  Subtotal 2250 50 33 106 2439 189 7.75 56.08 (46.78–65.39)

Any HPV 9011 230 160 355 9756 745 7.64 47.65 (43.07–52.24)

Data are presented as No. unless otherwise indicated.

Abbreviations: –, negative; +, positive; CI, confidence interval; F, female; HPV, human papillomavirus; M, male.
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Table 4. Association Between Within-Couple Sharing of Human Leukocyte Antigen B*07, DRB1, and DQB1 Alleles and Human Papillomavirus (HPV) Type 
Concordance by Subgenera Among the 271 Heterosexual Couples That Were HPV Positive

HLA Allele Level of Allele Sharinga 

OR (95% CI)

All HPVs Subgenus 1 Subgenus 2 Subgenus 3 

B*07 0 1.0 1.0 1.0 1.0

1 1.07 (.74–1.55) 1.12 (.53–2.39) 1.13 (.72–1.76) 0.82 (.43–1.56)

2 2.52 (.74–1.55) 2.74 (.24–31.47) 2.59 (.85–7.88) 3.18 (.34–29.34)

DRB1*01:01 0 1.0 1.0 1.0 1.0

1 1.00 (.63–1.60) 0.93 (.35–2.50) 0.86 (.49–1.52) 1.42 (.62–3.24)

2 2.57 (.36–18.32) 1.28 (.08–21.02) ND ND

DRB1*03:01 0 1.0 1.0 1.0 1.0

1 1.46 (.98–2.17) 1.42 (.62–3.27) 1.28 (.80–2.03) 1.65 (.83–3.29)

2 1.23 (.46–3.29) 1.40 (.09–23.05) 1.11 (.35–3.54) 1.20 (.30–4.79)

DRB1*04:01 0 1.0 1.0 1.0 1.0

1 1.02 (.66–1.59) 0.45 (.19–1.05) 1.10 (.66–1.86) 1.66 (.74–3.75)

2 1.17 (.21–6.59) NC 1.24 (.08–19.98) 1.77 (.16–20.19)

DRB1*04:04 0 1.0 1.0 1.0 1.0

1 1.12 (.63–2.02) 0.29 (.06–1.42) 1.20 (.60–2.38) 1.80 (.57–5.70)

2 … … … …

DRB1*07:01 0 1.0 1.0 1.0 1.0

1 0.82 (.57–1.17) 1.14 (.56–2.33) 0.63 (.41–.96) 1.02 (.55–1.90)

2 0.96 (.45–2.05) 0.91 (.15–5.75) 0.73 (.30–1.80) 1.48 (.40–5.44)

DRB1*11:01 0 1.0 1.0 1.0 1.0

1 1.13 (.75–1.70) 1.55 (.70–3.43) 1.05 (.65–1.70) 1.09 (.55–2.19)

2 3.51 (.36–34.27) ND ND ND

DRB1*11:04 0 1.0 1.0 1.0 1.0

1 1.14 (.73–1.80) 0.96 (.38–2.45) 1.22 (.70–2.11) 1.06 (.52–2.20)

2 ND ND ND ND

DRB1*15:01 0 1.0 1.0 1.0 1.0

1 1.30 (.90–1.88) 1.35 (.62–2.94) 1.51 (.97–2.34) 1.12 (.60–2.10)

2 0.89 (.31–2.52) 0.44 (.09–2.19) 1.46 (.41–5.18) ND

DRB1*16:01 0 1.0 1.0 1.0 1.0

1 0.79 (.43–1.47) 1.12 (.36–3.49) 0.65 (.30–1.44) 1.12 (.60–2.10)

2 2.34 (.37–14.80) ND 5.25 (.48–57.42) ND

DQB1*02:01 0 1.0 1.0 1.0 1.0

1 1.21 (.82–1.80) 1.09 (.48–2.50) 1.15 (.73–1.83) 1.27 (.64–2.51)

2 1.03 (.36–2.98) 1.32 (.08–21.72) 1.04 (.30–3.67) 0.87 (.20–3.73)

DQB1*02:02 0 1.0 1.0 1.0 1.0

1 1.01 (.69–1.48) 1.26 (.60–2.66) 0.80 (.51–1.27) 1.17 (.61–2.23)

2 0.81 (.36–1.80) 0.83 (.19–3.66) 0.73 (.27–1.97) 0.86 (.26–2.87)

DQB1*03:01 0 1.0 1.0 1.0 1.0

1 0.98 (.67–1.43) 0.98 (.46–2.09) 0.99 (.63–1.55) 1.05 (.56–1.99)

2 0.63 (.33–1.19) 1.36 (.41–4.44) 0.58 (.27–1.22) 0.50 (.15–1.70)

DQB1*03:02 0 1.0 1.0 1.0 1.0

1 0.77 (.52–1.14) 0.71 (.33–1.52) 0.79 (.49–1.26) 0.89 (.45–1.75)

2 0.79 (.30–2.05) ND 1.19 (.41–3.47) 0.52 (.08–3.26)

DQB1*03:03 0 1.0 1.0 1.0 1.0

1 0.85 (.52–1.41) 1.60 (.55–4.66) 0.76 (.42–1.36) 0.79 (.33–1.88)

2 ND ND ND ND

DQB1*04:02 0 1.0 1.0 1.0 1.0

1 1.01 (.58–1.78) 0.82 (.26–2.63) 1.37 (.71–2.66) 0.57 (.23–1.43)

2 1.15 (.14–9.27) ND 1.26 (.08–20.25) ND

DQB1*05:01 0 1.0 1.0 1.0 1.0

1 1.12 (.77–1.64) 1.08 (.51–2.29) 0.97 (.61–1.52) 1.64 (.85–3.15)

2 1.14 (.31–4.17) 0.65 (.06–7.49) 1.93 (.40–9.39) 0.47 (.04–5.45)

DQB1*05:02 0 1.0 1.0 1.0 1.0

1 1.03 (.57–1.87) 1.59 (.51–4.95) 0.83 (.39–1.76) 0.57 (.23–1.43)

2 2.40 (.38–15.20) ND 5.36 (.49–58.90) ND

DQB1*05:03 0 1.0 1.0 1.0 1.0
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could be due to chance. Moreover, no pattern emerged for the 
few identified associations. In the interest of conservatism, we 
repeated the analyses shown in Tables 4 and 5 for selected alleles 
but by rearranging the partner genetic categories as (1) allele 
not present in either partner or in 1 partner only; (2) presence 
in both partners (both heterozygous or 1 heterozygous and the 
other homozygous); (3) both partners homozygous. Again, no 
patterns of association emerged that could not be due to chance 
(Supplementary Table 1).

Finally, we evaluated the extent of HLA sharing irrespective 
of HLA class, grouped or in combination, and HPV concord-
ance between the dyads (Table 6). There was no discernible pat-
tern or trend of association between the extent of allele sharing 
and HPV type concordance, and the 5 entries in the table that 
were significant at the 5% level could have been due to chance, 
owing to the high number of associations examined.

DISCUSSION

The role of different host factors in transmission of HPV in-
fections between heterosexual couples is not well known. Since 
antigen processing as the initiating step in immune response re-
quires mediation via HLA [8], we hypothesized that HLA allele 
sharing between partners would facilitate transmission of HPV 
infections within heterosexual couples. Our HITCH cohort of 
young couples provides a suitable observational study design 
to study the role of HLA polymorphism on HPV transmission. 
As a strength, all HITCH couples had recently initiated their 
sexual relationship, when most HPV transmission episodes are 
known to occur [18, 19]. We also had high-resolution typing for 
106 different HLA alleles investigated with substantial (48%) 
between-partner type-specific HPV concordance, our surro-
gate endpoint for considering that transmission had occurred.

We did not find evidence to support our hypothesis. Allele 
sharing, individually or in combination over multiple loci, was 

not statistically associated (beyond chance expectation) with 
presumed infection transmission using different HPV type 
groupings chosen according to biological behavior and patho-
genetic propensity.

HLA genetic variation has been demonstrated to affect risk of 
HPV-related cervical cancer, especially with HLA class I and II 
loci molecules [6, 20–22]. Deletions in HLA-B alleles are associ-
ated with cervical carcinogenesis [6, 22]. A recent meta-analysis 
found the class II alleles HLA-DQR*02, -*03, and -*06:03 to de-
crease and HLA-DQB1*05, -*03:01, and -*04:02 to increase risk 
of cervical cancer [20], while a genome-wide study concluded 
HLA-DRB1*06:02 and -*15:01 to be major risk alleles in cer-
vical carcinogenesis [6]. None of the above class I and II HLA 
alleles were associated with HPV transmission in our couples 
study.

The nonclassical class Ib HLA-G molecules have been sug-
gested to play a prognostic or risk marker role because of 
HLA-G alleles’ relatively low polymorphism rate and restricted 
tissue distribution compared to other HLA molecules [23]. 
Different HLA-G alleles were shown to have a distinctive role in 
the reproductive system of females and males [24, 25] and also 
in other cancers and infections by facilitating their escape from 
immune surveillance [26]. HLA-G was shown to be impor-
tant in mother-to-child transmission of HIV infection, mainly 
because of its preferential expression at the maternal-fetal in-
terface and its immunosuppressive properties [10, 27–29]. A re-
cent study investigated the role of HLA-G alleles in the vertical 
transmission of HPV infection but could not confirm HLA-G 
allele sharing to impact the HPV transmission between mother 
and child at birth or perinatally [11]. Few studies showed HLA-
G*01:01:01, -*01:01:03, and -*01:01:05 and the HLA-G 14bp 
deletion to be associated with HPV infection or cervical cancer 
among women [15, 30–32]. Our results could not confirm 
HLA-G alleles to mediate risk of HPV transmission between 
partners.

HLA Allele Level of Allele Sharinga 

OR (95% CI)

All HPVs Subgenus 1 Subgenus 2 Subgenus 3 

1 1.34 (.70–2.56) 0.91 (.25–3.28) 1.09 (.51–2.32) 2.93 (.93–9.22)

2 1.41 (.34–5.85) 3.99 (.43–37.01) 0.95 (.17–5.16) 0.90 (.57–14.36)

DQB1*06:02 0 1.0 1.0 1.0 1.0

1 1.09 (.75–1.60) 1.15 (.52–2.53) 1.19 (.76–1.86) 1.05 (.55–2.00)

2 1.04 (.48–2.26) 0.53 (.13–2.11) 1.69 (.66–4.31) 0.83 (.20–3.52)

DQB1*06:03 0 1.0 1.0 1.0 1.0

1 0.82 (.47–1.44) 0.74 (.23–2.40) 0.95 (.48–1.87) 0.72 (.29–1.82)

2 0.76 (.29–1.99) 0.40 (.08–1.99) 0.80 (.23–2.85) 1.70 (.29–9.98)

DQB1*06:04 0 1.0 1.0 1.0 1.0

1 1.32 (.78–2.25) 1.09 (.43–2.76) 1.85 (.98–3.49) 0.77 (.26–2.24)

2 0.77 (.12–4.91) ND 0.79 (.11–.96) ND

Significant ORs are shown in bold.

Abbreviations: CI, confidence interval; HLA, human leukocyte antigen; HPV, human papillomavirus; ND, not determined; OR, odds ratio.
a0, allele not present in either partner; 1, presence in 1 partner; 2, presence in both partners.

Table 4. Continued
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In conclusion, our results do not support a role for HLA allele 
sharing in influencing transmission of genital HPV infection. 
HPV transmission within heterosexual couples is likely to be a 
more complex combination of host and environmental factors.

Supplementary Data

Supplementary materials are available at The Journal of Infectious 
Diseases online. Supplementary materials consist of data pro-
vided by the author that are published to benefit the reader. The 

Table 5. Association Between Within-Couple Sharing of Human Leukocyte Antigen G Alleles and 3ʹ Untranslated Region Single-Nucleotide Polymorphisms 
and Human Papillomavirus (HPV) Type Concordance by Subgenera Among the 271 Heterosexual Couples That Were HPV Positive

HLA-G Allele/Variant Level of Allele Sharinga 

OR (95% CI)

All HPVs Subgenus 1 Subgenus 2 Subgenus 3 

01:01:01 0 1.0 1.0 1.0 1.0

1 0.83 (.30–2.28) 0.86 (.38–1.96) 0.85 (.24–2.94) 0.40 (.07–2.32)

2 0.84 (.31–2.32) ND 0.71 (.20–2.45) 0.97 (.17–5.68)

01:01:02 0 1.0 1.0 1.0 1.0

1 1.01 (.69–1.47) 3.29 (1.52–7.15) 0.79 (.50–1.24) 0.95 (.50–1.81)

2 0.84 (.47–1.51) 2.07 (.63–6.80) 0.74 (.37–1.49) 0.70 (.26–1.87)

01:01:03 0 1.0 1.0 1.0 1.0

1 0.55 (.35–.87) ND 0.65 (.38–1.12) 0.36 (.12–1.03)

2 1.23 (.80–1.18) ND 0.67 (.10–4.62) ND

01:03 0 1.0 1.0 1.0 1.0

1 1.03 (.64–1.65) 0.71 (.26–1.91) 1.01 (.58–1.78) 1.24 (.54–2.85)

2 … … … …

01:04:01 0 1.0 1.0 1.0 1.0

1 0.97 (.66–1.42) 0.57 (.26–1.25) 1.21 (.77–1.90) 0.70 (.37–1.34)

2 0.83 (.36–1.91) 0.27 (.03–2.41) 1.20 (.45–3.22) 0.59 (.17–2.06)

01:06 0 1.0 1.0 1.0 1.0

1 0.98 (.60–1.62) 0.49 (.22–1.09) 0.96 (.52–1.77) 0.67 (.30–1.50)

2 0.89 (.30–2.62) ND 1.09 (.33–3.63) 1.16 (.19–7.26)

14 bp 0 1.0 1.0 1.0 1.0

1 1.05 (.62–1.80) 1.20 (.43–3.38) 0.98 (.51–1.87) 0.96 (.37–2.49)

2 0.73 (.42–1.26) 1.81 (.62–5.26) 0.55 (.28–1.06) 0.83 (.56–3.16)

+3001 C/T 0 1.0 1.0 1.0 1.0

1  2.21 (.91–5.34) 4.08 (.87–19.15) 1.85 (.71–4.84) 1.69 (.30–9.59)

2  0.92 (.22–3.82) ND 0.81 (.19–3.51) ND

+3003 T/C 0 1.0 1.0 1.0 1.0

1 1.35 (.93–1.95) 1.05 (.51–2.14) 1.40 (.91–2.17) 1.61 (.81–3.18)

2 0.50 (.19–1.33) 1.32 (.08–21.95) 0.40 (.13–1.24) 0.94 (.13–6.93)

+3010 G/C 0 1.0 1.0 1.0 1.0

1 0.99 (.68–1.42) 1.85 (.91–3.76) 1.13 (.73–1.74) 0.49 (.26–.94)

2 1.23 (.62–2.44) 1.88 (.47–7.54) 1.22 (.54–2.76) 0.90 (.27–3.05)

+3027 C/A 0 1.0 1.0 1.0 1.0

1 0.69 (.39–1.21) 0.74 (.21–2.67) 0.86 (.45–1.65) 0.40 (.14–1.17)

2 1.32 (.22–7.97) ND 0.71 (.11–4.80) ND

+3035 C/T 0 1.0 1.0 1.0 1.0

1 0.77 (.48–1.24) 0.97 (.32–2.96) 0.76 (.44–1.32) 0.80 (.34–1.92)

2 0.99 (.28–3.55) 2.78 (.25–30.88) 0.80 (.22–2.96) ND

+3142 C/G 0 1.0 1.0 1.0 1.0

1 0.98 (.61–1.57) 1.53 (.62–3.78) 0.98 (.55–1.74) 0.66 (.29–1.54)

2 0.89 (.56–1.40) 1.49 (.60–3.66) 1.03 (.60–1.78) 0.48 (.21–1.08)

+3187 G/A 0 1.0 1.0 1.0 1.0

1 1.02 (.49–2.11) 0.61 (.17–2.23) 1.89 (.76–4.69) 0.14 (.02–1.18)

2 0.95 (.47–1.90) 1.14 (.34–3.87) 1.51 (.64–3.58) 0.14 (.02–1.18)

+3196 C/G 0 1.0 1.0 1.0 1.0

1 0.96 (.65–1.43) 2.58 (1.18–5.66) 0.96 (.60–1.53) 0.63 (.32–1.24)

2 1.10 (.66–1.81) 4.23 (1.52–11.76) 0.93 (.51–1.69) 0.78 (.34–1.79)

Significant ORs are shown in bold. 

Abbreviations: CI, confidence interval; HLA, human leukocyte antigen; HPV, human papillomavirus; ND, not determined; OR, odds ratio. 
a0, allele not present in either partner; 1, presence in 1 partner; 2, presence in both partners. 
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posted materials are not copyedited. The contents of all supple-
mentary data are the sole responsibility of the authors. Questions 
or messages regarding errors should be addressed to the author.
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