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Abstract: Palladium immobilized on an amide and ether functionalized porous organic polymer
(Pd@AEPOP) is reported to be an effective heterogeneous catalyst for the Heck cross-coupling reaction
of aryl iodides with styrene for the synthesis of diphenylethene derivatives. Excellent yields can
be obtained using a 0.8 mol% Pd catalyst loading under the optimized reaction condition. The
heterogeneous Pd@AEPOP catalyst can also be applied on the Suzuki reaction and the reduction
of nitroarene.
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1. Introduction

As Nobel reactions, the Suzuki reaction and Heck reaction have a wide range of
applications in organic synthetic chemistry [1–4]. The bi-aryl products are multipurpose
building blocks in pharmaceuticals, agrochemicals and semiconductor materials such as
organic light emitting diodes [5]. The cross-coupling reaction is one of the most important
methods for the direct synthesis of related products [6]. In the past decades, a wide range of
coupling reactions has been catalyzed effectively by palladium catalysts to form the carbon–
carbon bond [7–13]. In order to reduce the reaction cost and expand the catalytic application,
several metals have displayed analogous catalytic ability in this transformation [14]. Except
for the noble metals, such as Au [15,16], Ru [17], Pt [18] and Ag [19], the low-cost transition
metals, such as Cu [20], Ni [21], Co [22] and Fe [23], have also been investigated by chemists.
However, compared with the Pd catalyst, other metal catalyzed coupling reactions still have
many disadvantages, such as the low catalyst utilization rate, the ligands with complex
structures, and the limited range of substrate scopes. The Pd-catalyzed coupling reactions
are still the most popular research. However, palladium has a number of drawbacks, such
as it being expensive, sensitive to air and moisture, and difficult to recover.

In order to improve the catalytic efficiency of Pd, remarkable research has been ac-
complished. Among this research, nano-catalysis is an emerging method [24–28]. Recently,
considerable attention has been paid to the Pd nanoparticles (NPs). Several Pd nano-
catalysts have displayed outstanding catalytic activity in cross-coupling reactions [29–32].
Existing studies indicated that the catalytic activity of Pd NPs is related to their intrinsic
shape and size [33]. Hence, it is very important to confine the growth of NPs and control
the size of NPs. However, due to the high surface energy, narrow sized metal particles tend
to aggregate. It remains a standing challenge to obtain stable Pd NPs with a narrow size
and thus outstanding catalytic activity. In our previous studies, we reported several porous
organic polymers with diverse linked groups and well-defined pore structures [34–36].
In order to continue our efforts to extend the catalytic application of heterogeneous Pd
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NP catalysts, herein, we report a Pd NP supported on an amide and ether functionalized
porous organic polymer (Pd@AEPOP) as an efficient and recyclable catalyst for Heck and
Suzuki coupling.

2. Results and Discussion

The synthetic method of Pd@AEPOP is shown in Scheme 1. The typical synthesis
for AEPOP was described in the previous report [37]. Subsequently, the supported Pd
nanoparticles’ (NPs) catalyst, named Pd@AEPOP, is prepared by mixing AEPOP with
H2PdCl4 with reduction by NaBH4. The Pd content is 4.38% from ICP (inductively coupled
plasma) analysis.
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Scheme 1. Preparation of Pd@AEPOP.

Though the characterization of APOP has been well indicated. The molecular structure
of AEPOP is also confirmed by the 13C CP-MAS solid state NMR spectrum. As shown in
Figure 1, the characteristic resonance signals at 232.25, 165.83, 155.92, 133.39 and 121.83 ppm
are observed. The signal at 232.25 corresponds to the carbonyl carbon, whereas the four
strong signals that appeared from 165.83 to 121.83 ppm may originate from the four different
aromatic carbons.
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The porosity and morphology of AEPOP was described by SEM. As shown in Figure 2a,
it is clear that AEPOP has a coralline-like morphology. The aperture in the surface can
accommodate the Pd particles. The HR-TEM analysis shown in Figure 2b–f provides
the morphology and shape of Pd@AEPOP. Figure 2b give the dispersity of Pd NPs at a
large scale (50 nm). The dispersibility is unsatisfactory, and it looks like the Pd particles
agglomerate. However, the enlarged photo, Figure 2c, shows that the Pd particles are
separated from each other. According to the statistics regarding the Pd particles, an average
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particle size of approximately 5–8 nm is observed. Figure 2d,e show the clear morphology
and the shape of Pd NPs with enlarged images (5 nm). It is clear that the Pd particles are
nanoparticles. The diffraction fringe of Pd is clearly visible from Figure 2f in the red pane.
The boundary is distinct between the two different Pd particles.
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Figure 2. SEM and TEM characterizations of AEPOP and Pd@AEPOP. (a) SEM image of AEPOP,
(b–e) Pd NPs in different scales, (f) diffraction fringe of Pd.

Then the structural regularity and crystalline nature of Pd@AEPOP was determined
by powder PXRD analysis. The PXRD pattern of Pd@AEPOP (blue line) gives new small
peaks at 2θ values 39.84 and 45.88 as shown in Figure 3. The values can be assigned to the
refractions of (111) and (200) of Pd NPs, respectively.

The Pd@AEPOP was also confirmed by FTIR spectroscopy. As shown in Figure S1 in
the Supplementary Materials, the IR spectroscopy of Pd@AEPOP (blue line) has no obvious
change compared with AEPOP (red line). However, the Pd content is higher than that in
our previous work. The results indicate that the Pd NPs may be embedded into the porous
material by physical absorption.

In order to evaluate the catalytic activity of the Pd@AEPOP catalyst for cross-coupling
reactions, the Heck reaction of 4-methyl iodobenzene with styrene is selected as the model
reaction. Several conditions are examined for the Heck reaction, and the results are sum-
marized in Table 1. Using 20 mg of the Pd@AEPOP catalyst, the screening of the solvents
reveals that DMF is the best solvent with a 40% yield (entries 1–4). Then various bases were
tested (entries 5, 6). The organic base Et3N is found to be the best base with a 55% yield.
Then a 99% yield can be achieved by the screening of temperature, at 120 ◦C (entry 9). The
best yield of 95% is obtained by prolonging the reaction time to 10 h (entry 10).



Molecules 2022, 27, 4777 4 of 9
Molecules 2022, 27, x FOR PEER REVIEW 4 of 10 
 

 

 
Figure 3. PXRD patterns of AEPOP and Pd@AEPOP. 

The Pd@AEPOP was also confirmed by FTIR spectroscopy. As shown in Figure S1 in 
the Supplementary Materials, the IR spectroscopy of Pd@AEPOP (blue line) has no obvi-
ous change compared with AEPOP (red line). However, the Pd content is higher than that 
in our previous work. The results indicate that the Pd NPs may be embedded into the 
porous material by physical absorption. 

In order to evaluate the catalytic activity of the Pd@AEPOP catalyst for cross-cou-
pling reactions, the Heck reaction of 4-methyl iodobenzene with styrene is selected as the 
model reaction. Several conditions are examined for the Heck reaction, and the results are 
summarized in Table 1. Using 20 mg of the Pd@AEPOP catalyst, the screening of the sol-
vents reveals that DMF is the best solvent with a 40% yield (entries 1–4). Then various 
bases were tested (entries 5, 6). The organic base Et3N is found to be the best base with a 
55% yield. Then a 99% yield can be achieved by the screening of temperature, at 120 °C 
(entry 9). The best yield of 95% is obtained by prolonging the reaction time to 10 h (entry 
10). 

Table 1. Identification of reaction conditions a. 

 
Entry Base Solvent Temp. Time (h) Yield b 

1 K2CO3 DMSO 90 5 Trace 
2 K2CO3 DMF 90 5 36 
3 K2CO3 H2O 90 5 10 
4 K2CO3 DMF 90 5 40 
5 Et3N DMF 90 5 55 
6 Cs2CO3 DMF 90 5 Trace 
7 Et3N DMF 100 5 63 
8 Et3N DMF 110 5 71 

Figure 3. PXRD patterns of AEPOP and Pd@AEPOP.

Table 1. Identification of reaction conditions a.

Molecules 2022, 27, x FOR PEER REVIEW 4 of 10 
 

 

 
Figure 3. PXRD patterns of AEPOP and Pd@AEPOP. 

The Pd@AEPOP was also confirmed by FTIR spectroscopy. As shown in Figure S1 in 
the Supplementary Materials, the IR spectroscopy of Pd@AEPOP (blue line) has no obvi-
ous change compared with AEPOP (red line). However, the Pd content is higher than that 
in our previous work. The results indicate that the Pd NPs may be embedded into the 
porous material by physical absorption. 

In order to evaluate the catalytic activity of the Pd@AEPOP catalyst for cross-cou-
pling reactions, the Heck reaction of 4-methyl iodobenzene with styrene is selected as the 
model reaction. Several conditions are examined for the Heck reaction, and the results are 
summarized in Table 1. Using 20 mg of the Pd@AEPOP catalyst, the screening of the sol-
vents reveals that DMF is the best solvent with a 40% yield (entries 1–4). Then various 
bases were tested (entries 5, 6). The organic base Et3N is found to be the best base with a 
55% yield. Then a 99% yield can be achieved by the screening of temperature, at 120 °C 
(entry 9). The best yield of 95% is obtained by prolonging the reaction time to 10 h (entry 
10). 

Table 1. Identification of reaction conditions a. 

 
Entry Base Solvent Temp. Time (h) Yield b 

1 K2CO3 DMSO 90 5 Trace 
2 K2CO3 DMF 90 5 36 
3 K2CO3 H2O 90 5 10 
4 K2CO3 DMF 90 5 40 
5 Et3N DMF 90 5 55 
6 Cs2CO3 DMF 90 5 Trace 
7 Et3N DMF 100 5 63 
8 Et3N DMF 110 5 71 

Entry Base Solvent Temp. Time (h) Yield b

1 K2CO3 DMSO 90 5 Trace
2 K2CO3 DMF 90 5 36
3 K2CO3 H2O 90 5 10
4 K2CO3 DMF 90 5 40
5 Et3N DMF 90 5 55
6 Cs2CO3 DMF 90 5 Trace
7 Et3N DMF 100 5 63
8 Et3N DMF 110 5 71
9 Et3N DMF 120 5 75

10 Et3N DMF 120 10 95
a Reaction conditions: 4-methyl iodobenzene 1 mmol, styrene 1.2 mmol, Pd@AEPOP (20 mg, 0.8 mol% Pd content),
base 1.5 mmol, solvent 2 mL. b Isolated yield.

With the optimized reaction conditions in hand, various substitutional aryl iodides
were tested and the results are summarized in Table 2. Using styrene as a standard
substance, an excellent yield can be achieved for different aryl iodides containing both
electron-donating (Me, tBu) and electron-withdrawing (Cl) groups (Table 2, entries 1–4).
Then the ethylacrylate is also used as a standard substance, and various substitutional aryl
iodides also give excellent yields (Table 2, entries 5–11). The aryl bromide and chloride
substrates were also extended. Unfortunately, no products were observed.

Then the recyclability of the Pd@AEPOP catalyst is tested. After the end of the model
reaction, the Pd@AEPOP was separated by simple centrifugation. Then the catalyst was
used for the next catalysis after washing by DMF and drying. As shown in Scheme 2,
the catalyst can be recycled nine times. The decrease in activity may result from the loss
of the Pd in the recycling processes. Hence, we also carried out the ICP analysis for the



Molecules 2022, 27, 4777 5 of 9

final Pd@AEPOP catalyst after the tenth use and the Pd content was 3.96%. In view of the
possible physical adsorption of Pd particles on the porous organic polymer, the results of
recyclability are satisfactory.

Table 2. Substrate scopes of Heck reactions a.
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Most existing reports about Pd NPs’ catalysis focus mainly on the Suzuki cross-
coupling reaction. Hence, the performance of the Pd@AEPOP catalyst for the Suzuki
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reaction is investigated, and the results are shown in Scheme 3. Under the standard
condition in this paper, a 99% yield is obtained (condition 1). The Suzuki reaction also
proceeds under more the mild and eco-friendly condition 2 using water as a solvent. The
Pd@AEPOP catalyst can also be applied for the reduction of nitroarenes using NaBH4 as a
reductant with 99% yield.
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3. Experimental Section
3.1. Materials

The amide and ether functionalized porous organic polymer was prepared via the
reaction of 4,4′-diaminodiphenyl ether with 1,3,5-benzenetricarbonyl chloride. The AEPOP
was well characterized in our previous report.

3.2. Synthesis of Pd@AEPOP

In total, 10 mL of H2PdCl4 (12 mg Pd/mL) was added to the mixture of 2 g AEPOP
with 300 mL H2O under stirring at room temperature. The reaction was stirred for 24 h.
Then a solution of 856 mg NaBH4 in 100 mL H2O was added to the reaction slowly. The
resulted mixture was stirred for 12 h at room temperature. Finally, the solid was filtered
and washed by MeOH and water three times. The product was dried under vacuum at
130 ◦C for further use.

3.3. General Procedure for Heck Reaction

Solutions of 20 mg Pd@AEPOP, 1 mmol iodobenzene, 1.2 mmol styrene, 1.5 mmol
Et3N were mixed with 2 mL DMF in glass tube. Then the reaction was carried by 120 ◦C for
10 h. After reaction, the mixture was cooled and extracted with 20 mL diethyl ether three
times. The combined organic layer was dried (Na2SO4) and concentrated to give crude
product. The desired product was purified by flash column chromatography on silica gel
(petroleum ether and ethyl acetate).

3.4. General Procedure for Recycling Experiment

Solutions of 20 mg Pd@AEPOP, 1 mmol iodobenzene, 1.2 mmol styrene, 1.5 mmol
Et3N were mixed with 2 mL DMF in glass tube (Scheme 2). Then the reaction was carried
out at 12 ◦C for 10 h. After the reaction, the solid was separated by centrifugation. The
liquid was further processed according to Section 3.3 to obtain the yield. The solid was
washed by DMF and dried. Then the reclaimed catalyst was reused next time.
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3.5. General Procedure for Suzuki Reaction

Condition 1: 20 mg Pd@AEPOP, 1 mmol iodobenzene, 1.5 mmol arylboronic acids,
and 1.5 mmol Et3N were mixed in 2.0 mL DMF in glass tube (Scheme 3). Then the reaction
was carried out at 120 ◦C for 10 h. After reaction, the mixture was cooled and extracted
with 20 mL diethyl ether three times. The combined organic layer was dried (Na2SO4) and
concentrated to give crude product. The desired product was purified by flash column
chromatography on silica gel (petroleum ether).

Condition 2: 10 mg Pd@AEPOP, 1 mmol iodobenzene, 1.5 mmol arylboronic acids,
and 2 mmol K2CO3 were mixed in 2.0 mL water in glass tube (Scheme 3). Then the reaction
was carried out at 80 ◦C for 1 h. After reaction, the mixture was cooled and extracted with
20 mL diethyl ether three times. The combined organic layer was dried (Na2SO4) and
concentrated to give crude product. The desired product was purified by flash column
chromatography on silica gel (petroleum ether).

3.6. General Procedure for Reduction of Nitroarene

Solutions of 10 mg Pd@AEPOP, 1 mmol nitroarenes were mixed with 2.0 mL water.
Then 5 mmol NaBH4 was added to the reaction slowly (Scheme 3). Then the reaction was
stirred 30 min at room temperature. The reaction was extracted with 20 mL diethyl ether
three times. The combined organic layer was dried (Na2SO4) and concentrated to give
crude product. The desired product was purified by flash column chromatography on
silica gel (petroleum ether and ethyl acetate).

4. Conclusions

In conclusion, an efficient method for the Heck cross-coupling reaction of aryl iodides
with styrene for the synthesis of a di-aryl ethene derivative using Pd@AEPOP as an active
and reusable catalyst has been developed. Under optimized reaction conditions, an excel-
lent yield was achieved by a 0.8 mol% palladium catalyst loading. The Pd catalyst can be
recycled nine times without an obvious decrease in activity. Moreover, the catalyst can also
be applied for the Suzuki reaction and reduction of nitroarene.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10.3
390/molecules27154777/s1, Figure S1: FT-IR spectra of AEPOP and Pd@AEPOP.
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