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Abstract: Ultra-high molecular weight polyethylene (UHMWPE) remains the gold standard acetabular bearing material 

for hip arthroplasty. Its successful performance has shown consistent results and survivorship in total hip replacement 

(THR) above 85% after 15 years, with different patients, surgeons, or designs. 

As THR results have been challenged by wear, oxidation, and liner fracture, relevant research on the material properties in 

the past decade has led to the development and clinical introduction of highly crosslinked polyethylenes (HXLPE). More 

stress on the bearing (more active, overweighted, younger patients), and more variability in the implantation technique in 

different small and large Hospitals may further compromise the clinical performance for many patients. The long-term in 

vivo performance of these materials remains to be proven. Clinical and retrieval studies after more than 5 years of in vivo 

use with HXLPE in THR are reviewed and consistently show a substantial decrease in wear rate. Moreover, a second 

generation of improved polyethylenes is backed by in vitro data and awaits more clinical experience to confirm the 

experimental improvements. Also, new antioxidant, free radical scavengers, candidates and the reinforcement of 

polyethylene through composites are currently under basic research. 

Oxidation of polyethylene is today significantly reduced by present formulations, and this forgiving, affordable, and well-

known material is still reliable to meet today’s higher requirements in total hip replacement. 
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INTRODUCTION 

 Polyethylene is a well-known material to orthopaedic 
surgeons since Sir John Charnley popularized it in his hip 
LFA (low friction arthroplasty) [1]. The rationale under the 
use of this polymer has been extensively reviewed [2], with 
clear advantages over other polymers used in early total hip 
arthroplasty (THA) designs, such as Teflon (polytetrafluor-
ethylene, PTFE) and Delrin (polyacetal). Polyethylene and 
ultra high molecular weight polyethylene (UHMWPE), 
became the most popular and standard material in THA 
friction pairs since the 1960’s until the 1990’s. Early 
alternative solutions based on metal-on-metal (MOM) or 
ceramic-on-ceramic (COC) articulations showed significant 
pitfalls in many designs [3, 4]. The standardized solution of 
UHMWPE for the acetabulum was at the time inexpensively 
processed by machining components out of extruded 
UHMWPE bars, followed by gamma irradiation sterilization 
of large batchs to doses ranging from 25 to 40 KGy. It is 
worth observing that UHMWPE is a semicrystalline polymer  
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constituted by a crystalline phase (the crystals, observed in 
the transmission electron microscopy –TEM- images as 
lamellae) and an amorphous phase (the disordered state) that 
allows some rearrangement of the crystals under mechanical 
stresses [5]. This characteristic semicrystalline structure of 
UHMWPE is illustrtated in Fig. (1). The material had a 
significantly large molecular weight (ultra-high), meaning 
long polymer chains that were further reinforced by covalent 
molecular bridges, also known as cross-links, originated 
upon gamma irradiation. 

 In the 1980’s and early 1990’s, long-term survivorship of 
polyethylene cups was compromised by osteolysis and aseptic 
loosening. After significant research, wear particle production 
was found the triggering mechanism. Cement particles were 
first considered as the causative agent, the so called “cement 
disease”, but when the osteolysis also prevailed in uncemented 
designs, polyethylene particles were apparent as the main 
pathogenetic factor, particularly those in the submicron range. 
Aseptic loosening and osteolysis resulted in significant concern 
about polyethylene quality and wear resistance in the 
Orthopaedic community, and extensive research was devoted to 
clarify what caused the polyethylene failure and how to prevent 
it. Unimplanted polyethylene components from the shelf were 
analyzed to investigate the material prior to in vivo use, and 
subsurface white bands of high density material (Fig. 2) were 
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found in components with long shelf life [6, 7]. Retrieval studies 
of long-term failures of polyethylene cups showed that 
polyethylene was not homogeneous. Occasional subsurface 
white bands and fusion defects in the bulk material were 
frequently identified in acetabular polyethylene components. 
Further analysis to correlated these findings with wear and 
performance [8], but while consolidating defects were found 
more frequently in early-retrieved cups without affecting 
survivorship, subsurface defects were found responsible for 
material loss at the articulating surface. Fourier transformed 
infra red (FTIR) analysis of the material from the surface to the 
bulk [9] confirmed that oxidized polyethylene was the 
constituent of this white band defects. Mechanical analysis of 
this material showed a comparatively brittle behavior with 
respect to non-oxidized polyethylene, as well as distinct fracture 
modes [10]. 

 

Fig. (1). UHMWPE is a semicrystalline polymer with crystalline 

and amorphous regions. Crystals appear as ribbon-like lamellae and 

amorphous regions as gray areas in Transmission Electron 

Micrographs. 

 From these and other findings, it was concluded that 
oxidation of the polyethylene component concentrated in the 
subsurface in long shelf aged implants and was deleterious 
for the performance of the joint. 

CAUSES AND AVOIDANCE OF OXIDATION IN 
CONVENTIONAL POLYETHYLENE 

 Oxidation of irradiated polyethylene is unavoidable as 
soon as the polymer is in contact with air or in vivo fluids. 
Eventually, several groups and particularly Costa et al. [9, 
11] characterized the oxidation in failed and never implanted 
polyethylene components. The oxidation in never implanted 
components was more intense with longer times on the shelf 
before implantation [6, 7], and chemical studies confirmed 
that irradiation (gamma irradiation was the standard 
procedure of sterilization) in the presence of oxygen led to 
chain scission of the polyethylene long chain and free radical 
generation at the crystal surfaces [12]. In view of the 
semicrystalline structure of the material that determines 
many mechanical properties, any change in the 
microstructure may significantly alter the mechanical 
behavior of the material [5]. 

 

Fig. (2). After long shelf life (5 years) of a gamma irradiated in air 

conventional polyethylene component, a subsurface white band is 

clearly detected. 

 The oxidative degradation of the material progressed in 
the presence of oxygen after the irradiation process within 
the permeable package, while the component was sitting on 
the shelf. To eliminate oxygen out of the system is not an 
easy task, but the first reaction of the Orthopaedic 
community was to standardize barrier packaging to avoid 
oxygen permeability, and thus perform gamma irradiation 
sterilization either in vacuum or in the presence of inert 
gases (typically, nitrogen, and argon), and to recommend the 
avoidance of implantation 5 years after manufacture and 
irradiation [13]. Other non-penetrating sterilization methods, 
such as ethylene oxide or gas plasma, were reconsidered and 
reincorporated to the process, although ethylene oxide was 
originally discontinued because of the cumbersomeness of 
its method. Irradiation was discovered as a valuable 
technique not only for efficient sterilization, but also for 
crosslinking of the polyethylene chains. 

 Although the previous efforts generally succeeded in 
avoiding shelf aging, there has been growing evidence of the 
occurrence of in vivo oxidation of polyethylene components, 
not only after gamma sterilization in air, but also following 
gamma sterilization in nitrogen [13, 14]. Furthermore, in 
vivo oxidized polyethylene retrievals (Fig. 3) display a 
characteristic regional pattern, with regions protected by 
metal parts (bearing surface and backside) reaching lower 
oxidation than more exposed areas (rim) [13-16]. The 
unavoidable occurrence of in vivo oxidation in gamma 
sterilized polyethylene components stems from post-
irradiation induced free radicals, which, upon oxygen 
availability, initiate the oxidation cycle and the associated 
physical changes. 

NEW POLYETHYLENES TO DECREASE WEAR 

 The development of first-generation highly crosslinked 
polyethylene formulations were intended to provide medical 
grade UHMWPEs with an extremely high wear resistance 
and good oxidative stability. Thus, high doses of gamma or 
electron beam radiation are employed to promote an elevated  
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Fig. (3). After in vivo exposure, high oxidation areas are seen as a 

subsurface white band in cross-sections of a gamma air (1) and 

gamma inert (2) sterilized acetabular liner retrievals. Images 

courtesy of Professor Steven Kurtz (Implant Research Center. 

Drexel University. Philadelphia). 

crosslink density (i.e. covalent bonds) into UHMWPE, 
which, in turn, is responsible for a notable increase in wear 
resistance. In first-generation highly crosslinked polyethy-
lenes, two different approaches were adopted to achieve 
oxidation resistance. First, annealing, involved a single 
thermal treatment below the melting temperature of 
UHMWPE so that crystallinity and mechanical properties 
were preserved [17]. However, the commercial highly 
crosslinked polyethylene obtained by gamma irradiation, 
annealing and finally gamma inert sterilization contained 
residual free radicals with the potential to oxidize in vivo 
[15]. The second approach was based on post-irradiation 
remelting of the polymer above the crystalline transition. 
This strategy allowed for elimination of free radicals up to 
undetectable levels, but at the expense of crystallinity 
changes and diminished mechanical properties [17, 18]. 

IN VIVO AND RETRIEVAL STUDIES ON HXLPEs 

 From a wear perspective, radiographic and retrieval 
studies have confirmed a significantly reduced femoral head 
penetration for both annealed and remelted HXLPE in the 
first decade of implantation [19-30]. Table 1 offers a 
summary the significant papers. Not only clinical mid-term 
follow-up studies clearly show this wear rate decrease, but 
more precise methods such as roentgen stereogrammetry 
analysis (RSA) confirms this important finding in three-
dimensional evaluation of cups in randomized studies (Table 

2). 

 Regarding the clinical failure modes, the revision rates of 
acetabular liners of both first-generation HXLPE 
formulations due to loosening, instability and infection 
remain comparable to those of conventional gamma inert 

Table 1. Summary of Significant Clinical Studies Confirming a Wear Rate Decrease with 1st Generation HXLPE in the Mid-Term 

Follow-Up 

 

Study  
Design and  

Follow-up  
HXLPE  HEAD  Follow-Up  

Mean Wear Rate mm/yr 

(After Bedding-In)  
Wear Rate 

Decrease  

Dorr et al.  
JBJS A  

2005  

Prospective,  
cohorts 

37 hips/37  

Durasul 
95 kGy, remelted  

28 mm CrCo  5 years  0.029 vs 0.065  45%  

D’Antonio  
et al.  

CORR 2005  

Retrospective,  
comparative 

56 hips/53 

Crossfire 
105 KGy, 

annealed  

28 mm CrCo  
Mean 5 yr  

(min 4)  
0.036 vs 0.131  72% 

Engh et al.  
J Arthr 2006  

Prospective,  
randomized  

208 hips  

Marathon 
50 kGy, remelted  

28 mm CrCo  
5.7 yr 

(4.1-7.2)  
0.01 vs 0.19  95%  

Olyslaegers  
et al.  

J  Arthr 2008 

Case-control 
with  

historical 
60 hips/20  

Longevity 
100 KGy, remelted  

28 mm CrCo  

XLPE 5.06 yr  
(52-69 mo), 

Std PE 5.1 yr  
(55-79)  

0.05 vs 0.101  50%  

García-Rey  
et al.  

J BJS-B 2008 

Prospective,  
randomized 

45 hips/45  

Durasul 
95 kGy, remelted  

28 mm CrCo  
66.3 mo 
(60-92)  

0.006 vs 0.038  84.3% 

Geerdink  
et al.  

CORR 2009 

Randomized,  
double blind 
17 hips/23  

Duration 
30 KGy, 
annealed  

28 mm CrCo  
Mean 8yr 

(7-9)  
0.088 vs 0.142  38%  
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sterilized liners after a decade of service [19]. Recent 
retrievals studies have confirmed that annealed highly 
crosslinked polyethylene acetabular liners oxidize in vivo 
(Fig. 3) and that, in some cases, exhibit damage at non-
articulating areas [19, 30, 31]. Thus, delamination, 
subsurface cracking and even partial fracture of the rim have 
been observed under relatively unusual clinical 
circumstances, that is recurrent dislocations, trauma or edge 
loading [30]. Furthermore, according to a consecutive series 
of retrieved annealed HXLPE acetabular liners, the incidence 
of rim damage secondary to in vivo oxidation and 
mechanical loading appears to be as low as 5% [30]. 
Although remelted HXLPE acetabular liner retrievals exhibit 
near-zero oxidation levels after a decade of in vivo exposure, 
rapid crack initiation and rim fracture cases have also been 
reported because of the combination of decreased 
mechanical strength [32-34]. Nevertheless, the incidence of 
rim fracture in remelted retrievals appears to be as low as 
that of retrieved annealed liners [19]. Very recently, the 
hypothesized complete oxidative stability of remelted 
HXLPE components has been questioned in view of the 
increasing trend of oxidation with implantation time 
observed in retrievals and elevated oxidation measured after 
ex vivo aging studies [19, 35]. 

PRESENT AND FUTURE SOLUTIONS TO 

OXIDATION 

 The clinical performance of first-generation HXLPE will 
need further research to confirm the benefits of the reduction 
in femoral head penetration and the clinical relevance, if any, 
of in vivo oxidation and crack initiation in the long-term, 
during the second decade of implantation. Currently, second-
generation HXLPEs represent a promising alternative to 
first-generation HXLPEs as they take advantage of 
alternative stabilization strategies, such as natural 

antioxidants (vitamin E), mechanical annealing, or sequential 
irradiation and annealing processes [36-41]. 

 In the sequentially annealed material, experimental 
studies proved that 4.9 mm thickness maintains a similar 
wear rate than thicker components, thus confirming thin 
components are not disadvantageous under this formulation 
[42], and support larger heads without more damage near 
impingement [43]. 

 As for the vitamin E stabilized material, different 
formulations are produced either when the antioxidant is 
blended with the polyethylene at the time of consolidation, 
or if vitamin E diffuses through the consolidated polymer in 
the mechanism of doping. A gradient distribution of 
antioxidant is typically associated with the diffusion method, 
but polyethylene oxidation is controlled by vitamin E, as 
shown after 36 months of artificial aging [44], and the post-
irradiation oxidation decreases with increasing vitamin E 
concentrations [45]. On the other hand, the vitamin E 
blended formulation (< 0.1 % of vitamin E in weight) has 
been shown to maintain the mechanical properties of 
polyethylene [46]. 

 Other antioxidant strategies are under development, using 
different free radical scavengers, such as nitroxide-TEMPO 
(2,2,6,6-Tetramethylpiperidine-1-oxyl) [47], HPAO (hindered 
phenol antioxidant) [48], or anthocyanin extracts [49]. Last 
but not least nanoscale modifications are also being studied 
to reinforce the polyethylene, namely composite reinforce-
ment by multiwalled carbon nanotubes [50], or grafting with 
2-methacryloyloxyethyl phosphorylcholine polymer [51] 
among others. Needless to say that the ongoing refinement 
into the polyethylene basic science and proposals will not 
stand until full developments are ready, and experimental 
and clinical data prove the concept and solidity of new 
polyethylene formulations. The oxidative resistance and 
mechanical performance of this last generation HXLPE are 

Table 2. Clinical Studies with 3D Analysis of Wear Rate with 1st Generation HXLPE 

 

Study  Design  HXLPE  Head  Follow-Up  Conclusions  

Bragdon et al. 
J Arthrop 2007 

(EFORT ‘09) 

Non-consecutive, 
non-randomized 

30 hips  

Longevity 100 
kGy, remelted  

28mmCrCo (16 hips) vs 
36mmCrCo 

(14 hips)  

3 years 
EFORT 09: 

7-10yr  

No diff 3D between 
28 and 36mm  

Röhrl et al.  
Acta Orthop  

2007  

Retrospective, 
comparative 

56 hips/53 

Crossfire 
105 KGy, 

annealed  

28 mm CrCo  
XLPE 6 yr, Std 5 

yr  
No wear rate progression at 6yr 

re oxidation  

Digas et al. 
Acta Orthop  
2007 (cem)  

Prospective, 
randomized 

56 hips  

Durasul 
95 kGy, remelted  

28 mm CrCo  5 years  
0.001 vs 

0.06mm/yr (3D) (98% 
decrease)  

Digas et al. 
Acta Orthop  

2007 (hybr)  

Prospective, 
randomized 

contralat control 
32 hips/32  

Longevity 
100 KGy, 

remelted  

28 mm CrCo  5 years  
0.00 vs 

0.057mm/yr(3D) 

(99-100% decrease)  

Glyn-Jones et al. 
J Arthrop  

2008 

Prospective, doub-
blind, rand, 

controlled 
26 hips/25  

Longevity 
100 KGy, 

remelted  

28 mm CrCo  2 years  
0.06 mm/yr vs 0.10 (3D) 

(40% decrease)  
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promising based on in vitro testing of the most advanced 
products, such as sequential annealing and vitamin E 
blended or diffused polyethylenes, but their impact in the 
clinical practice needs to be established. 
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