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Abstract

In this work we develop a general mathematical model and devise a practical identifiability

approach for gastrointestinal stromal tumor (GIST) metastasis to the liver, with the aim of

quantitatively describing therapy failure due to drug resistance. To this end, we have mod-

eled metastatic growth and therapy failure produced by resistance to two standard treat-

ments based on tyrosine kinase inhibitors (Imatinib and Sunitinib) that have been observed

clinically in patients with GIST metastasis to the liver. The parameter identification problem

is difficult to solve, since there are no general results on this issue for models based on ordi-

nary differential equations (ODE) like the ones studied here. We propose a general model-

ing framework based on ODE for GIST metastatic growth and therapy failure due to drug

resistance and analyzed five different model variants, using medical image observations

(CT scans) from patients that exhibit drug resistance. The associated parameter estimation

problem was solved using the Nelder-Mead simplex algorithm, by adding a regularization

term to the objective function to address model instability, and assessing the agreement of

either an absolute or proportional error in the objective function. We compared the goodness

of fit to data for the proposed model variants, as well as evaluated both error forms in order

to improve parameter estimation results. From the model variants analyzed, we identified

the one that provides the best fit to all the available patient data sets, as well as the best

assumption in computing the objective function (absolute or proportional error). This is

the first work that reports mathematical models capable of capturing and quantitatively

describing therapy failure due to drug resistance based on clinical images in a patient-spe-

cific manner.
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Introduction

Gastrointestinal stromal tumors (GISTs) are the most common mesenchymal tumors of the

gastrointestinal tract, with an incidence of 11-15 cases per million people per year. It is esti-

mated that 40-50% of GISTs are biologically malignant, and have spread to the liver or perito-

neum at the time of diagnosis or primary surgery [1]. One of the molecular characteristics of

these neoplasms is a gain of function mutation in the receptor tyrosine- kinase protein (KIT)

(75-80% of cases) or the homologous receptor tyrosine kinase, platelet-derived growth factor

receptor alpha (PDGFRA), accounting for 85-90% of gastrointestinal stromal tumors [2]. In

addition to the primary mutation, secondary mutations have also been identified in patients

with advanced GIST pretreated with tyrosine kinase inhibitor. To date, ten different molecular

subsets of GIST with different molecular alterations have been reported [1]. For most cases of

resectable/non-metastatic GISTs cases treatment involves surgical resection, and tyrosine

kinase inhibitor (TKI) therapy may be utilized to reduce tumor size before resection.

For metastatic or non-resectable GISTs the treatment of choice is TKI therapy [2]. Imatinib

is utilized as the first-line drug as it acts best on the most frequent KIT mutations. In 85% of

the cases Imatinib can control the metastatic disease during a 20-24 months period. After

resection, adjuvant Imatinib therapy has also been found to improve recurrence-free and over-

all survival. However, as reported by Blay [3], Imatinib resistance is frequently observed. This

resistance is associated to the specific exon where the mutation occurs.

Sunitinib or Sorafenib is a tyrosine kinase inhibitor molecule that targets KIT and has anti-

angiogenic effects, which is utilized for the treatment of advanced gastrointestinal stromal

tumors in patients who fail Imatinib therapy. The treatment and prognosis of patients with

gastrointestinal stromal tumors depends on the oncogenic kinase mutations that caused it,

and the utilization of specific molecular therapies that inhibit this molecular defect. However,

GISTs include several different molecular subtypes that vary in their response to kinase inhibi-

tors. Therefore, it is crucial to correctly identify the tumor’s response to treatment in order to

assess a suitable treatment timely. For clinicians, one critical challenge is to optimize cancer

treatments, and to determine the more adequate time to switch from the first-line to the sec-

ond-line treatment for increased overall survival. To do this, relapse time estimation is a criti-

cal issue [4]. Given that prognosis and sensitivity to treatment are patient-dependent, we aim

at developing patient-dependent mathematical models based on medical images of liver metas-

tasis. We focus on locally advanced GISTs to quantitatively describe for each patient the time

of emergence of mutations in cancer cells, as well as the relapse time after the first-line and the

second-line treatments.

Mathematical modeling has been extensively utilized in recent years to shed light on can-

cer progression, emphasizing the issue of rendering patient specific models (see [4–6]). How-

ever, due to the complexity of the processes involved in all the stages of neoplastic growth,

mathematical models must be limited to a few phenomena, and are therefore a simplification

of what occurs in the biological system. The key task is then to develop mathematical models

that are able to capture most of the relevant features of cancer progression. In this type of

models parameter estimation becomes an important problem that requires a rational experi-

mental design and clinical data collection. Even though mathematical models of GIST metas-

tasis to the liver, growth and therapy failure associated to drug resistance are available, the

latter has not been described quantitatively using mathematical models and considering clin-

ical images in a patient-specific manner. Typically, mathematical models utilized for clinical

applications in this field do not consider the spatial aspect of tumor growth. They are often

parametrized using statistical methods and may provide a prognosis of tumor volume,

among other important aspects [5]. Considering this, we aim at developing patient-specific
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models that can capture the evolution of the metastatic tumor, as well as quantitatively

describe and explain therapy failure due to drug resistance. Clinical follow-up to monitor the

disease evolution is mainly performed by CT scans. Using observations from these medical

images we applied a hybrid approach [5] to develop patient-specific mathematical models

with the purpose of quantitatively describing therapy failure due to drug resistance in the

case of GIST metastases to the liver. We built a general modeling framework consisting of a

nonlinear system of ordinary differential equations (ODE) that take into consideration the

volume of the sensitive and resistant tumor cells to conventional treatments based on tyro-

sine kinase inhibitors in a different manner, as it has been addressed in [4]. From a mathe-

matical modeling point of view, one of the strengths of the work presented here is the

response to treatment modeling. We describe GIST metastases to the liver, growth and

therapy failure due to drug resistance, following a modeling strategy that considers three

different cell populations, and the model was developed from mass balances for these cell

populations, describing tumor growth, death and angiogenesis. Two possible treatments and

outcomes were considered: the first treatment outcome is a cytotoxic effect, as associated to

the treatment with Imatinib, and the second treatment has both cytotoxic and anti-angio-

genic effects as observed with Sunitinib or Sorafenib. Three different homogeneously

distributed proliferative cell populations are utilized to describe treatment resistance: one

population that is sensitive to both treatments, one that is only sensitive to the second treat-

ment and a third cell population that is resistant to both treatments. A simple representation

of angiogenesis, which is crucial to explain metastatic growth, has also been considered.

Model parameters represent biologically meaningful quantities including the growth and

death rate of each cell population considered, nutrient availability, among others. The gen-

eral model is highly complex as it contains nonlinear terms that allow the representation of

different biological responses. Five different model variants were analyzed, with parameters

that represent specific cell population distributions and sensitivity to treatment scenarios.

Parameter estimation involves solving the inverse problem: given a model and measure-

ments of some state or output variables, the parameters that characterize the system, i.e. those

producing a good fit of the model with the data, need to be identified [7]. This problem is diffi-

cult to solve since no unique analytical or numerical solution is available [6]. Even if a unique

solution was available, good initial values would be required to compute a good parameter esti-

mate, since a minimization to match the experimental data with the model solution should be

solved, and optimization solvers require initial parameter values close to the actual ones to get

accurate numerical solutions. For the type of biological system studied in this work, obtaining

good initial parameter values can be difficult given that the a priori knowledge on the system

is limited. Therefore, finding the set of parameters that can be reliably estimated for a given

model and a set of empirical observations will require a parameter identification process [6, 7].

We implemented a parameter identification method using the proposed nonlinear ODE mod-

els described above that can represent tumor growth and therapy failure due to drug resis-

tance, and therefore an accurate fit for patient data with quantitative descriptive capabilities

can be expected. Given the complexity of these models, theoretical as well as numerical

resolution of the parameter estimation problem is difficult since data are sparse and only one

partial combination of model variables is measured experimentally. A practical identifiability

approach was conducted on each of the five model variants proposed and they were compared

from a goodness of fit point of view.

The work presented here is the first to quantitatively describe GIST therapy failure due to

drug resistance based on clinical images, by using mathematical models. This is highly relevant

given the limitations on data availability, and the observation of only a partial combination of

the proposed models variables. We expect our work to provide an insight on tumor response
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to treatment that may contribute to the design of new therapeutic strategies for minimizing

drug resistance.

This article is organized as follows. In the General modeling framework section we intro-

duce mathematical modeling of metastatic growth and drug resistance in the case of GIST

metastasis to the liver. In the Practical identification approach section we develop a practical

identifiability approach where we describe the techniques utilized to solve the parameter esti-

mation problem of our proposed models, the goodness of fit criteria required to evaluate and

compare them, and provide a manner to assess the statistical assumptions in order to achieve

the best parameter estimation results. The Results and discussion section is devoted to showing

and discussing in detail the results obtained, and we present our conclusions in the Summary

and conclusions section.

Materials and methods

General modeling framework

In a previous work, a model consisting of a system of nonlinear partial differential equations

that simulates tumor drug resistance as well as spatial heterogeneity of tumor growth, was

developed [4]. However, due to its complexity, it only reproduced the behavior observed in

GIST metastasis patients from a qualitative point of view. Other models for tumor growth

reviewed in Cumsille et al. [5] have similar limitations. In a first attempt to address the issue

of describing such features in a quantitative manner, we developed a general mathematical

model based on mass balances for tumor cells, studied five model variants given by specific

parameters associated to cell populations and response to treatments, and applied a practical

identifiability approach to these models using empirical data for two patients. Both theoretical

as well as numerical resolution of the associated parameter estimation problem are difficult

due to the fact that empirical data are sparse, and only one partial combination of models vari-

ables, tumor area, is observed. In addition, it is not possible to obtain a good initialization of

models parameters to solve the least squares problem associated to the inverse problem, since

we do not have enough a priori information on the system. In particular, one cannot know nei-

ther the actual proportion of sensitive and resistant to treatments cells populations (at any

time) nor their time of emergence.

The general model accounts for three different proliferative tumor cell populations, which

are utilized to describe the resistance to treatments and they consider tumor growth in differ-

ent manners. The tumor is described by means of three different proliferative tumor cell popu-

lations. One proliferative tumor cell population is sensitive to both treatments, another one is

only sensitive to the second-line treatment, while the third one is resistant to both treatments.

The general model also considers cell death and angiogenesis, which is a key factor in meta-

static growth. Spatial aspects of tumor growth as well as a distinction between healthy and

necrotic cell populations are not considered, allowing us to reduce the complexity and number

of parameters of the model. This allows for a more manageable model from a parameter esti-

mation point of view, while maintaining a sufficiently complex general model structure that

can capture different possible tumor progression scenarios for the cancer studied.

Treatment description. As discussed in the Introduction, two treatments are considered:

the first-line treatment, which will be denoted by τ1, is a specific tyrosine kinase inhibitor such

as Imatinib, which has a cytotoxic effect on proliferative tumor cells; the second-line one,

denoted by τ2, is a multi-targeted kinase inhibitor such as Sunitinib or Sorafenib, which has

both cytotoxic and anti-angiogenic effects. In addition to the cytotoxic effect, it blocks the pro-

duction of growth factors such as vascular endothelial growth factors and thus decreases the

nutrient supply brought to the tumor. It is well known that cytotoxic drugs do not impact

Parameter estimation to quantitatively describe therapy failure in GIST metastasis to the liver
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similarly all the metastatic cancer cells since resistant phenotype can appear in the proliferative

cell population. Moreover, cancer cells can respond differently to hypoxia. To account for this,

as in [4], we split the proliferative tumor cells, which volume is denoted by P, into three sub-

populations where

• P1 denotes the volume of the proliferative tumor cells that are sensitive to τ1 and also to τ2;

• P2 describes the volume of the proliferative tumor cells that are resistant to τ1 and sensitive

to τ2; and

• P3 stands for the volume of the proliferative tumor cells that are resistant to both treatments

τ1 and τ2.

It is worth noting that we do not aim at describing the evolution of the tumor from an early

stage of the GIST, but we only focus on the evolution of metastasis located in the liver. There-

fore, based on clinical observations, it is relevant to consider that all three cell subpopulations

are present when the GIST metastasis is detected.

General model and its variants. The general mathematical model proposed is written as

a nonlinear ODE system, based on mass balance principle accounting for the volumes of the

different proliferative tumor cells, as well as vascularization and nutrient supply through

angiogenesis.

Volumes of the proliferative tumor cells. The volumes of the proliferative tumor cells

obey a mass balance principle according to the following general equation:

P0i ¼ ½mðMÞ � dðMÞ � d
treat
i ðMÞ�Pi; for i ¼ 1; 2; 3: ð1Þ

In above equation, μ(M) and δ(M) denote cellular growth and death rates respectively. Both

variables depend on M, which represents vascularization and nutrient supply, according to

mðMÞ ¼ mMAX

1þ tanh ðRðM � MhypÞÞ

2
; ð2Þ

dðMÞ ¼ dMAX

1 � tanh ðRðM � MhypÞÞ

2
ð3Þ

where μMAX and δMAX are the maximum growth and death rates of the tumor cells respectively,

and Mhyp is the hypoxia threshold, below which nutrients can be considered limiting for cell

growth. These expressions account for the fact that if nutrients are above the limiting thresh-

old, i.e. M>Mhyp, then μ(M)� μMAX and δ(M)� 0 and consequently tumor cells undergo

proliferation. The functions μ(M) and δ(M) are regularized versions of the sigmoid Heaviside

function. In this function, R is a numerical parameter that controls the function’s slope and

was set to 5 in order to provide a smooth transition between the non-growth/maximum death

rates and the maximum growth/non-death rates. An additional death term was added in Eq

(1) to account for the effect of the first and second-line treatments τ1 and τ2. We have denoted

by d
treat
i ðMÞ the death rate due to the treatments, which is related to the dose of drug delivered

to the patient, among others factors. Note that the subscript i is to account for the fact that

treatments may have a different effect in the different proliferative tumor cell subpopulations

i = 1, 2, 3. The functions d
treat
i ðMÞ are defined by:

d
treat
1
ðMÞ ¼ ½d1w1ðtÞ þ d2w2ðtÞ� ðaþMÞ; ð4Þ

d
treat
2
ðMÞ ¼ d2w2ðtÞðaþMÞ; ð5Þ
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d
treat
3
ðMÞ ¼ 0: ð6Þ

In above equations, we have denoted by

w1ðtÞ ¼ 1ft<TjgðtÞ ðresp: w2ðtÞ ¼ 1ft�TjgðtÞÞ ð7Þ

the characteristic function of treatment τ1 (resp. τ2), where Tj is the time at which physicians

switch from τ1 to τ2 treatment for each patient j = 1, 2 considered in this work. Moreover, δk is

the maximum death rate due to treatment τk for k = 1, 2.

Finally, the parameter α in Eqs (4) and (5) stands for a quantification of a basal vasculature,

which is set to be 0 or 1, depending on whether the model variant considers this basal level or

not.

Vascularization, nutrient supply and angiogenesis. In general Eq (1), the variable M
describes two fundamental issues, vascularization and nutrient supply driven by tumor angio-

genesis; see [5] for a detailed overview on tumor growth. It is worth noting that the second-

line treatment effect has to be taken into account in these two related aspects.

Since the nutrients are supplied to the tumor by the vascularization, as a simple way to rep-

resent both aspects, only one variable is utilized to describe the nutrient concentration and the

vascularization; see [4]. Let us denote by M this variable, which is governed by a mass balance

principle:

M0 ¼ g
dðMÞ
dMAX

fð1 � nw2ðtÞÞðP1 þ P2Þ þ zP3g
2=3
� bðMÞMP: ð8Þ

Since all three proliferative tumor cell subpopulations 1, 2 and 3 produce angiogenic fac-

tors, nutrient availability increases. This is represented in Eq (8) by means of an increase of

M when the system is below the hypoxia threshold Mhyp as given by the term γ � δ(M)/δMAX,

where γ represents the angiogenic capacity of the proliferative tumor cell population that

leads to an increase in nutrients associated to the additional vasculature induced by the tumor.

The effect of the angiogenesis is reduced by τ2, which has both cytotoxic and anti-angiogenic

effects, therefore it acts on population volume P1 + P2 that are sensitive to this treatment. The

effect of τ2 in Eq (8) is represented directly by means of the term νχ2(t) that affects P1 + P2

causing M to decrease, or indirectly by a relative increase of the resistant population volume P3

with respect to volume P1 + P2, where the dimensionless parameter ν corresponds to the anti-

angiogenic effect of τ2, and the dimensionless parameter z represents the relative increase of

P3. It is worth noting that the exponent 2/3 in the first term at the right-hand side of Eq (8)

accounts for the fact that nutrient availability must be proportional to the tumor cells’ surface.

In the right-hand side term, β(M) denotes the rate of nutrients consumption, which can be

considered as constant, i.e. β(M) = β, where β stands for a constant parameter, or can be con-

sidered as dependent on the normalized growth rate μ(M)/μMAX as β(M) = β � μ(M)/μMAX. In

the latter case, the role of the term μ(M)/μMAX allows to prevent nutrient consumption by the

tumor cells, β � μ(M)/μMAX �MP, from becoming too large. The normalized growth rate μ(M)/

μMAX in the term β(M) is highly meaningful, since when the proliferative tumor cell population

increases at high rates, i.e. when μ(M)� μMAX, then the nutrient consumption by the tumor

cells β � μ(M)/μMAX �MP� βMP leading to a high nutrient consumption; while when the pro-

liferative tumor cell population stalls, i.e. when μ(M)� 0, then nutrient consumption by the

tumor cells is also reduced, β � μ(M)/μMAX �MP� 0.

Table 1 provides a detailed description of the general model’s variables and parameters, as

well as the notation utilized.
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Summary of the general model, their vector formulation and its variants. Gathering

the general Eq (1) for Pi and general Eq (8) for M we obtain the following ODE system:

P0i ¼ ½mðMÞ � dðMÞ � dtreati ðMÞ�Pi; for i ¼ 1; 2; 3: ð9Þ

M0 ¼ g
dðMÞ
dMAX

fð1 � nw2ðtÞÞðP1 þ P2Þ þ zP3g
2=3
� bðMÞMP; ð10Þ

The general model proposed in this work is written under the form given by general Eqs (9)

and (10). We analyzed five different variants resulting from letting vary or fixing specific

parameters as indicated in Table 2.

The model variants proposed in Table 2 account for different physiological scenarios that

may occur for a GIST. Variants 1 and 2 do not consider a basal vasculature α associated to the

tumor, and a constant nutrient consumption rate β is assumed. The difference between both

Table 1. Variables, functions and parameters for the general model.

Name Description Unit

τ1 First-line treatment, Imatinib –

τ2 Second-line treatment, Sunitinib or Sorafenib –

P1 Volume of the proliferative cells sensitive to τ1 and τ2 mm3

P2 Volume of the proliferative cells resistant to τ1 and sensitive to τ2 mm3

P3 Volume of the proliferative cells resistant to τ1 and τ2 mm3

M Normalized nutrient concentration –

μ(M) Growth rate d−1

δ(M) Death rate d−1

μMAX Maximum growth rate d−1

δMAX Maximum death rate d−1

χ1(t) Characteristic function for τ1 –

χ2(t) Characteristic function for τ2 –

d
treat
i ðMÞ Death rate due to the treatments d−1

δ1 Maximum death rate due to τ1 d−1

δ2 Maximum death rate due to τ2 d−1

α Basal vasculature index –

Mhyp Hypoxia threshold –

γ Tumor angiogenic capacity mm−2�d−1

β(M) Nutrient consumption rate mm−3�d−1

ν Decrease of P1 + P2 due to antiangiogenic effect of τ2 –

R Regularizing parameter for the approximate Heaviside function –

z Relative increase of P3 due to the antiangiogenic effect of τ2 –

https://doi.org/10.1371/journal.pone.0217332.t001

Table 2. Model variants proposed.

Model Variant№ α ν ζ β(M)

1 0 Variable Fixed to 1 β

2 0 Fixed to 1 Variable β

3 1 Variable Fixed to 1 β

4 1 Variable Fixed to 1 β � μ(M)/μMAX

5 0 Variable Fixed to 1 β � μ(M)/μMAX

https://doi.org/10.1371/journal.pone.0217332.t002
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cases is the representation of the effect of the second-line treatment τ2; for variant 1 it is repre-

sented as a acting directly on the sensitive tumor cells (variable ν), whereas for variant 2 its

effect is considered to be indirect by increasing the resistant tumor cell population relative to

the sensitive ones (variable z). Variants 3 and 4 consider a basal vasculature (α = 1) and the sec-

ond-line treatment is represented as a direct effect on the sensitive tumor cells (variable ν).

The difference between these two variants is the nutrient consumption rate description, which

is assumed to be constant for variant 3 (β) while for variant 4 it is considered to be propor-

tional to the normalized growth rate (β(μ)). Variant 5 is similar to variant 4, but with a basal

vasculature (α = 1). These five model variants were selected in order to test for the possible

physiological mechanisms involved in therapy failure observed in patients with drug resis-

tance. For simplicity, model variants 1 to 5 in Table 2 will be referred to hereafter as Models 1

to 5.

The same initial conditions were considered for all the models analyzed:

Mð0Þ ¼ M0j; Pið0Þ ¼ P0j
i for each i ¼ 1; 2; 3 and for each patient j ¼ 1; 2:

Finally, all the models previously described can be written under the vector form:

U 0 ¼ Fðt;U; yÞ; ð11Þ

Uðt0Þ ¼ U0; ð12Þ

where U(t) corresponds to the vector of state variables of the system, given by U(t) = [P1(t),
P2(t), P3(t), M(t)] for all t 2 [t0, tf], where tf> t0 is a sufficiently large time as to let the system

evolve, U0 ¼ ½P0
1
; P0

2
; P0

3
;M0� is the initial state of the system, and the function F represents the

right-hand side of the corresponding model variant. For instance, for Model 1 one has:

Fðt;U; yÞ ¼

½mðMÞ � dðMÞ�P1 � ½d1w1ðtÞ þ d2w2ðtÞ�MP1

½mðMÞ � dðMÞ�P2 � d2w2ðtÞMP2

½mðMÞ � dðMÞ�P3

g
dðMÞ
dMAX
fð1 � nw2ðtÞÞðP1 þ P2Þ þ P3g

2=3
� bMP

2

6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
5

; ð13Þ

where y ¼ ðmMAX; dMAX; d1; d2;Mhyp; g; b; nÞ
t
2 R8 are the parameters of Model 1.

Modeling capabilities. By varying the parameter vector

y ¼ ðmMAX; dMAX; d1; d2;Mhyp; g; b; n or zÞ
t
2 R8

, the proposed models can account for several

possible tumor progression scenarios that have been reported by physicians [4]. Fig 1 curve

a) depicts the case where the first-line treatment τ1 is applied starting on day 119 and is

completely effective, so there is no need to consider the second-line treatment τ2. Patient 1

received no treatment from day 0 to day 119. This is accounted for in the simulation (see Fig 2,

left) where tumor growth is observed initially and day 119 is the initial day of treatment for

patient 1. Fig 1 (center) depicts the case where τ1 is applied from day 119 until day 867, and it

is then switched to τ2. Several possible responses may be observed in this context: in curve b)

τ1 initially works but the tumor regrows and the subsequent application of τ2 successfully

reduces the tumor size; in curve c) τ1 works as before, whereas τ2 only keeps the tumor size

fixed without reducing it; finally, in curve d) τ1 behaves as before whereas τ2 is ineffective since

the tumor size explodes. Fig 1 (right) depicts the scenario in which τ1 is applied from day 119

until day 300, then it is switched to τ2 when τ1 becomes ineffective (tumor size increases under
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Fig 1. Modeling capabilities. Our general model is able to reproduce the different scenarios reported by physicians. Left: a) τ1 effective, no τ2 applied. Center: τ1 is

applied then switched to τ2, b) τ1 partially effective, tumor regrows and τ2 reduces tumor size; c) τ1 is effective, τ2 is effective in maintaining tumor size; d) τ1 is effective,

τ2 is ineffective. Right: τ1 is ineffective in reducing or maintaining tumor size and it is switched to τ2, e) τ2 is effective in reducing tumor size; f) τ2 only stabilizes the

tumor size; g) τ2 is completely ineffective.

https://doi.org/10.1371/journal.pone.0217332.g001

Fig 2. Data sets from two patients representing the two typical metastasis evolution patterns under a drug resistance scenario. Profiles depict

tumor area A (in mm2) vs. time t (in days). Left: Metastasis is controlled by Imatinib, which is delivered from day t = 119, before a first relapse. Then,

treatment with Sunitinib is efficient before a second relapse. Right: Treatment with Imatinib, delivered from day t = 0 to t = 845, is ineffective. Then, the

treatment with Sunitinib, delivered from day t = 845 to t = 1049, and Sorafenib, delivered from day t = 1049 to t = 1600, is relatively effective until a

relapse is observed.

https://doi.org/10.1371/journal.pone.0217332.g002
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its action); we can observe that only in curve e) τ2 is effective as it reduces the tumor size; in

curve f) it only stabilizes the tumor size, and in curve g) it is completely ineffective.

Similar capabilities have been described for the partial differential equation (PDE) model

reported in [4].

Practical identification approach

In this section we describe the parameter identification problem, as well as the methods

required to solve it. In addition we describe goodness of fit criteria to compare all the proposed

model variants, summarized in Table 2. These criteria allow us to assess the fit performance of

the different models.

It is worth noting that we do not aim to prove results on structural identifiability, since in

general parameter identification problems are ill-posed; in particular they are unstable with

respect to data noise. Structural identifiability provides a priori information about model

parameters, yielding a necessary but not sufficient condition for successful parameter estima-

tion from real data, which are typically incomplete and noisy [6]. In our case, structural iden-

tifiability is not trivial to prove since our proposed models, summarized in Table 2, contain

non-rational functions that are difficult to handle in such analysis (see functions in Eqs (2) and

(3)). In the works by Miao and Wu [7, 8] the proposed methods rely strongly on the linearity

(or, at most rational expressions) in order to provide identifiability assertions. In addition, in

our system only one partial linear combination of the model variables is observed, since the

actual proportion of the sensitive/resistant to treatments tumor cells populations is not known.

On the other hand, even for simpler models in the context of tumor growth, results on non-

uniqueness for the parameter identification problem have been proven; see [9]. We have

observed numerically that our model is not stable with respect to the parameters, since there

are two different set of parameters that yield very close model responses in a time interval, but

which represent two different long-term behaviors. Fig 1 depicts several tumor responses to

therapies that have been reported by physicians [4]. In particular, in Fig 1 (right) three differ-

ent scenarios show almost the same behavior during the first 400 days, however, their long-

term behaviors are significantly different. When comparing the three curves for the first 400

days only, we could infer that the corresponding sets of parameters should be almost the same

therefore implying model stability, which is not the case. This shows that it is not possible to

predict the complete evolution of a solution by knowing only its early behavior. Discussion on

this feature for a PDE model can be found also in [4].

We devised a practical identifiability approach to be applied to this system by addressing

two specific tasks. First, in order to solve the parameter estimation problem, i.e. to find the

parameters (summarized in Table 2) that fit our proposed models to the data; and then to com-

pare the goodness of fit to data of our proposed models. In what follows we explain in detail

each of these tasks.

Parameter estimation problem. To perform parameter estimation, empirical data

obtained from the CT scans of two different patients, which are representative of the possible

scenarios where drug resistance is observed for the disease, are utilized. The first scenario

accounts for 85% of cases, where τ1 with Imatinib controls the metastatic tumor during a more

or less long period of around 20-24 months. After this, physicians change to the second-line

treatment τ2 with Sunitinib or Sorafenib. In the second scenario, representing the remaining

15% of cases, an Imatinib resistance due to a secondary mutation in the receptor tyrosine-

kinase protein gene is observed early on after treatment is started. Representative data from

patients for these two possible scenarios are shown in Fig 2. The source data for constructing

Fig 2 are provided in S1 and S2 Tables.
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In accordance with the RECIST criteria (see [5]) we have evaluated the tumor area evolu-

tion from the CT scans of the two patients, shown in Fig 2, measured as the product of the larg-

est and smallest diameters of the tumor observed in each image. As a result, for each patient

we have a data set

Aj
i; for i ¼ 1; . . . ;Nj; for j ¼ 1; 2;

where the Aj
i denotes the tumor area evaluated for patient j at time tji for i = 1, . . ., Nj, and Nj is

the total number of CT scans available for the patient j.
For the direct problem associated to our general model, given a parameter vector y 2 R8

,

the unique solution U(t, θ) of the mathematical model given by Eqs (11) and (12) must be

found. This solution is required to solve the inverse problem of parameter estimation, i.e. given

the tumor area evolution observed from the CT scans of the two patients, namely fAj
ig

Nj

i¼1
for

j = 1, 2, a parameter vector y
j
2 R8

must be identified such that the mathematical model given

by Eqs (11) and (12) fits data in the sense of the least squares.

In the proposed models summarized in Table 2, P(t) = (P1 + P2 + P3)(t) represents the total

tumor volume at time t, which is proportional to the tumor area AðtÞ. Indeed, by assuming

that the tumor is ellipsoid-shaped, then its volume VðtÞ is given by VðtÞ ¼ ð4pc=3ÞAðtÞ,
where c is set as c = 3/4π mm. Only this partial combination of model variables, referred from

now on as model’s observation function, is observed. In order to identify the model’s parame-

ters a vector y
j
2 R8 must be found such that the sum of squares

SðyjÞ ¼
XNj

i¼1

ðAj
i � Pðtji; y

j
ÞÞ

2 ð14Þ

is minimized with respect to the data set fAj
ig

Nj

i¼1
, for each model’s observation function

Pðtji; y
j
Þ j = 1, 2. The objective function in Eq (14) is appropriate under the assumption of con-

stant variance measurements, i.e. the measurement error is considered to be a random variable

with constant variance (see S1 Appendix).

Under the assumption of non-constant variance measurements, i.e. the measurement error

is considered to be a random variable with non-constant variance, in order to identify the

model’s parameters a vector y
j
2 R8

must be found such that the sum of squares

SðyjÞ ¼
XNj

i¼1

Aj
i � Pðtji; y

j
Þ

Aj
i

 !2

: ð15Þ

is minimized (see S1 Appendix).

As discussed before, the proposed mathematical models may not be uniquely identifiable,

since with different sets of parameters any of them is capable of reproducing a given initial

tumor behavior, while representing very different scenarios in the long-term (see Fig 1 right).

We believe this issue would be solved by considering information regarding the specific pro-

portion of sensitive and resistant to treatment tumor cell populations for each patient. As a

result, the objective function S(θj) could not have a unique global minimum but several local

minima. This feature is typically observed in inverse problems that are ill-posed, meaning a

small perturbation on the observed data can lead to a big perturbation in the obtained solution.

In particular, it has been observed that parameter identification problems in biological systems

are generally ill-posed (see [10, 11] and references therein). To overcome this difficulty, we

introduce a regularization term in the optimization problem, i.e. instead of minimizing S(θj),

Parameter estimation to quantitatively describe therapy failure in GIST metastasis to the liver

PLOS ONE | https://doi.org/10.1371/journal.pone.0217332 May 30, 2019 11 / 27

https://doi.org/10.1371/journal.pone.0217332


we minimize

min
yj2R8

SðyjÞ þ kkyjk2

2
; ð16Þ

where κ> 0 is the regularization parameter. We solve the optimization problem in Eq (16) for

both sums of squares in Eqs (14) and (15) for several values of κ small enough, obtaining the

best results for κ = 0.001.

The optimal solution of the regularized sum of squares in Eq (16), ŷ j for j = 1, 2, is called

nonlinear least squares estimator (nonlinear LSE). In order to minimize the objective function

given by Eq (16), we utilize the Nelder-Mead simplex algorithm implemented in Matlab1

under the subroutine fminsearch. Details on the numerical method, as well as on its implemen-

tation are discussed in the S2 Appendix.

Once the nonlinear LSE ŷ j has been found for j = 1, 2 and each of the five proposed models

summarized in Table 2, models are compared based on their fit performance to clinical data

by computing goodness of fit criteria. In addition, the two parameter vectors obtained for

the objective functions described in Eqs (14) and (15) are compared in terms of their residual

plots to identify the most suitable one for obtaining the best parameter estimation results, as

explained in the S1 Appendix.

Assessing goodness of fit. Statistical methods, in the context of non-linear least squares

regression, are utilized to quantify the reliability of the parameters estimated. They are also

utilized to evaluate the robustness of the proposed models for quantitatively describing drug

resistance for each patient. Once the nonlinear LSE is found for j = 1, 2 and each of the five

proposed models summarized in Table 2, goodness of fit criteria can be computed to evaluate

to what extent these models fit the empirical data. The goodness of fit criteria computed in this

work are the following (see [12]; see also pp. 229 in [13]):

ð~s jÞ
2
¼

1

Nj
Sðŷ jÞ ð17Þ

is the variance of the residuals. Similarly,

ðŝ jÞ
2
¼

1

Nj � m
Sðŷ jÞ; ð18Þ

is the unbiased variance, where m is the number of parameters estimated. Moreover,

ŝ j ¼

ffiffiffiffiffiffiffiffiffiffi

ðŝ jÞ
2

q

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Nj � m
Sðŷ jÞ

r

; ð19Þ

R2;j ¼ 1 �
ðejÞtej

PNj

i¼1
ðAj

i �
�A jÞ

2
; ð20Þ

are the Root Mean Squared Error (RMSE) ŝ j, and the coefficient of determination R2,j, respec-

tively, where �A j in Eq (20) denotes the mean of the observations ðAj
iÞ
Nj

i¼1
, and the vector

ej 2 RNj
stands for the absolute residuals defined by

eji ¼ Aj
i � Pðtji; ŷ jÞ i ¼ 1; . . . ;Nj: ð21Þ

Finally, in order to verify whether the measuring errors are normally distributed or not, the

one-sample Kolmogorov-Smirnov (K-S) test [14] is applied. This statistical test is implemented
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in Matlab1 through the kstest subroutine. Verifying the normality assumption is required in

order to accurately compute the standard errors associated with the nonlinear LSE.

Results and discussion

Numerical results obtained by applying the methodology described in the Practical identifica-

tion approach section are presented and discussed. The details on the numerical method and

its implementation in order to solve the parameter estimation problem are provided in the S2

Appendix. The goodness of fit to data, as well as the validity of the statistical assumptions for

obtaining the best parameter estimation results for each of the proposed models are also

assessed according to the methods described in theAssessing goodness of fit subsection and in

the S1 Appendix, respectively.

Parameter estimation results

The estimated parameters for our proposed models, obtained as described in the Parameter

estimation problem section, are presented and discussed. Results obtained for each data set are

reported separately. The fit for each objective function, based on the sum of squares given by

Eqs (14) and (15), the obtained optimal parameters, as well as the corresponding values for

both sum of squares for each of the proposed models are shown. Finally, the plot for the two

best models based on the obtained optimal sum of squares under each statistical assumption is

presented.

Fit to Patient’s 1 data under a constant variance assumption. The fit to the data for

Patient 1 for all the proposed models is shown in Fig 3. This fit was obtained under a constant

variance data assumption as discerned by the sum of squares defined in Eq (14).

From Fig 3 we observe that Model 1 is the least suitable for describing Patient’s 1 data,

whereas Models 3 and 4 provide a good fit. Both of these models consider a basal vasculature

and a direct effect of the second-line treatment on the sensitive populations P1 and P2. This

suggests that these factors might be physiologically relevant in capturing the response to treat-

ment observed for Patient 1. Table 3 shows the estimated parameters for each of the proposed

models in Fig 3. We observe that parameter values are all positive and within biologically

meaningful ranges.

Table 4 shows the computed sum of squares of absolute errors in Eq (14), as well as the sum

of squares of relative errors in Eq (15) associated to the fit of each model to Patient’s 1 data.

Under constant variance data assumption, the best fit is obtained for Models 3 and 4 as they

have the smallest sum of squares of absolute errors, as shown in Table 4; see Fig 4. This corrob-

orates the observations made from Fig 3.

Fit to Patient’s 1 data under a non-constant variance assumption. Results under a non-

constant variance data assumption as discerned by the sum of squares defined in Eq (15) are

presented below. Fig 5 shows the estimated fits for all the proposed models. Table 5 presents

the estimated parameters under non-constant variance assumption for each of the proposed

models.

Results in Fig 5 show a deficient fit for all models to Patient’s 1 data. In addition, negative

parameter values in Table 5 indicate a defective overall fit for Models 1, 3 and 4 due to the fact

that the non-constant variance data assumption is not suitable for Patient’s 1 data. This is cor-

roborated in the Modeling capabilities. subsection, through residual plots as explained in the

S1 Appendix.

Finally, Table 6 presents the sum of squares of relative errors in Eq (15), as well as the sum

of squares of absolute errors in Eq (14) associated to each model obtained under a non-con-

stant variance data assumption.
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The best two models (Models 2 and 5) were selected based on the smallest sum of squares

of relative errors, according to Table 6. These models are shown in Fig 6.

Unlike what was observed in Fig 4, based on the results shown in Fig 6 even the best models

obtained are not as suitable for fitting Patient’s 1 data independent of the model assumptions

considered (detailed in Table 2). This is due to the fact that a non-constant variance data

assumption is not suitable for Patient’s 1 data as discussed in the Modeling capabilities.

subsection.

Fit to Patient’s 2 data under a constant variance assumption. The fit to the data for

Patient 2 for all the proposed models is shown in Fig 7. This fit was obtained under a constant

variance data assumption as discerned by the sum of squares defined in Eq (15).

From Fig 7 we can observe that Model 1 is the least suitable for fitting Patient’s 2 data, while

Models 3, 4 and 5 provide a good fit. Table 7 shows the estimated parameters for each of the

proposed models shown in Fig 7.

As for Patient’s 1 data, we can observe from Table 7 that parameter values for Patient’s 2

data are all positive and within biologically meaningful ranges. Table 8 shows the computed

Fig 3. Fit to Patient’s 1 data under a constant variance assumption.

https://doi.org/10.1371/journal.pone.0217332.g003

Table 3. Estimated model parameters for Patient’s 1 data under a constant variance assumption.

Model№ μ̂MAX δ̂MAX M̂hyp δ̂1 δ̂2
γ̂ β̂ ν̂ or ζ̂

1 0.2430 0.0015 0.0870 0.0359 0.4221 0.0004 0.0014 0.6557

2 0.2759 0.0023 0.0900 0.0128 0.4952 0.0003 0.0029 0.3314

3 0.7802 0.5609 0.0222 0.0148 0.0300 0.0003 0.0105 0.3864

4 0.4854 0.0081 0.0216 0.0142 0.3202 0.0001 0.0081 0.8183

5 0.5263 0.0215 0.1446 0.0557 0.4075 0.0003 0.0049 0.1260

https://doi.org/10.1371/journal.pone.0217332.t003

Parameter estimation to quantitatively describe therapy failure in GIST metastasis to the liver

PLOS ONE | https://doi.org/10.1371/journal.pone.0217332 May 30, 2019 14 / 27

https://doi.org/10.1371/journal.pone.0217332.g003
https://doi.org/10.1371/journal.pone.0217332.t003
https://doi.org/10.1371/journal.pone.0217332


sum of squares of absolute errors defined in Eq (14), as well as the sum of squares of relative

errors associated to the fit of each model to Patient’s 2 data.

Under constant variance data assumption, the best two models (Models 2 and 5) were

selected based on the smallest sum of squares of absolute errors according to Table 8. These

models are shown in Fig 8. However, we remark that Model 4 has a sum of squares of absolute

errors only slightly greater than Model 2.

Fit to Patient’s 2 data under a non-constant variance assumption. Finally, the fit to

Patient’s 2 data for each of the proposed models under a non-constant variance assumption, as

discerned by the sum of squares defined in Eq (15), is shown in Fig 9.

Table 9 presents the estimated parameters for each of the proposed models in Fig 9. Despite

the fact that data in Table 9 shows all parameter values to be possitive and within biologically

meaningful ranges, Fig 9 shows a deficient fit to data for all models, except for Models 4 and 5.

In Table 10 results for the sum of squares of the relative errors defined in Eq (15), as well as

their associated sum of squares of absolute errors for the fit of each model to Patient’s 2 data.

Under a non-constant variance data assumption, the best two models (Models 4 and 5)

were selected based on the smallest sum of squares of relative errors as given in Table 10. This

Table 4. Sums of squares of absolute and relative errors for Patient’s 1 data under a constant variance assumption.

Sums of squares

Model№ Absolute Relative

1 1.4799e+3 10.4424

2 403.6207 2.3188

3 282.9373 2.1798

4 260.6881 1.9857

5 485.0905 3.3926

https://doi.org/10.1371/journal.pone.0217332.t004

Fig 4. Best models for Patient’s 1 data. Predicted tumor area for Patient’s 1 data under a constant variance assumption. Model 3 (left) and Model 4

(right).

https://doi.org/10.1371/journal.pone.0217332.g004
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model selection is in agreement with what was observed in Fig 9. Selected models are shown in

Fig 10.

Based on the relative errors in Table 10, Model 5 is slightly better than Model 4. Both of

these models consider a direct effect of treatment on the sensitive tumor cells and a nutrient

consumption rate that is dependent on cell growth (β(μ)). This suggest that environmental fac-

tors related to nutrient availability are more relevant in the case of Patient 2. The main differ-

ence between these two variants is that Model 4 considers a basal vasculature while Model 5

does not, indicating that accounting for a basal vasculature is not significant for this data set

(see Table 2 for a summary of the model variants considered). This is consistent with what is

observed in Fig 10.

Comparison of the proposed models

The proposed models are compared in a quantitative manner, by assessing the goodness of

fit to data as described in the Assessing goodness of fit. At the same time, the statistical

Fig 5. Fit to Patient’s 1 data under a non-constant variance assumption.

https://doi.org/10.1371/journal.pone.0217332.g005

Table 5. Estimated model parameters for Patient’s 1 data under a non-constant variance assumption.

Model№ μ̂MAX δ̂MAX M̂hyp δ̂1 δ̂2
γ̂ β̂ ν̂ or ζ̂

1 0.7845 0.4636 0.0109 0.0287 0.1164 0.0005 0.0009 -1.9507

2 0.1697 0.0060 0.0927 0.5224 0.4016 0.0005 0.0032 0.2338

3 0.4753 0.7390 0.0135 -0.0258 0.1678 0.0023 0.0008 -1.2269

4 0.0294 -0.0129 0.0212 0.0809 0.1026 0.0003 0.0141 0.1931

5 0.4113 0.0373 0.2442 0.0479 0.2805 0.0001 0.0015 0.0195

https://doi.org/10.1371/journal.pone.0217332.t005
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assumptions behind of the sums of squares defined by Eqs (14) and (15) are analyzed, by plot-

ting the residuals for Models 1 to 5 to each patient’s data, and for both absolute and relative

error specifications. See S1 Appendix for a detailed description. The validation of one of these

assumptions is required in order to achieve appropriate parameter estimation results. The cor-

rect assumption is validated before comparing fit performance for each model. This is per-

formed after carrying out a parameter estimation, since the residual plots associated to the

nonlinear LSE are required for this task.

Figures are placed at the end of the present subsection for improved readability.

Comparison for Patient’s 1 data. Models 1 and 2 do not verify the statistical assump-

tion on error independence ε1
i , and therefore accurate results for the related parameter

estimation may not be expected. This finding is supported by the plot of the absolute residu-

als e1
i given by Eq (21) vs. time, which is shown in Fig 11. A random pattern would be a

strong support for the validity of the independence assumption, but this not observed in the

case of Models 1 and 2; see S1 Appendix. In contrast, Models 3, 4 and 5 seem to fulfill this

Table 6. Sums of squares of relative and absolute errors for Patient’s 1 data under a non-constant variance

assumption.

Sums of squares

Model№ Relative Absolute

1 1.3953 1.2408e+3

2 0.9137 909.3604

3 1.3191 1.1144e+3

4 2.3342 2.2730e+3

5 1.3150 1.2606e+3

https://doi.org/10.1371/journal.pone.0217332.t006

Fig 6. Best models for Patient’s 1 data. Predicted tumor area for Patient’s 1 data under a non-constant variance assumption, Model 2 (left) and Model 5 (right).

https://doi.org/10.1371/journal.pone.0217332.g006
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requirement as shown in Fig 11. Moreover, by plotting the absolute residuals e1
i vs. observa-

tions A1

i , the assumption of constant variance data as discerned by Eq (14) seems to be rea-

sonable only for Models 3 and 4, since a random pattern was also obtained for them, whereas

a certain tendency was observed for Model 5; see Fig 12. This indicates that the variance does

not depend on the observations A1

i for Models 3 and 4, validating constant variance assump-

tion as discerned by Eq (14). Note that under this assumption, we have already obtained that

these models best fitted to Patient’s 1 data (see Fig 4). Next we evaluate the goodness of fit

criteria for these models only, in order to quantitatively compare them. Table 11 shows the

values for the goodness of fit criteria described in the Assessing goodness of fit subsection for

Models 3 and 4.

Results in Table 11 indicate that a better fit is achieved by Model 4 followed by Model 3. In

consequence, once the statistical assumption on measuring errors is validated, we can confirm

that Model 4 is the best fit to Patient’s 1 data.

On the other hand, standard errors computation, which are necessary to quantitatively eval-

uate the uncertainty of the estimated parameters for Models 3 and 4, is valid only if residuals

Fig 7. Fit to Patient’s 2 data under a constant variance assumption.

https://doi.org/10.1371/journal.pone.0217332.g007

Table 7. Estimated model parameters for Patient’s 2 data under a constant variance assumption.

Model№ μ̂MAX δ̂MAX M̂hyp δ̂1 δ̂2
γ̂ β̂ ν̂ or ζ̂

1 0.8712 0.4995 0.0455 0.0912 0.0564 0.0003 0.0093 0.6028

2 0.9668 0.0026 0.0604 0.1610 0.5992 0.0001 0.0053 0.3942

3 0.4925 0.0698 0.1699 0.0073 0.1972 0.0002 0.0020 0.2521

4 0.2986 0.0886 0.1694 0.0081 0.1235 0.0002 0.0058 0.4640

5 0.4131 0.0038 0.1505 0.0217 0.7332 0.0002 0.0024 0.7010

https://doi.org/10.1371/journal.pone.0217332.t007
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are normally distributed or if data numbers are sufficiently large; see [12]. In this regard, to

verify the normality assumption we compute p-values for the one-sample Kolmogorov-Smir-

nov test [14], shown in Table 12.

Results in Table 12 show that the normality assumption is not valid. In addition, the num-

ber of data points for each patient j = 1, 2 is relatively small, therefore standard errors cannot

be accurately computed. In consequence, standard errors were excluded from our analysis,

and the uncertainty of parameter estimation for Models 3 and 4 was considered to be assessed

through validation of the statistical assumption satisfied for the measuring errors, as a qualita-

tive way to ensure the accuracy of parameter estimation.

Regarding the non-constant variance assumption as discerned in Eq (15), it can be observed

in Fig 13 that none of the models seem to fulfill the error independence assumption, since the

relative residuals e1
i =A

1

i vs. time t1
i appear to have a certain pattern. In consequence, in this

case it would not adequate to validate the non-variance data assumption as discerned by Eq

(15) in order to solve the parameter estimation problem.

In summary, the best models for fitting Patient’s 1 data are Models 4 and 3 under constant

variance data assumption. This finding suggests that the physiological mechanism describing

Table 8. Sums of squares of absolute and relative errors for Patient’s 2 data under a constant variance assumption.

Sums of squares

Model№ Absolute Relative

1 3.1508e+3 15.8906

2 1.8806e+3 4.5527

3 1.9865e+3 8.3845

4 1.8899e+3 6.7809

5 1.5882e+3 2.9447

https://doi.org/10.1371/journal.pone.0217332.t008

Fig 8. Best models for Patient’s 2 data. Predicted tumor area for Patient’s 2 data under a constant variance assumption. Model 2 (left) and Model 5 (right).

https://doi.org/10.1371/journal.pone.0217332.g008
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therapy failure, due to drug resistance for Patient 1, should consider a basal vasculature and

that the second-line treatment would have a direct effect on the sensitive tumor cells (see

Table 2 for a summary of the models proposed). In addition, as shown in Table 11, Model 4

that considers nutrient consumption rate to be proportional to the normalized growth rate of

tumor cells, is only slightly better than Model 3 with a constant nutrient consumption rate.

Hence, the dependence of the nutrient consumption rate on the normalized growth rate

appears not to be as significant for this data set. This is consistent with what is observed in

Fig 4.

Comparison for Patient’s 2 data. Following the same analysis described above for the

case of Patient’s 1 data, we do not consider Models 1, 2 and 3 for the case of Patient’s 2 data, as

they do not exhibit independence neither the errors vs. time nor on errors vs. observations.

Models 4 and 5 fulfill these assumptions and were analyzed further; see Figs 14 and 15.

Table 13 shows goodness of fit criteria values described in the Assessing goodness of fit

subsection.

Data in Table 13 show that the best fit is achieved by Model 5 followed by Model 4. The

accuracy of parameter estimation for Models 4 and 5 is considered qualitatively assessed

through validation of the statistical assumption satisfied for the measuring errors.

Fig 9. Fit to Patient’s 2 data under a non-constant variance assumption.

https://doi.org/10.1371/journal.pone.0217332.g009

Table 9. Estimated model parameters for Patient’s 2 data under a non-constant variance assumption.

Model№ μ̂MAX δ̂MAX M̂hyp δ̂1 δ̂2
γ̂ β̂ ν̂ or ζ̂

1 0.1120 0.0011 0.1402 0.0636 0.3474 0.0003 0.0007 0.3969

2 0.0768 0.0069 0.2598 0.0806 0.2313 0.0003 0.0032 0.1909

3 0.0162 0.0200 0.0203 0.0213 0.0001 0.0006 0.0002 0.0284

4 0.8953 0.0012 0.1472 0.0043 0.8260 0.0001 0.0052 1.0746

5 1.0419 0.0036 0.2306 0.0256 0.7499 0.0000 0.0003 0.9439

https://doi.org/10.1371/journal.pone.0217332.t009
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Regarding the non-constant variance assumption in Eq (15), it can be observed from Fig 16

that the only possible candidates to fulfill the error independence assumption are models 4

and 5. However, since it was already verified that data generated by these models have constant

variance measuring errors, it is impossible that they satisfy the opposite assumption. In conse-

quence, for Patient’s 2 data the correct statistical assumption on measuring errors is also to

consider constant variance generated data.

In summary, the best models for fitting Patient’s 2 data are Models 5 and 4 under constant

variance data assumption. This finding suggests that the physiological mechanism describing

therapy failure due to drug resistance for Patient 2, should consider that the second-line treat-

ment would have a direct effect on the sensitive tumor cells and that the nutrient consumption

rate should be considered as proportional to the normalized growth rate of tumor cells (see

Table 2 for a summary of the proposed model variants). On the other hand, results in Table 13

show that Model 5 is only slightly better than Model 4, which suggests that considering a basal

vasculature is not as relevant for this data set.

Table 10. Sums of squares of relative and absolute errors for Patient’s 2 data under a non-constant variance

assumption.

Sums of squares

Model№ Relative Absolute

1 1.9486 8.0488e+3

2 1.5855 5.3104e+3

3 1.6581 5.9391e+3

4 1.4813 2.9960e+3

5 1.1471 1.9239e+3

https://doi.org/10.1371/journal.pone.0217332.t010

Fig 10. Best models for Patient’s 2 data. Predicted tumor area for Patient’s data under a non-constant variance assumption. Model 4 (left) and Model

5 (right).

https://doi.org/10.1371/journal.pone.0217332.g010
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Summary and conclusions

In this work we have implemented a practical identifiability approach aiming to quantitatively

describe therapy failure due to drug resistance in GIST metastasis to the liver, using patient-

specific mathematical models. Specifically, we proposed a general modeling framework for

metastatic tumor cell growth and therapy failure. Five model variants, which represent differ-

ent relevant physiological mechanisms, were proposed. Parameters for these models represent

Fig 11. Absolute residuals vs. time for Patient’s 1 data under constant variance assumption. A random pattern is observed for Models 3, 4 and 5, whereas a certain

tendency is observed for models 1 and 2.

https://doi.org/10.1371/journal.pone.0217332.g011

Fig 12. Absolute residuals vs. observations for Patient’s 1 data under a constant variance assumption. A random pattern is observed for Models 3

and 4 supporting the assumption of constant variance generated data, whereas a certain tendency is observed for Model 5. Note that residuals for Model

4 are not shown since they are very similar to ones for Model 3 (see Fig 11).

https://doi.org/10.1371/journal.pone.0217332.g012

Parameter estimation to quantitatively describe therapy failure in GIST metastasis to the liver

PLOS ONE | https://doi.org/10.1371/journal.pone.0217332 May 30, 2019 22 / 27

https://doi.org/10.1371/journal.pone.0217332.g011
https://doi.org/10.1371/journal.pone.0217332.g012
https://doi.org/10.1371/journal.pone.0217332


biologically meaningful quantities regarding cell growth and death, among others, and what is

very important, variables quantitatively describe therapy failure.

Parameter estimation was carried out for these five model variants in order to assess their

fit performance, using observations for tumor area obtained from two patients, which are rep-

resentative of the two possible outcomes observed clinically for GIST metastasis in response

to treatment under a drug resistance scenario. In addition, to improve parameter estimation

results the validity of the statistical assumptions on errors (absolute and proportional to experi-

mental data) was evaluated.

Our results indicate that the constant variance data assumption is the most suitable for the

experimental data available. Under this assumption, Model 4 followed by Model 3 were the

best fit to Patient’s 1 data, whereas Model 5 followed by Model 4 were the best fit for Patient’s

2 data. We believe that Models 3 and 4 are the best fit to describe 85% of the patients responses,

represented by patient’s 1 data set, and that Models 5 and 4 are the best fit for describing the

remaining 15% of cases. From a physiological point of view, we can infer that the second-line

treatment acts on the sensitive tumor cells for both patient’s cases, since models 3, 4 and 5

Table 11. Statistics for the goodness of fit criteria to Patient’s 1 data under constant variance assumption.

Model№ ~σ 2 RMSE R2

3 4.4474e + 3 89.4726 0.9785

4 3.7755e + 3 82.4368 0.9818

https://doi.org/10.1371/journal.pone.0217332.t011

Table 12. One-sample K-S test for normality of residuals for Patient’s 1 data.

Model№ p-value

3 9.3543e-6

4 9.3793e-6

https://doi.org/10.1371/journal.pone.0217332.t012

Fig 13. Relative residuals vs. time for Patient’s 1 data, assuming a non-constant variance. A certain tendency is observed for all the proposed models.

https://doi.org/10.1371/journal.pone.0217332.g013
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Fig 14. Absolute residuals vs. time for Patient’s 2 data under a constant variance assumption. A certain tendency is observed for Models 1, 2 and 3,

whereas a random pattern is observed for Models 4 and 5.

https://doi.org/10.1371/journal.pone.0217332.g014

Fig 15. Absolute residuals vs. observations for Patient’s 2 data under a constant variance assumption. A random pattern is observed for Models 4

and 5 supporting the assumption of constant variance generated data.

https://doi.org/10.1371/journal.pone.0217332.g015

Table 13. Statistics for the goodness of fit to Patient’s 2 data under constant a variance assumption.

Model№ ~σ 2 RMSE R2

4 1.7843e+05 5.4533e+02 0.95811

5 1.2611e+05 4.5846e+02 0.97039

https://doi.org/10.1371/journal.pone.0217332.t013
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share this mechanism. On the other hand, the main differences between the best models for

both patients would be associated to the existence of a basal vasculature and to the dependence

of nutrient consumption on the normalized growth rate of tumor cells. Since for Patient’s 2

data, Models 4 and 5 have similar goodness of fit statistics (see Table 13) under an absolute

error assumption, we consider Model 4 to be the best consensus fit to both data sets. Under

this consensus, we can consider that tumor evolution for both patient’s cases would be associ-

ated to the presence of a basal vasculature and a nutrient consumption rate that is dependent

on the normalized tumor growth rate.

In conclusion, we have successfully obtained phenomenological models that are able to

capture the therapy failure responses that has been clinically observed in patients with GIST

metastasis to the liver showing drug resistance. This is the first work that reports capturing

therapy failure based on clinical images in a patient-specific manner, by using a mathematical

model. The obtained models allow us to quantitatively describe therapy failure to treatment of

GIST metastasis to the liver by using available observations, which could contribute to the

design of new therapeutic strategies that minimize drug resistance. Additional studies need to

be conducted in order to provide enough information to elucidate the underlying mechanisms

of resistance, before developing mathematical models that consider additional mechanistic

details and that may explain this phenomenon in a more accurate way. In particular, an experi-

mental framework that would estimate the actual proportion of sensitive/resistant to treat-

ments tumor cells could help to obtain a more accurate quantitative description of the

involved physiological mechanism behind drug resistance.

The methodology presented in this work could also be applied in the context of therapy fail-

ure due to drug resistance to other biological systems with empirical observations, where a

phenomenologically based mathematical model can be proposed, and where parameter identi-

fication is likely to be a problem due to a scarce availability of data.
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Fig 16. Relative residuals vs. time for Patient’s 2 data under a non-constant variance assumption. A certain tendency is observed for Models 1, 2

and 3, whereas a random pattern is observed for Models 4 and 5.
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