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Visual Abstract

Connectome-based modeling of large-scale brain network dynamics enables causal in silico interrogation of the
brain’s structure-function relationship, necessitating the close integration of diverse neuroinformatics fields. Here
we extend the open-source simulation software The Virtual Brain (TVB) to whole mouse brain network modeling
based on individual diffusion magnetic resonance imaging (dMRI)-based or tracer-based detailed mouse con-
nectomes. We provide practical examples on how to use The Virtual Mouse Brain (TVMB) to simulate brain
activity, such as seizure propagation and the switching behavior of the resting state dynamics in health and

Significance Statement

The Virtual Mouse Brain (TVMB) represents a versatile and intuitive tool for virtualizing and simulating mouse
whole-brain dynamics using a connectome-based model approach. TVMB enables the construction of
individual mouse brains using diffusion magnetic resonance imaging (dMRI) experiments. TVMB also allows
building detailed connectomes based on tracer experiments realized by the Allen Institute. Various modal-
ities can be modeled [e.g., electroencephalography (EEG) and fMRI]. The platform can be used to generate
predictions that can be tested experimentally.
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disease. TVMB enables theoretically driven experimental planning and ways to test predictions in the numerous
strains of mice available to study brain function in normal and pathological conditions.
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Introduction
Dedicated software environments are available to sim-

ulate detailed neuronal dynamics such as Neuron, Gene-
sis, and MOOSE, which model the complex dendrite
geometry, reaction-diffusion processes and receptor dis-
tributions of individual neurons and smaller networks
(Hines and Carnevale, 1997). To simulate larger networks,
neuron models are reduced to point neurons (Izhikevich,
2003; Brette and Gerstner, 2005), which is the case of the
simulator BRIAN (Goodman and Brette, 2009), NEST
(Diesmann and Gewaltig, 2001), and NENGO (Eliasmith
et al., 2012). However, scaling up for detailed models
beyond an entire cortical column (Markram, 2012) and a
few brain regions becomes quickly intractable even for
networks of point neurons. Although neuromorphic com-
putation offers interesting alternatives for the future (the
SpiNNaker project http://apt.cs.manchester.ac.uk/proj-
ects/SpiNNaker/ and the BrainScaleS project http://brain-
scales.kip.uni-heidelberg.de/), macroscopic modeling using
neural population approaches is the only viable whole-brain
network modeling strategy nowadays.

The Virtual Brain (TVB) is an open-source simulation
software designed to model whole-brain network dynam-
ics, where the network’s connectivity is based on diffu-
sion magnetic resonance imaging (dMRI)-based individual
connectomes or adaptations of more precise primate
connectomes (Sanz Leon et al., 2013). TVB comprises
several generative neural population models, defined in
physical 3D space and constrained by anatomy, allowing
simulating neuroimaging signals [such as magneto- and
electroencephalography (MEG, EEG), or functional MRI
(fMRI)]. Whole-brain dynamics can also be manipulated in
TVB, e.g., via stimulation. TVB provides a large set of tools
for visualization and data analysis (Sanz-Leon et al.,
2015). As such, TVB provides a conceptual framework to

interpret neuroimaging data, offering promising diagnos-
tic and therapeutic perspectives (Jirsa et al., 2017; Proix
et al., 2017). Other groups demonstrate converging re-
sults using similar large-scale brain modeling approaches
(Hutchison et al., 2013; Sinha et al., 2017). However, very
few model predictions can be experimentally tested in
humans for obvious ethical reasons. Thus, assessing cau-
sality and extracting general principles of brain dynamics
in health and disease remains a challenge.

Rodent research enabled major advances in our under-
standing of brain function and dysfunction, but mostly at
the microscopic scale. The advent of new generations of
MRI machines now gives access to detailed anatomic,
structural and functional information at the whole rodent
brain scale (Stafford et al., 2014), thus providing a formidable
opportunity to explore general principles of whole-brain dy-
namics. Indeed, hypotheses can be tested and causality can
be assessed in the numerous transgenic mouse lines that
have been generated to study neurologic disorders and to
manipulate neuronal networks (e.g., with optogenetics and
pharmacomogenetics). However, a conceptual framework is
needed to interpret neuroimaging data and generate test-
able hypotheses. Such framework would considerably ac-
celerate our understanding of the mechanisms controlling
and affecting whole-brain dynamics.

Here, we present The Virtual Mouse Brain (TVMB), the
first connectome-based simulation platform to study
large-scale mouse brain dynamics.

TVMB is integrated into TVB and adapted to the mouse
brain to enable its virtualization. It uses the validated TVB
simulators to generate brain network activity, as well as
analysis and visualization tools.

In what follows, we will show how the platform can be
used to virtualize not only individual mouse brains
(based on dMRI connectome) but also to construct very
detailed connectome-based models using tracer data
obtained by the Allen Institute for Brain Science (Oh
et al., 2014).

As a worked example to show how the platform can be
used to generate predictions or interpret data, we will
simulate resting state dynamics in a control and “epilep-
tic” mouse and seizure propagation. We will also show
how to integrate TVMB in a research project in which
theoretical and experimental approaches benefit from one
another.

Materials and Methods
All the methods discussed in what follows are imple-

mented in TVB and freely available to the community. The
scripts to reproduce the same results presented in the paper
are in Extended data (Figs. 1-1, 1-2, 3-1, 4-1); the tracer-
based connectome used here are available in the TVB data
folder (�/tvb_data/mouse/).
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The Allen Connectivity Builder
The Allen Connectivity Builder is a pipeline that we have

designed to build a complete mouse connectome based
on tracer information.

Specifically we define the link between two brain re-
gions according to the anterograde tracing information
provided by the Allen Institute of Brain Science and pre-
sented in the work of Oh et al. (2014). In the latter, the
axonal projections from a given region are mapped by
injecting in adult male C57Bl/6J mice the recombinant
adeno-associated virus, which expresses the EGFP an-
terograde tracer. The tracer migration signal is detected
with a serial two-photon tomography system. This ap-
proach is repeated systematically to collect the informa-
tion on the tracer migration from several injection sites in
the right hemisphere to target regions in both ipsilateral
and contralateral hemispheres; for each injection sites
several experiments are run and distinct measures are
accomplished. The Allen Institute provides its data through
an Internet-accessible interface, namely the Allen Soft-
ware Development kit (Allen SDK), from which TVB,
through The Allen Connectivity Builder interface, is able to
obtain a volumetric atlas as well as the raw experimental
information necessary to build complete mouse brain
connectomes. The platform allows to choose the main
characteristics of the connectome; specifically the user
can set:

1. The resolution of the grid volume in which the data
are registered (25, 50, and 100 �m).

2. The definition of the connection strength between
source region i and target region j. Specifically the
connection strength can be defined as:
– The detected projection density (the number of de-

tected pixels in the target region normalized on the
total number of pixels belonging to that region).

– The detected projection energy (the intensity of de-
tected pixels in the target region normalized on the
total number of pixels belonging to that region).

– The ratio between the projection density, defined as
explained above, and the injection density of the
source region (the number of infected pixels in the
source region normalized on the total number of pixels
belonging to that region).

It is possible to choose the characteristics of the brain
areas to be included in the parcellation using the two
following criteria:

3. Brain areas where at least one injection has infected
more than a given threshold of voxels. This kind of
selection ensures that only the data with a certain level
of experimental relevance is included in the connec-
tome (Oh et al., 2014).

4. Only brain areas that have a volume greater than a given
threshold can be included.

The pipeline, once downloaded the raw data from the
Allen dataset, cleans the data to obtain a set of experi-
ments in which the injection structures are exactly the
same as the target structures and vice versa; this step
ensures that the connectome will be a square matrix.
Then, the pipeline excludes from the experimental set the

area that do not fulfill the criteria set by the user (minimum
volume (3) and minimum number of voxels infected (4)).

The experiments of the Allen Institute consider source
regions always located in the right hemisphere, thus we
build a complete structural connectivity matrix, taking the
mirror image of the right hemisphere to build the left one.
Therefore, if we divide the SC matrix in four blocks R-R,
R-L, L-R, and L-L (clockwise order starting from upper
left), we will have the symmetries R-R � L-L and R-L �
L-R. This assumption is justified by the fact that the
mouse brain shows a high degree of lateral symmetry
(Calabrese et al., 2015).

The connection strength between a given region and
another one is averaged across all the experiments that
use as source and target regions those particular brain
areas.

The Allen Connectivity Builder approximates the length
of the tracts as the Euclidean distance between the cen-
ters of the brain regions; the latter are calculated using the
volume built from the Allen SDK.

Finally, The Allen Connectivity Builder creates a region
volume mapping, i.e., a 3D matrix which represents the
volume of the mouse brain, by modifying the annotation
volume downloaded from the Allen SDK. In particular the
volume is built so that the entries of the 3D volume matrix
range from -1 (background) to N-1, where N is the total
number of areas in the connectivity: entries in the volume
equal to i – 1 label the brain region whose incoming and
outgoing connections are organized in the i-th row and
i-th column of the connectivity matrix.

The code named allen_creator.py is located in the
folder TVB folder/tvb/adapters/creators/. The code is
composed of a function “launch” that calls several func-
tions (all written in the file allen_creator.py) that perform all
the actions described above. To work outside TVB, users
need to copy and paste all the functions that they need
from the allen_creator.py.

The volumes and the connectivities used in the present
work have a resolution of 100 �m and each connection
strength is defined as the ratio between projection density
and injection density. The areas included in the parcellation
have a volume �2 mm3 and they have �50 voxels infected
in at least one injection experiment. The connectome ob-
tained is in the TVB data folder (/TVB_Distribution/tvb_data/
lib/python2.7/site-packages/tvb_data/mouse/); the instru-
ctions to obtain it through the TVB Jupiter interface are in
script Figure 1-1 (Extended data).

Resting state dynamics
Brain model

The mean activity of each brain region, composing the
mouse brain network, is described by the reduced Wong
Wang model (Wong and Wang, 2006). In this approach,
the dynamics of a brain region is given by the whole
dynamics of excitatory and inhibitory populations of leaky
integrate-and-fire neurons interconnected via NMDA syn-
apses. In this work, we take into account this model with
a further reduction performed in Deco et al. (2013b): the
dynamics of the output synaptic NMDA gating variable S
of a local brain area i is strictly bound to the collective
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firing rate Hi. The resulting model is given by the following
coupled equations:

dSi(t)
dt

� �
Si

�s
� (1 � Si)�Hi � �	i(t) (1)

Hi �
axi � b

1 � exp(�d(axi � b))
(2)

xi � wJNSi � JNG �
j

CijSj � I0 (3)

where xi is the synaptic input to the i-th region. � is a
kinetic parameter fixed to 0.641, �s is the NMDA decay
time constant and its value is 100 ms; a, b, and d are the
parameters of the input and output function H and are,
respectively, equal to 270 nC– 1, 108 Hz, 0.154 s. JN �
0.2609 nA is an intensity scale for the synaptic input
current. w is the local excitatory recurrence and I0 is the
external input current. G is the coupling strength, i.e., a
scalar parameter which scales all the connection strengths
Cij without altering the global topology of the network.

The value of the local excitatory recurrence, w, and the
external input current, I0, are set, respectively, to 0.3 nA
and 1 to enrich the nonlinearity of the dynamics of each
brain region. Indeed in this case, studying the dynamics of
isolated brain areas (G � 0 in Eq. 3), it is possible to notice
that each brain area is in a bistable state and it oscillates
between high and low activity fixed points (Hansen et al.,
2015). When the brain areas are connected in the network
(i.e., G � 0 in Eq. 3), it is not possible to find the analytic

solution of
dS
dt

(Eq. 1), and thus the attractors of the

system. The behavior of the connected brain network can
be assessed by simulating the system in a deterministic
fashion until it reaches the stationary state; repeating this
approach several times it is possible to obtain a rich
repertoire of stationary states (i.e., attractors of the sys-
tem) that can be classified through clustering techniques
as described previously (Golos et al, 2015). It has been
noticed (Hansen et al., 2015) that enriching the nonlinear-
ity of each brain areas has an impact on the global
network by introducing attractors that are not in trivial
relation with the anatomic connectivity. We refer to this
model as the enhanced nonlinearity mean-field model
(eMFM). The implementation of the eMFM in a brain net-
work offers the chance to study the nonstationary fea-
tures of the functional connectivity (FC) patterns.

The values of G, together with the value of the noise
amplitude � of the normally distributed stochastic variable
	i, are tuned, respectively, to 0.096 and 5.1 � 10– 3. In
absence of experimental data, the optimal values of the
model parameters cannot be assessed through data fit-
ting techniques; we have choose these model parameters
since they allow the system to satisfy the two following
conditions. (1) The system is in unstable state so that it is
able to explore several brain configurations and it has
been shown that this is the optimal range for simulating
resting state activity (Deco et al., 2013a). The range of
coupling strengths for which the system displays multi-

stability is identified by building its bifurcation diagram as
described in Deco et al. (2013b). (2) The system is able to
reproduce the checkboard pattern of the FC dynamics
(FCD) observed in experimental data; this condition is
satisfied for a smallest subset of coupling strength values
identified with the first condition (Hansen et al., 2015;
Deco et al., 2017). We have use the FCD metrics as clue
of goodness of our simulation, since it has been identified
in the literature as an important resting state feature
(Hutchison et al., 2013; Preti et al., 2016).

Integration scheme and BOLD signals
Model equations are numerically solved using the Euler

integration method with a fixed integration step of 0.1 ms.
Simulated BOLD signal is obtained by converting the

simulated synaptic activity (Eq. 1) using the Balloon-
Windkessel method (Friston et al., 2000) with the default
value implemented in TVB (Sanz-Leon et al., 2015).

The BOLD time series are down-sampled to 2 s and 20
min total length.

Functional connections
Functional connections in the simulated time series are

explored from both spatial and temporal point of views
using, respectively, the FC and the FCD.

The ij-th element of the FC matrix is calculated as the
Pearson correlation between the BOLD signal of the brain
region i and of the brain region j.

To estimate the FCD, the entire BOLD time series is
divided in time windows of a fixed length (3 min) and with
an overlap of 176 s; the data points within each window
centered at the time ti were used to calculate FC(ti). The
ij-th element of the FCD matrix is calculated as the Pear-
son correlation between the upper triangular part of the
FC(ti) matrix arranged as a vector and the upper triangular
part of the FC(tj) matrix arranged as a vector.

To observe signal correlations at frequency greater than
the typical one of the BOLD signals, the sliding window
length is fixed to 3 min, since, as demonstrated by Leon-
ardi and Van De Ville (2015), the nonspurious correlations
in the FCD are limited by high-pass filtering of the signals
with a cutoff equal to the inverse of the window length.

The FCD matrix allows identifying the epochs of stable
FC configurations as blocks of elevated inter-FC(t) corre-
lation; these blocks are organized around the diagonal of
the FCD matrix (Hansen et al., 2015).

FCD segmentation: spectral embedding
To identify the epochs of stable FC configurations, we

used the spectral embedding method, that permits to
group together the nodes of the FCD, i.e., the different
time windows, in clusters.

The spectral embedding is a general cluster technique
founded on the possibility to map the nodes of the net-
work in the Euclidean space such that the Euclidean
distance between the nodes in the space corresponds
with the distance between the nodes in the network.

To implement this idea, it is necessary to define the
notion of distance between nodes in a network; this is
made introducing the concept of the commute distance cij

between the nodes i and j that is defined as the expected
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number of steps in a random walk starting to travel from
node i to node j, and back (Von Luxburg, 2007).

To mathematically define cij it is necessary to introduce
some quantity. Let us consider a graph that has an adja-
cency matrix W, i.e., a matrix whose element wij is the weight
of the link between node i and j, that in our case is the FCD
matrix; it is possible to define the laplacian of the graph as:

L � D � W, where D � ��j

w1,j

Ì

�
j

wN,j
� .

(4)

Let us denote with |ei � the eigenvector i of the Lapla-
cian; if the matrix U is the matrix whose columns are the
eigenvectors of L, and � the diagonal matrix with the
eigenvalues 
i on the diagonal, thus it is possible to
decompose the Laplacian as: L � U�UT.

The generalized inverse of the Laplacian is defined as
L† � U�†UT, where �† is the diagonal matrix with on the
diagonal 1/
i when 
i is different from zero, otherwise
zero. Thanks to L† it is possible to express the commute
distance between node i and j as:

cij � vol(V) � ei � ej
L†
ei � ej � ,

with vol(V) � ( �
i

N

�
j

N

wij) . (5)

The variable |zi � maps the vertex vi in the Euclidean
space (zi��N) such that the Euclidean distance between
node i and j is equal to the commute distance cij of the
nodes in the graph if and only if:

cij
2 � vol(V)

zi � zj

2 ⇒ � ei � ej
U�†UT
ei � ej �

� �zi � zj
zi � zj � , (6)

from which it follows that � zi| corresponds to the i–th row
of the matrix U��†.

Functional hubs
The FC matrix of each epoch defines a functional net-

work; for each functional network, we identify the hub
regions with an approach analogous to the one used in
graph theory for defining the eigenvector centrality of a
network node (Newman, 2008).

Let us define the functional centrality ��i� of a brain
region i as the sum of the functional centralities of the
neighboring brain regions weighted on the functional con-
nection strength fcij:

�(i) �
1

 �

j�1

N

fcij�
(j) (7)

x where 
 is a constant. Defining the vector �
→

as the
column vector whose components are the functional cen-

trality of each network region, we can rewrite the previous
equation in matrix form:

�
→

�
1



FC�
→

. (8)

It is simple to notice that �
→

is the eigenvector of the FC
matrix associated with the eigenvalue 
. Since the FC is a
real symmetric matrix (thus diagonalizable), we can de-
compose it as:

FC� ���T�

� ��1
¡ · · · �N

¡ 	

1

Ì

N

���1
¡T

É

�N
¡T

��
� �

i�1

N


i�i
¡�i

¡T .

(9)

It follows that the magnitude of the eigenvalue gives a
measure of the role of the corresponding eigenvector in
reproducing the original matrix.

Taking into account all these observations, we identify
the functional hub regions of the mouse brain as the
regions with the largest eigenvector components, in ab-
solute value, associated with the three largest eigenvalues
of the FC matrix.

The script to run resting state simulation with the tracer-
based connectome is in Figure 1-2 (Extended data).

Modeling altered connectomes in pathologic
contexts

TVB allows manipulating the structural connectivity by
selectively changing the strength of the connections be-
tween brain areas to mimic structural lesions. Using this
tool, we have simulated mouse brain dynamics mimicking
some aspects of the anatomic reorganization found in
mesial temporal lobe epilepsy: the neuronal connection
lost in hippocampal regions, in particular fields CA1 and
CA3 (Esclapez et al., 1999). To reproduce this feature in
silico, we have removed all the in-coming and out-coming
connections of fields CA1 and CA3 of the hippocampus
and then scaled all the connection strengths by a con-
stant factor, so that the total weights of the modified SC
is equal to the one of the original matrix. We simulated the
resting state BOLD activity and we calculated the FCD
matrix as described in the previous sections.

The script to run resting state simulation in pathologic
condition is in Figure 3-1 (Extended data).

Epileptic spread in silico
The epileptic network node model

The Epileptor (Jirsa et al., 2014) is a model describing
the onset (through a saddle-node bifurcation), the time
course and the offset (through a homoclinic bifurcation) of
seizures with five state variables that operate at three
different time scales. The variable that guides the neural
population through the bifurcations is the slow permittivity
variable, z, which operates at the slowest time scale.
Ensemble 1, comprising the variables x1 and y1, describes
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the fast discharges registered during ictal states and sta-
ble state observed during interictal states; it operates at
the fastest timescale. Finally, ensemble 2 (x2, y2) operates
at the intermediate time scale and accounts for spike-
and-wave events. The interaction between the variables
of the system is the following: ensemble 1, through the
function g(x1), excites ensemble 2, which in turn inhibits
ensemble 1 through f1�x1, x2�; both the ensembles are
coupled to the slow variable, and the first ensemble acts
directly on z. Proix et al. (2014) propose a permittivity
coupling between brain areas via a linear difference cou-
pling function that links the fast subsystems with the slow
variable z with the weights given by the distance cij.

The full model equations read:

ẋ1,i � y1,i � f1(x1,i, x2,i) � zi � Ii ẏ1,i

ẏ1,i � 1 � 5(x1,i)2 � y1,i

żi�r(4(x1,i � x0,i) � zi � 0.1zi
7) � Kz �

j

cij(x1,i � x1,i)

ifzi � 0

r(4(x1,i � x0,i) � zi) � Kz �
j

cij(x1,i � x1,i)

ifzi � 0
(10)

ẋ2,i � �y2,i � x2,i � (x2,i)3 � I2 � 0.002·g(x1,i)
� 0.3(zi � 3.5)

ẏ2,i �
1
�

(�y2,i � f2(x2,i)) ,

where:

f1(x1,i, x2,i) � �3x1,i
2 � x1,i

3 if x1,i � 0
(0.6(zi � 4)2 � x2,i)x1,i if x1,i � 0 (11)

f2(x1,i, x2,i) � �0 if x2,i � �0.25
6(x2,i � 0.25) if x2,i � �0.25 (12)

g(x1,i) � 

t0

t

e��(t��)x1,i(�)d� (13)

with I1 � 3.1, I2 � 0.45, � � 10, � � 0.01; the permittivity
coupling term Ks is fixed to -60.

The degree of epileptogenicity x0 of a brain region i is a
parameter that establishes if the region generates sei-
zures autonomously.

Integration scheme and epileptogenicity zone
The epileptogenic zones in the model are nodes of the

network that are implemented in the simulation with an
epileptogenicity value, x0, so that, for those nodes, the
transition between the preictal and the ictal state occurs
spontaneously (Proix et al., 2014). An isolated brain area
with x0 � 2.06 is epileptogenic, otherwise the area is in its
equilibrium state and it can generate seizures only if an

external stimulus pushes it through the transition and
makes it fall in the propagation zone (Proix et al., 2014).

In the simulated mouse brain, the classification of brain
areas in epileptogenic and propagation zone follows the
experimental results of the work of Toyoda et al. (2013), in
which the authors, using recording electrodes, evaluate
the seizures propagation in rats with spontaneous sei-
zures. The authors observe that the earliest seizure activ-
ity is recorded most frequently within the hippocampal
formation and then spreads, in chronological order, in the
subiculum, the entorhinal cortex, the olfactory cortex, the
neocortex and the striatum; in 7 over 10 rats analyzed in
the paper the epileptogenic region is likely identified in
either hemisphere. Accordingly we set as epileptogenic,
x0 � –1.9 the left hippocampal regions (field CA1, field
CA3, and dentate gyrus), and we set all other regions as
propagation zones, x0 � –2.1.

The differential equations of the model are integrated
with the Heun stochastic method with an integration step
equal to 0.04 ms; we use additive white Gaussian noise in
the fast variables (x2 and y2) with mean zero and variance
0.0025. The signals are down-sampled to 1 ms. We set
the pre-expression monitor to keep track of the local field
potential, defined in the Epileptor as –x1 � x2, as well as
the slow permittivity value z.

We define the time at which seizure initiates in a large
brain region, as for example the olfactory cortex, as the
mean of the seizure onset time of all the network nodes
composing that region (see Table 1); to evaluate the
chronological order of areas recruitment we define the
seizure onset latency of a region as the difference be-
tween the time at which the seizure initiates in that region
and the time at which the seizure has started in the
epileptogenic zone, i.e., the hippocampal regions.

The script to simulate epileptic activity in mouse brain is
in Figure 4-1 (Extended Data).

Results
Virtualizing the mouse brain
Tracer-based connectome

To exploit present (and future) high-resolution structural
information of the Allen Institute, we designed The Allen
Connectivity Builder, a pipeline, which uploads their raw
data and processes it to create a connectome and its
brain volume representation. The user chooses four sets
of parameters: the resolution of the tracing data (1); the
way the connection strengths are calculated (2); and the
criteria used to include or not a given injected region
based on its volume (3); and its experimental significance
(4). The pipeline then computes automatically the aver-
aged connection strength between any two regions. Since
injections were only performed in the right hemisphere
and since the mouse brain shows a high degree of lateral
symmetry (Calabrese et al., 2015), the pipeline uses the
mirror image to build the left hemisphere. If time delays
are considered as an important variable to simulate
whole-brain activity, the length of each axonal tract be-
comes a key parameter. The Allen Connectivity Builder
approximates the length of the tracts as the Euclidean
distance between the centers of two regions. Finally, the
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pipeline automatically builds the brain volume using the
same parcellation as used to build the connectome.
TVMB includes a region volume mapping visualizer to
display the brain volume as sections and the results of the
computations in the brain sections.

An example of a structural connectivity matrix obtained
through the Allen connectivity builder is shown in Figure
1A and the corresponding volume sections in Figure 1D.

dMRI-based connectome
TVMB can also make use of user-based dMRI data,

enabling the virtualization of individual mouse brains. to
use the analysis tools and the visualizer above, the brain
volume should be uploaded in nifti format with the same
parcellation as the connectome.

As an example, we have used here the high-resolution
open-source mouse connectome of Calabrese et al.
(2015; Fig. 2A), which we have embedded in the Allen
volume (Fig. 2D). In the general case, the user needs to
upload the following files: (1) a weight matrix, i.e., a square

matrix whose rows and columns label the areas in the
parcellation and whose entry (i, j) represents the values of
the connection strength between region i and region j; (2)
a file containing the labels of the brain regions; and (3) the
list of Cartesian triplets that specify the spatial location of
each region (Sanz-Leon et al., 2015). As exhaustively
explained in the TVB documentation (http://docs.thevirtu-
albrain.org/index.html), it is possible to provide additional
information as the lengths of the tracts connecting the
brain areas, or a file containing a vector providing a way of
distinguishing cortical from subcortical regions, or the
volumes where the connectome is embedded in nifti for-
mat, etc.

Simulated brain activity
Once a virtual brain is constructed, the TVB environ-

ment generates a large-scale brain network equation
(Jirsa, 2009) offering multiple ways to produce electro-
physiological and neuroimaging signals, and analyze their
dynamics.

Figure 1. A, We used The Allen Connectivity Builder to build the structural connectivity matrix. The color map represents the
connections strengths with a base-ten logarithmic scale. The resolution of the grid is 100 �m; the weights of the matrices are defined
as the ratio between the projection and the injection density; all the areas in the parcellation have at least one injection experiment
that has infected �50 voxels in those areas; the matrix contains only regions with a volume �2 mm3. B, Simulated resting state BOLD
time series using the connectome built in A, and the eMFM to model the dynamics of each brain area. C, FCD matrix obtained from
the time series. The three black segments (I, II, and III) correspond to epochs of stability of the FCD identified with the spectral
embedding technique. D, Functional hubs detected in silico mapped on brain sections using the brain region volume visualizer. Images
in the same row represent the plotting of the eigenvectors components, in absolute value, of the FC belonging to the same epoch. Images
organized in different columns refer to eigenvectors belonging to different eigenvalues of the matrices. The scale used allows highlighting
only the brain area associated to component of the eigenvector greater than the half of the maximum component. Such scale permits to
efficiently visualize the relative difference between eigenvectors. According to our definition (see Materials and Methods), the areas with
warm colors are the hub regions of the brain network defined by the FC matrices calculated over the relative epoch; the importance of each
hub region is proportional to the corresponding eigenvalue. E, Experimental resting state networks and the corresponding functional hubs
detected in Mechling et al. (2014). The Ipython scripts to obtain the results in the figure are Figure 1-1 and Figure 1-2 (Extended data).
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We present three illustrative examples on how mouse
brain network simulations can be accomplished. The
scripts and the data necessary to reproduce all the sim-
ulations and results presented here are in Extended data.

Resting state activity in the “healthy” brain
Since recent studies highlighted the importance of

studying FCD (Allen et al., 2014, Hansen et al., 2015) and
the functional hubs of rodents brain (Mechling et al., 2014;
Liska et al., 2015) during resting state activity, we intro-
duce an analyzer able to calculate the FCD and to extract
the functional hubs (details of the algorithms in Materials
and Methods).

We focus on the nonstationary nature of the fMRI FC in
resting state observed both in humans (Chang and
Glover, 2010; Allen et al., 2014) and in rodents (Keilholz
et al., 2013, Liang et al., 2015). Using the simulator tool of
TVB we simulate the resting state activity using the re-
duced Wong Wang model (Wong and Wang, 2006) in the
dynamical regime studied by Hansen et al. (2015). The
model differs from previous resting state models (Deco
and Jirsa, 2012, Deco et al., 2013b) by having a richer
dynamical repertoire for each brain region, which results
in a greater number of attractors for the global system.

The BOLD signals and the corresponding FCD matrix
are shown in Figure 1B,C, respectively. The blocks around
the diagonal of the FCD matrix correspond to time inter-
vals during which the FC(t)s are strongly correlated; fol-
lowing the work of Hansen et al. (2015), we call these
periods epochs of stability. The FCD analyzer, using the
spectral embedding algorithm, detects three epochs of
stability (Fig. 1C, black lines) in the FCD matrix. As ex-
plained in Materials and Methods, it is possible to identify
the central nodes of the i-th network (i � 1,2,3), i.e., the
functional hub regions of the i-th epoch, as the nodes
linked to the largest components associated with the
largest eigenvalues of the FC matrix computed over the
i-th epoch. The functional hubs identified using this argu-
ment by the FCD analyzer are plotted in the mouse brain
sections in Figure 1D.

It is possible to notice several analogies between the
simulated functional hubs and the ones previously re-
ported in literature. In particular, the hypothalamus, the
visual and somatosensory cortex have been identified as
hubs when analyzing resting state networks in mice (Fig.
1E; Mechling et al., 2014). In addition, we find that the
agranular insular area is associated to the largest compo-
nent of the first eigenvector of all epochs (i.e., the most

Figure 2. A, Connectivity matrix obtained from Calabrese et al. (2015). B, Simulated resting state BOLD time series using the
connectome shown in A, and the eMFM to model the dynamics of each brain area. C, FCD matrix obtained from the time series. The
black segment identifies the epoch of stability of the FCD identified with the spectral embedding technique. D, Functional hubs
detected in silico mapped in mouse brain sections using the brain region volume visualizer, as in Figure 1C.
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salient hub) in keeping with the experimental data of Liska
et al. (2015). Finally, it is interesting to note that the
agrunar insular area, the cingulate and temporal cortex are
also hub regions in humans (van den Heuvel and Sporns,
2013). Since these hubs are altered in neurologic disorders

(Buckner et al., 2009; Crossley et al., 2014), it is straightfor-
ward to predict functional consequences after modifying
hubs in silico. This illustrates a potential use of TVMB.

Brain activity can be simulated also in individual vir-
tual mouse brain built from fMRI diffusion data as ex-

Figure 3. A, B, BOLD signals and the corresponding FCD matrix, respectively, obtained by simulating the mouse brain in which some links
are removed to mimic epilepsy conditions. C, Functional hubs detected in the epileptic mouse brain after removing links as seen in some
forms of epilepsy. The hubs displayed here are extracted from the FC matrix calculated over all the simulated BOLD signals (20 min), i.e.,
the global FC, since the FCD simulated in the epileptic mouse brain does not present evident sign of nonstationarity and consequently the
epoch of stability cannot be detected. The Ipython script to obtain the results in the figure is in Figure 3-1 (Extended data).
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plained before. As an example, we uploaded the
detailed dMRI connectome from Calabrese et al. (2015)
and simulated subsequent resting state activity of its
BOLD signals (Fig. 2).

Resting state activity in epilepsy
TVMB can be used to assess the functional conse-

quence of the anatomic reorganization that takes place in
most, if not all, neurologic disorders. Temporal Lobe Ep-
ilepsy is a prototypical example of neurologic disorder
with well-described anatomic alterations (Esclapez et al.,

1999, Chen and Buckmaster, 2005) and functional reor-
ganizations (Centeno and Carmichael, 2014).

Using the tracer-based connectome described above,
we removed the connections from the hippocampal CA3
and CA1 regions known to be lost in some forms of medial
temporal lobe epilepsy. The simulated BOLD and the
corresponding FCD are shown in Figure 3.

The comparison between the activity of the healthy
and epileptic brain at the level of a single region (Figs.
1B, 3A, respectively), does not provide any particular

Figure 4. Simulating epileptiform activity in the mouse brain. A, The time series show simulated seizure genesis and propagation
(direct current recording) in silico. B, The graph shows the propagation pattern. Time 0 corresponds to seizure onset in the left
hippocampus. On the x-axis, regions are ordered as they are progressively recruited in Toyoda et al. (2013). The y-axis shows the
average time of recruitment in arbitrary units of these regions after triggering a seizure in the left hippocampus in silico. Note the good
match between simulated and experimental data. Extensive names of the region composing each group are illustrated in the table in
Table 1. C, The time distance from seizure onset in the left hippocampus is given by the color scale and plotted in the brain volume
for each region. The Ipython script to obtain the results in the figure is Figure 4-1 (Extended data).
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insight. However the differences in brain activity be-
tween the two conditions are revealed at the network
level when computing the FCD (Fig. 3B). The functional
connections that emerge in the epileptic brain are not
correlated in time resulting in a suppression of the
switching behavior of the FCD, as compared with the
control connectome (Fig. 1C). As a result the functional
hubs are modified. Since there is no switching, only
hubs of global FC can be identified (Fig. 3C).

Seizure propagation
TVB also contains numerous models to generate EEG-

like activity, including the Epileptor to simulate seizure
genesis and propagation (Jirsa et al., 2014, Proix et al.,
2014).

As an experimental reference, we used the electrophys-
iological recordings performed by Toyoda et al. (2013) in
a rat model of temporal lobe epilepsy. Based on the latter
results, we used the left hippocampal regions as epilep-
togenic zones, and analyzed how and where seizures
propagated in silico.

The results of the simulation are shown in Figure 4.
Each region is characterized by a specific time of seizure
onset. The chronological order of the different areas re-
cruited during seizure propagation is shown in Figure
4B,C. The brain areas in abscissa in Figure 4B are sorted
according to the seizure onset latency rank found by
Toyoda et al. (2013) in rats. Despite the difference in
species (rat versus mouse), there is a remarkable analogy
with experimental results, suggesting that the structural
connectome (and the time delays it imposes) plays a key
role in the spatiotemporal pattern of seizure propagation
as already reported in humans (Jirsa et al., 2017, Proix
et al., 2017).

Interpreting and planning experiments with TVMB
Interpreting experimental data with TVMB

Physiologic (e.g., normal aging) and pathologic pro-
cesses (e.g., neurologic disorders) are associated with
both structural (connectome) and functional (resting state
networks) alterations. A central issue in neuroscience re-
search is to understand how much structural alterations
can account for functional ones. At present, both obser-
vations remain at the correlation level. In the case of
aging, DTI and rsfMRI can be obtained at different times in
a given animal (Figure 5). A virtual brain can be con-
structed at each time step, to simulate whole-brain
dynamics. Following data fitting, alterations found specif-
ically at time t � 1 experimentally can be introduced in the
connectome measured at time t. If the resulting in silico
rsfMRI reproduces that experimentally measured at time t
� 1, it is possible to propose that these structural altera-
tions are sufficient to explain the changes in whole-brain
dynamics.

Planning experiments with TVMB
We present two of the many possibilities offered by the

platform. Brain surgery and stimulation are two common
procedures used to treat patients, e.g., for epilepsy and
Parkinson’s disease. After virtualizing a mouse model of
these pathologies at a specific stage of their evolution,
researchers can perform neurosurgery in silico and pre-

dict the efficacy of the procedure. Likewise, in silico stim-
ulation of brain regions is straightforward in TVMB, which
allows studying how resting state dynamics can be ma-
nipulated (Spiegler et al., 2016). The predictions thus
generated can then be tested experimentally in vivo in the
same mouse that was used to make them. Novel preclin-
ical strategies may thus be tested in mice, before their
possible clinical transfer.

Many brain functions require dynamical interactions
and information transfer between numerous brain regions.
The contribution of a given region is thus difficult to
evaluate a priori. Using a parameteric study in TVMB, it is
possible to predict which regions play a key role by
successively activating and inactivating them. Then, one
can plan the experiment, choosing the appropriate trans-
genic mouse line to control the identified region with
optogenetics or pharmacogenetics. Such a priori knowl-
edge provided by the in silico approach would consider-
ably accelerate research.

Discussion
TVMB opens a new set of research possibilities: it allows

researchers, from different fields, to easily build specific/
individual mouse brains (using various resolutions, weighting
definitions and parcellations), to simulate different dynamical

Table 1. List of regions used for the simulation.

Group Components
Hippocampus Field CA1

Field CA3
Dentate gyrus

Subiculum Subiculum
Entorhinal cortex Entorhinal area, lateral part

Entorhinal area, medial part, dorsal zone
Olfactory cortex Main olfactory bulb

Anterior olfactory nucleus
Piriform area

Neocortex Primary motor area
Secondary motor area
Primary somatosensory area, nose
Primary somatosensory area, barrel field
Primary somatosensory area, mouth
Primary somatosensory area, upper limb
Supplemental somatosensory area
Gustatory areas
Dorsal auditory area
Primary auditory area
Ventral auditory area
Primary visual area
Anterior cingulate area, dorsal part
Anterior cingulate area, ventral part
Agranular insular area, dorsal part
Retrosplenial area, dorsal part
Retrosplenial area, ventral part
Temporal association areas
Right perirhinal area
Ectorhinal area

Striatum Caudoputamen
Nucleus accumbens

In order to compare the simulated spread of the seizure activity with the
empirical one recorded by Toyoda et al. (2013), we group together brain ar-
eas located in proximity to the position of the electrodes used by the
authors.
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behaviors (using diverse neural population models, numeri-
cal integration schemes, and simulated neuroimaging mo-
dalities) and finally to analyze the results.

However, while TVMB is a highly generic framework, its
underlying mathematical framework and simulation tech-
niques make standard assumptions, among which the
two most essential are that (1) the average activity of large
populations of neurons is a meaningful quantification of
the phenomena to be modeled and (2) the statistics of
white matter fibers sufficiently describes how regions in-
teract. Both resting state dynamics and seizure propaga-
tion, as demonstrated above, satisfy these assumptions.
On the other hand, for example, fine grained spike timing
effects would not well described within TVMB’s mathe-
matical framework.

The wide range of possibility offered by rodent experi-
ments will easily accommodate the validation of the pa-
rameterization required by all the modeling approaches
contained in the software. This validation sometimes can
proceed at a qualitative level for phenomenological mod-
els, such as the Kuramoto model of synchronization, but
many detailed biophysical models allow for quantitive
comparison with empirical data, such as spike timing

(Brette and Gerstner, 2005). At the whole-brain level,
TVMB allows for direct comparison with common modal-
ities such as EEG, MEG, and fMRI, or common statistics
thereupon such as FC; these comparisons allow for the
characterization of parameter values in terms of their fit
with empirical data and thus biological validity. The ex-
perimentally observed functional characteristics of the
mouse brain (e.g., a functional hub during resting state or
the effects of specific connections removal) can be easily
imposed in the output of the virtual system, and through
data fitting algorithms, it will be possible to retrieve the
parameters of the model that give rise to that particular
functional behavior. In this way, closing the circle, the
reliability of the new predictions accomplished with the
fitted parameter set will be improved; additionally the
knowledge of the key features responsible of the different
functional behavior allows to control and manipulate the
system in silico, and, going a step further, also in vivo.

TVMB thus offers not only a conceptual framework to
interpret neuroimaging data but, combined with experi-
mental approaches, it also offers an operative framework
to investigate the causal links between structure and
function in the brain.

Figure 5. The cartoon illustrates how it is possible to use TVMB to do predictions when studying aging. A mouse can be scanned at
different times t extracting anatomic and functional brain information. The anatomic information can be processed to obtain a
connectome that can be used in TVMB to create a virtual mouse at each time step. The functional experimental information can be
compared with the predictions done in TVMB, investigating how, for example, anatomic modifications during aging affect whole-brain
dynamics. Multiple other testable predictions can be done. For example, explore in silico which types of neurones can be stimulated
(or silenced) to activate specific resting state networks. The predictions can then be tested in ad hoc transgenic mice with
optogenetics.
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It is important to note that, to build the Allen connec-
tome, we took the mirror image of the right hemisphere to
build the left one, since injections of tracers were per-
formed in the right hemisphere only (Oh et al., 2014).
However, contrary to humans (Toga and Thompson,
2003), there is a high degree of similarity in terms of
connections between the right and the left hemispheres in
rodents (Calabrese et al., 2015).

The detailed tracer connectome, that can be built with
TVMB, can be used to build a precise brain model, and
serve as a reference or template for dMRI-based model-
ing, since dMRI data suffer from three major limitations,
that are: (1) our ignorance about the directionality of the
connections, (2) the indirect nature of the measures of
connectivity based on water diffusion in white matter, and
(3) the fact that complex fiber pathways (as crossing
fibers, sharp change in directionality and long brain wir-
ings) cannot be properly detected. How such limitations
affect the simulations is not yet established. On the other
hand tracer-based connectome are built by averaging
experiments over many mice, and the definition of the
seed region is based on stereotaxic coordinate rather
than on anatomy. A comparison of the effects in simulat-
ing brain network using one or the other kind of connec-
tome is needed especially since the only data available in
human are dMRI data.

TVMB is an actively developed software, with new ver-
sions released regularly with new features. Among those
targeted specifically for the mouse, the module which
builds connectivities from the public Allen data will con-
tinue to evolve as the available dataset becomes richer.
For example, when cortical layer annotations become
available, it will be possible to construct mouse connec-
tivities in which the cortical layers are distinct, allowing for
example manipulations of inter-layer interactions. As
dMRI protocols and tractography techniques become
more established for rodent datasets, TVMB has potential
to include modules which automate, with visual inspec-
tion across each step, the generation of connectomes for
individual rodent data, directly from the DICOM slices
provided by the acquisition equipment.
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