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Abstract: Acting as the primary link between mother and fetus, the placenta is involved in regulating
nutrient, oxygen, and waste exchange; thus, healthy placental development is crucial for a successful
pregnancy. In line with the increasing demands of the fetus, the placenta evolves throughout
pregnancy, making it a particularly difficult organ to study. Research into placental development
and dysfunction poses a unique scientific challenge due to ethical constraints and the differences
in morphology and function that exist between species. Recently, there have been increased efforts
towards generating in vitro models of the human placenta. Advancements in the differentiation of
human induced pluripotent stem cells (hiPSCs), microfluidics, and bioprinting have each contributed
to the development of new models, which can be designed to closely match physiological in vivo
conditions. By including relevant placental cell types and control over the microenvironment,
these new in vitro models promise to reveal clues to the pathogenesis of placental dysfunction and
facilitate drug testing across the maternal-fetal interface. In this minireview, we aim to highlight
current in vitro placental models and their applications in the study of disease and discuss future
avenues for these in vitro models.

Keywords: placenta; maternal-fetal interface; trophoblast invasion; bioprinting; microfluidics;
placenta-on-a-chip; in vitro models

1. Introduction

The human placenta is a crucial organ that supports fetal development throughout
gestation. Placental growth and function are precisely regulated to ensure effective circula-
tion of oxygen and nutrients, removal of waste, generation and release of metabolites, and
protection against diseases, infections, and xenobiotic transfer to the fetus [1]. Considering
its vital role, it is essential to understand placental development and the causes of its
dysfunction. However, due to ethical concerns, our understanding of the placenta is largely
derived from explants at term or from unsuccessful pregnancies. Explants have provided
many clues into pathological pregnancies, such as fetal growth restriction, pre-eclampsia,
and stillbirth at varied stages of disease [2–4]. However, explants begin to degenerate
within hours after collection, making experimentation with human tissue challenging.
Efforts have been made to develop accurate animal models [5]; however, considerable
differences between species make it difficult to develop a non-primate animal model that
fully mimics human placentation [6,7]. Rodent models are useful for understanding spe-
cific aspects of placentation, but many processes are difficult to assess in vivo. Ultimately,
bioengineered in vitro models promise to bridge the gap between species and offer precise
control over the microenvironment to recapitulate specific aspects of human placentation
in health and disease [8].

This minireview aims to: (1) discuss our current understanding of human placentation
and highlight areas that require further investigation; (2) discuss current in vitro placental
systems, ranging from 2D to 3D models; (3) explore recent applications of these models in
studying placental physiology and disorders; and (4) discuss key components to consider
when developing or evaluating an in vitro model of the placenta.
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2. Development and Functions of the Human Placenta

The placenta, a fetal organ, forms shortly after fertilization and continues to change
throughout pregnancy in response to the metabolic demands of the fetus. Placentation
begins post-fertilization when the blastocyst attaches to the inner layer (endometrium)
of the uterus. The blastocyst then begins to invade the endometrium with the help of
its outer layer of cells, termed trophoblasts. This fetal trophoblastic layer is divided
into two cell types, an external multinucleated syncytiotrophoblast layer (the invasive
trophoblasts) and an inner cytotrophoblast layer. About two weeks after fertilization, the
external syncytiotrophoblast forms preliminary fluid-filled villi structures directed outward,
towards the decidual layer of the mother’s uterus (Figure 1a). Then, the cytotrophoblasts
proliferate and migrate through the syncytiotrophoblastic layer to form the primary villi [9].
Soon, these villi expand and become vascularized with fetal placental vessels. Meanwhile,
trophoblasts remodel the maternal spiral arteries of the decidua, which become dilated,
allowing for maternal blood to fill the intervillous space. As a result, there is a large
surface area for the exchange of nutrients traveling from the mother’s circulation into the
intervillous spaces, through the trophoblast layers, and into the closed placental circulation
of the villi, which nourishes the fetus via the umbilical cord [10,11]. By the second trimester,
the main features of the mature placenta are formed (Figure 1b).
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Figure 1. Placental development timeline, trophoblast invasion, and mature placental structure. (a) Diagram of trophoblast
invasion around day 9, wherein the syncytiotrophoblast layer surrounding the embryoblast begins to invade the en-
dometrium. (b) Mature placental structure showing maternal and fetal vasculature. (c) Focus on exchange of nutrients
between open maternal blood and closed fetal circulation across the two trophoblastic layers.

Nutrient exchange between maternal and fetal blood is facilitated largely by the
syncytiotrophoblast, which is one continuous multinucleated layer of cells (Figure 1c). The
ability of nutrients to cross this layer depends on transporter proteins and its thickness,
which is reduced near the vascularized parts of the villi [12]. Small hydrophobic molecules,
such as oxygen and carbon dioxide, can easily diffuse across plasma membranes in response
to differences in the concentration gradient between maternal and fetal blood, which varies
with the maternal blood supply, environment, and rate of blood flow. Partial pressure of
oxygen in the maternal blood is considerably higher than in the fetal blood, while carbon
dioxide is more abundant in the fetal blood. Oxygen exchange is also facilitated by fetal
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hemoglobin having a higher affinity for oxygen than that of an adult [13]. Consequently,
oxygen diffuses through the placenta from the maternal to the fetal blood, while carbon
dioxide diffuses in the opposite direction. Transport of large (molecular weight > 1 kDa)
and hydrophilic molecules, however, is size restricted and diffusion limited, therefore,
depending on the presence of various transporter proteins to increase flux [14,15].

The placenta also functions as an immunological barrier, countering the maternal
immune response that would normally cause rejection of the fetus, finally leading to
spontaneous abortion [16]. Still, maternal antibodies (immunoglobulin G (IgG)) are actively
transported across the placenta by neonatal Fc receptors (FcRns), conferring protection
against infections to the fetus and the neonate during the first months of life [17].

In addition to its barrier function, the placenta acts as an endocrine organ. For example,
to prevent the progression of the menstrual cycle and the loss of the endometrial lining, the
syncytiotrophoblast releases human chorionic gonadotropin (HCG). HCG prolongs the life
of the corpus luteum, which is thus able to continue releasing progesterone and promote the
healthy function of endometrial vasculature, preventing its deterioration and loss [18]. The
placenta also produces placental growth hormone (PGH), which is structurally very similar
to pituitary growth hormone and eventually completely replaces it [19]. Importantly, the
placenta supports pregnancy and fetal growth by selectively secreting the steroids estrogen
and progesterone [19].

Although much of placental physiology has already been characterized, there are
many aspects that are not well understood. For instance, little is known about the cellular
mechanisms that drive the programmed events of placental branching angiogenesis, the
regulation of the permeability of the maternal-fetal interface, the behavior of extravillous
trophoblasts, and the impact of nutrients, hormones, and environmental factors on pla-
cental development. In the next section, we discuss the latest in vitro systems that aim to
recapitulate important features of the human placenta and eventually provide answers
to these questions, with a particular focus on mimicking the maternal-fetal interface and
trophoblast invasion.

3. In Vitro Models of the Placental Barrier

A variety of in vitro models have been developed to study different aspects of pla-
cental biology; however, one aspect of particular focus is the maternal-fetal interface as a
barrier (Figure 2a). Cells derived from gestational choriocarcinoma [20,21] or immortal-
ized trophoblasts [22] have been widely used to represent both villous and extravillous
trophoblasts as cultured monolayers. The monolayers have been grown on plates or
semipermeable membranes (transwell inserts) and have been employed to investigate
hormone secretion, transcellular transport of glucose, environmental toxicants, and sus-
ceptibility to parasite infection [23–25]. Despite their simplicity, cell monolayer models
can be an effective first step to studying the mechanisms and properties of the human
placental barrier. However, by focusing on just one aspect of the placenta (trophoblasts),
these models lack physiological complexity and a comparable cellular microenvironment.
Recently, Kreuder et al. addressed some of these drawbacks by including essential compo-
nents of the placental villi, such as fibroblasts and endothelial cells [26], as represented in
Figure 2b. Their model involved bioprinting a methacrylated gelatin membrane (GelMA),
which mimics extracellular matrix (ECM) features, containing primary placental fibroblasts,
to simulate villous stroma. BeWo trophoblasts and primary human placental endothelial
cells were cultured on either side of this printed membrane, thus representing a more
complex model of human placental villi [26]. Barrier properties were assessed by two
permeability assays: one using a fluorescently labeled molecule to measure solute flux, and
the other by impedance-based measurements using a transepithelial electrical resistance
(TEER) system. Their results showed that the bioprinted membrane presents physiological
ECM-like features, such as a lower elasticity, which resembles that of placental tissue, in
comparison with filter membrane-based systems. Moreover, TEER values were higher
when BeWo trophoblasts were cultured on the membrane containing fibroblasts rather
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than in monotypic cultures, demonstrating a reduction in permeability (reduced leakiness)
due to the incorporation of the stromal compartment.
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Figure 2. Modeling the placental barrier in vitro. (a) Diagram of transport between maternal and fetal blood supplies
across the syncytiotrophoblast (SCT) and cytotrophoblast (CT). (b) A modified transwell model using a bioprinted layer of
fibroblasts with trophoblasts and endothelial cells cultured on either side (based on design in [26]). (c) A transwell model
with a layer of trophoblasts cultured on top of vasculature in a 3D gel matrix. Other cell types (blue) can be cultured below
the transwell to test the effect of cell secretions (based on design in [27]). (d) Endothelial cells and trophoblasts can be
cultured on either side of a permeable membrane in a PDMS microfluidic device with flow (based on designs in [17,28]).
(e) Endothelial cells and trophoblasts may also be cultured on either side of a 2PP-fabricated membrane to achieve different
geometries (based on design in [29]).

In vitro models of the placental barrier have also recently incorporated 3D vascu-
larized networks. For example, Nishiguchi et al. used a modified transwell system to
seed a layer of laminin and collagen-coated trophoblasts (either BeWo or primary cytotro-
phoblasts) onto a thick layer of self-assembled capillary networks, formed from primary
fibroblasts (normal human dermal fibroblasts (NHDFs)) and human umbilical vein en-
dothelial cells (HUVECs) in a fibrin hydrogel [27] (Figure 2c). This model was employed
to examine cell damage signaling across the barrier by exposing rat embryonic cortical
neurons to conditioned medium collected from the in vitro placental barriers assembled
with direct or indirect contact with the vascular bed. Although the vessels were not per-
fused, the presence of the vasculature resulted in a reduction in neuron dendrite length,
providing evidence of crosstalk between the trophoblasts and the endothelium.
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Considering the multilayered structure and physiologic microenvironment critical to
placental barrier function, other groups have also attempted to generate more complex
models, including both an endothelial (representative of the fetal vessels) and trophoblast
component. For instance, cocultures of endothelial and trophoblast cells have been com-
bined in sandwiched monolayers on chip, which allow for exposure to fluid flow mimicking
the hemodynamic shear stress present in maternal and fetal compartments (Figure 2d).
Blundell et al. generated a two-layer polydimethylsiloxane (PDMS) device with two chan-
nels separated by a thin porous membrane, which allows for constant perfusion with
culture media [28]. BeWo trophoblasts were cultured on the upper side of the membrane
and human placental vascular endothelial cells (HPVECs) on the lower side. This coculture
model recapitulated structural features of the maternal-fetal interface and showed the
expression and physiological localization of placental transporter proteins. The authors
observed more complete formation of dense microvilli projections on the apical surface of
the trophoblast cells when cultured under fluid shear stress conditions, when compared
with static culture. Moreover, they found that inclusion of the fetal endothelium was crucial
to replicate physiological maternal-fetal glucose transport, as confirmed by comparing
with the glucose transfer rates measured across two other types of barriers: a cell-free
barrier and a trophoblast monolayer without endothelium [28]. In a similar approach,
Lee et al. cultured JEG-3 trophoblasts and HUVECs on either side of a solidified collagen
membrane and subjected each side to dynamic flow conditions. The system facilitated cell
proliferation and the formation of confluent monolayers into a placental barrier model,
which demonstrated different glucose transport rates depending on the presence of the
epithelium and in accordance with findings from Blundell’s model [17]. More recently, a
similar microfluidic two-channel design with a polyethylene (PETE) membrane separating
monolayers of BeWo trophoblasts and HUVECs was tested to examine caffeine transport
across the placenta, a molecule that cannot be fully metabolized by a developing fetus [29].
This study provided new insights into the extent of caffeine transfer from mother to fetus
and demonstrated the utility of the system for future xenobiotic compound testing.

Another way to achieve the complex geometry of the placental villous membrane,
while bypassing the use of flat cell monolayers, was proposed by Mandt et al., who devel-
oped a barrier model using a high-resolution three-dimensional (3D) printing method called
two-photon polymerization (2PP) [30]. A villi-like convoluted surface within a microfluidic
device with two separate channels was shaped by 2PP from a modified gelatin-based
hydrogel material (GelMA), mimicking the basal membrane of the placenta (Figure 2e). To
mimic the fetal and maternal compartments, HUVEC and BeWo trophoblasts were then
seeded on either side of the membrane and cultured under constant flow. The authors
studied transcellular transport across this barrier and demonstrated in vivo-like proper-
ties by showing the permeability of sugar-sized molecules (riboflavin, 350 Da) and the
impermeability of larger ones (dextran, 200 kDa).

4. In Vitro Models of Trophoblast Invasion

Improper trophoblast invasion into the endometrial spiral arteries is often associated
with pregnancy complications, including pre-eclampsia and fetal growth restriction [31].
Thus, understanding how spiral artery remodeling impacts the early steps of placental
development is crucial. A variety of in vitro models specifically designed to replicate
the process of trophoblast invasion (Figure 3a) have been developed. Transwell assays
have been extensively used to assess trophoblast invasiveness and generally involve the
observation of cell migration through a Matrigel layer, often towards a chemoattractant
(Figure 3b) [32–35]. However, these 2D adherent cell systems do not fully replicate the inva-
sion process in an anatomically relevant manner. Recently, the inclusion of self-assembled
spheroids of extravillous trophoblasts has allowed for complex 3D cell-cell interactions,
bringing important insight into the mechanisms underlying trophoblast migration and
invasion (Figure 3c). For instance, You et al. demonstrated that endometrial signaling
is essential to promote and guide trophoblast invasion by observing that trophoblasts
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were able to migrate from the spheroids and invade the Matrigel only when there was an
underlying layer of human endometrial stromal cells [36].
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Figure 3. Summary of trophoblast invasion models. (a) Diagram of trophoblast invasion of the endometrium in vivo. (b) A
transwell model with a monolayer of trophoblasts invading a gel towards the chemoattractant in the well (based on designs
in [32–35]). (c) A spheroid model in a well plate with trophoblasts invading the underlying gel towards a monolayer of
cells (based on design in [36]). (d) A bioprinted model consisting of concentric rings of a gel, with trophoblasts in the
outermost layer and a chemoattractant in the innermost layer (based on designs in [37–39]). (e) A microfluidic device with
trophoblasts suspended in a gel in the center channel with medium flowing through the channels on either side (based on
design in [40,41]). The chemoattractant is included in only one media channel in this design.

Bioprinting allows for controlled 3D spatial patterning of cells, biomaterials, ECM
components, and growth factors in order to generate tissue analogues and has led to the de-
velopment of a number of physiologically relevant trophoblast invasion assays (Figure 3d).
One such study utilized bioprinting to generate a cylindrical hydrogel model containing
placental basement membrane (BM) proteins, including collagen, laminin, and fibronectin,
and a central source of chemoattractant (epidermal growth factor (EGF)) at the center and
an outer layer of cytotrophoblasts [37]. The results showed that trophoblast cell migration
was significantly higher in the presence of BM proteins when compared with the empty
hydrogel, demonstrating the importance of the ECM microenvironment in trophoblast
invasion. Similarly, Ding et al. bioprinted multiring and multistrip hydrogel systems
incorporating EGF and adjacent layers with and without encapsulated cells (invasive tro-
phoblasts, HTR-8/SVneo). Their strategy enabled the recapitulation and modulation of
in vivo 3D cellular microenvironments and the study of trophoblast migration in differ-
ent geometries [38]. Considering that EGF is downregulated in pre-eclampsia (PE) [42],
Kuo et al. generated a cylindrical 3D-printed GelMA hydrogel loaded with different con-
centrations of the growth factor to study the migratory response of trophoblasts in the
development of PE. Their results showed that trophoblast migration increases in response
to higher EGF concentrations [39]. Since insufficient trophoblast invasion is a primary
feature of PE, this model represents a useful tool in the identification of novel therapeutic
targets for its treatment.

Besides bioprinting, microfluidic models have also been useful in tracking and quanti-
fying the dynamics of trophoblast cell migration since they can be designed to generate
stable gradients on chip (Figure 3e). As an example, Abbas et al. embedded primary
trophoblasts in Matrigel and demonstrated the impact on their migratory behavior by
including a gradient of granulocyte-macrophage colony-stimulating factor (GM-CSF) [40].
In fact, with the addition of the gradient, trophoblast cells exhibited increased directionality



Micromachines 2021, 12, 884 7 of 14

and motility, suggesting that GM-CSF is a key cytokine in the regulation of trophoblast in-
vasion. Recently, the system was improved by including endothelial cells to elucidate their
effect on trophoblast invasiveness [41]. Moreover, invasion-stimulation was induced with
folic acid, and trophoblast tracking was facilitated by the incorporation of fluorescent cell
tagging. The results showed that trophoblast invasiveness was enhanced in the presence
of endothelial cells, suggesting that the release of cytokines and growth factors from the
endothelium has a role in trophoblast migration.

5. Three-Dimensional Models to Study Placental Dysfunction, Infections, and
Maternal-Fetal Toxicology

Besides the defective remodeling of the spiral arteries, many other aspects of placental
dysfunction are associated with altered placental development and the onset of pregnancy
complications. These events, which include the impairment of villous tree maturation [43],
the detrimental effects of pathogen infections [44], and the response to drugs and environ-
mental cues [45,46], still need further investigation. As discussed previously, the advent
of technologies such as bioprinting and microfluidic-based organs-on-a-chip have facili-
tated the recapitulation of critical placental functions and stages of development, raising
the possibility to apply these models to study and elucidate the mechanisms underlying
these aberrant events. For example, a previous work from our group brought new insight
into placental vasculopathy, showing that pericytes (mural cells of the microvasculature)
contribute to growth restriction of fetal microvessels grown in microfluidic devices [47].
Moreover, the results showed PE-like effects, including upregulation of inflammatory cy-
tokines, hyperproliferation of stromal cells, dysfunctional barrier properties, and immune
cell infiltration.

Although the placenta acts as a barrier to many pathogens and viruses, rubella virus,
cytomegalovirus, herpes simplex virus, Zika virus, and parasites such as Plasmodium fal-
ciparum, all can cross the placenta and cause adverse birth outcomes [48,49]. To date, the
mechanisms leading to infection-driven defects at the maternal-fetal interface are yet to be
fully established. Recently, a study conducted in a 3D-based culture model using human
JEG-3 trophoblast cells and human microvascular endothelial cells was used to study
placental resistance to toxoplasmosis and vesicular stomatitis virus (VSV) infection [50].
Physiological levels of fluid shear stress, produced by a rotating wall vessel (RWV) biore-
actor, were able to mimic in vivo syncytiotrophoblast features by inducing spontaneous
syncytia fusion events and expression of syncytiotrophoblast markers. Interestingly, the au-
thors found that only the 3D cocultured aggregates exhibited viral and microbial resistance
when compared with 2D monotypic cultures.

Microfluidic technologies have also been implemented to explore the impact of
pathogenic infections during pregnancy. Zhu et al. generated a multilayered microfluidic
placental barrier-on-a-chip model to investigate the placental inflammatory responses to
bacterial infection [51]. When Escherichia coli was applied to the maternal side of the chip,
trophoblast cells triggered an acute inflammatory response by secreting interleukin-1α,
IL-1β, and IL-8 cytokines, followed by the adhesion of maternal macrophages. More
recently, a microfluidic organ-on-a-chip model comprising the decidua and the fetal chori-
onic and amnionic membranes was generated to track the propagation of infection and
inflammation across the maternal-fetal interface [52]. This four-chamber system contain-
ing primary cells from the maternal-fetal interface and a collagen matrix mimics cellular
features seen in the native tissue, such as morphology, cellular transitions, migration, and
production of nascent collagen. The ascending infection and consequent inflammation
were tracked by examining the propagation of lipopolysaccharide (LPS) from the decidua
to the amnion. The results demonstrated the disruption of the maternal-fetal interface
integrity during ascending infection due to an imbalanced immune response, an event that
is associated with preterm birth [53].

It is particularly challenging to study the effects of drugs on the structure and function
of the placental barrier since they cannot be tested on pregnant women. The thalidomide
disaster of the 1960’s [54] unveiled that the placenta is not an impenetrable barrier and
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allows xenobiotics to cross from the maternal to the fetal circulation, leading to congenital
abnormalities. Therefore, it has become crucial to ensure that potential therapeutic agents
and common medications do not impact human fetal development. To overcome this,
placenta-on-a-chip technologies have been adopted to study the transport of drugs across
the placental barrier, demonstrating their potential use as preclinical drug efficacy and drug
safety testing tools. For example, the microfluidic model by Blundell et al., described earlier,
was used to investigate the diffusion of heparin and the gestational diabetes drug glyburide
across the maternal-fetal interface [55], demonstrating the capability to recapitulate the
native function of efflux transporters and the limited drug intake of an in vivo placenta.
Finally, increasing evidence also indicates that nanoparticles can cross the placenta barrier,
eliciting a toxic effect [56]. For instance, the impact of exposure to titanium dioxide, a com-
mon nanomaterial used in plastics, medicines, food products, cosmetics, and toothpastes,
has recently been investigated using a micro-engineered 3D placental model [57]. The
results showed disruption of placental barrier integrity and adhesion of maternal immune
cells in the presence of this nanomaterial.

Overall, the employment of 3D micro-engineered models creates a suitable and con-
trolled approach towards the understanding of the effects of drug treatments and disease
conditions on placental function.

6. Engineering an Ideal Human Placenta-on-a-Chip

Recent bioengineered placental models have enhanced the knowledge in the field;
however, there are a number of areas that should be considered to physiologically reca-
pitulate the human placenta in health and disease (Figure 4). The use of immortalized
and carcinoma-derived cell lines (BeWo, JEG-3, and HTR-8/SVneo) for the generation
of the trophoblast epithelium has been recurrent in the field due to their relative ease of
use. These cells are certainly useful, but they represent specific differentiation pathways of
trophoblasts during placentation and so may show alteration of their native functions and
responsiveness to stimuli in vitro. As one alternative, primary cells isolated directly from
fresh tissue samples can be cultured without losing their morphological and functional
features [58]. Numerous procedures to isolate, culture, and characterize cells from vari-
ous parts of the placenta have been well established [59–63]. Implementation of primary
cultures obtained from women with pregnancy disorders will contribute to a better under-
standing of the mechanisms underlying placental dysfunction. However, primary cells
cannot be maintained for long-term experiments since they undergo senescence processes.
To address this, human embryonic stem cells (hESCs) and induced pluripotent stem cells
(iPSCs) are now being employed to reproduce placental structure and function in vitro due
to their unique stemness and their ability to differentiate towards relevant cell phenotypes
(both extravillous and syncytiotrophoblasts) [64–66]. Importantly, patient-derived iPSCs
have represented a useful resource to more accurately model placental disease and improve
diagnostics and drug discovery. For instance, some advanced studies have generated tro-
phoblast cells by differentiating iPSCs derived from placentas of normal and pre-eclamptic
pregnancies [67,68]. These cells exhibited phenotypic features associated with PE, such as
reduced invasive capacity [67], proving to be a valid source for the generation of models of
pathological placental development.
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stiffness. Possible applications in basic biology include studying the mechanisms of normal and pathological placental
development and function. In vitro models may also be applied to study the transport and effects of pollutants, pathogens,
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Together with the appropriate cell types, an adequate structural and spatial arrange-
ment of the cells (e.g., villi-like structure) is needed to mimic, on-chip, the in vivo maternal-
fetal interface in a more physiologically relevant way. Moreover, normal tissue develop-
ment and homeostasis are critically regulated by biomechanical cues, such as stretching,
compression, and matrix stiffness [69]. To date, the role of substrate mechanics in placental
development and disease is poorly characterized. Importantly, in vivo studies found that
placenta stiffness and elasticity are increased in pregnancy disorders, when compared
with normal gestations [70,71]. Thus, the generation of patterned biomaterial matrices
including ECM components (collagens, laminin, fibronectin, glycoproteins), with rigidity
similar to that of the placental connective tissue, may provide further insight into placental
development and dysfunction. One recent study highlighted the relevance of substrate
tension, demonstrating that trophoblast fusion and function are affected when cultured
on polyacrylamide hydrogels with stiffness resembling pre-eclamptic placental tissue [72].
Another approach being employed to more closely model the structural characteristics of
the human placenta are organoids. For example, Turco et al. isolated first-trimester villi
trophoblast stem cells to generate 3D organoids that differentiate into both extravillous and
syncytiotrophoblasts and form villous-like structures. Furthermore, they also exhibited
secretome properties of fetal villi, as demonstrated by the release of pregnancy hormones
such as HCG [73].

Despite the important achievements in the recapitulation of structure and cell com-
position of the maternal-fetal interface, the presence of perfusable vasculature remains a
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missing feature of current placental models. Vascular hemodynamics not only are essential
to transport nutrients, oxygen, and metabolic waste but also play a key role in placental
physiology. Indeed, in vivo, blood flow imparts mechanical stimulation on the endothelial
wall of the vessels (shear stress), which is essential to the development and establishment
of the uteroplacental and fetoplacental circulations [74]. As reported here, the majority
of existing models employ a monolayer of endothelial cells cultured in transwells or mi-
crofluidic systems to reproduce the wall of the fetal vessels. However, this approach
cannot represent angiogenesis and vascular remodeling events that occur during early
steps of placental development [75]. This becomes even more relevant when investigating
placental dysfunction since the pathological remodeling of vascular tissue underlies the
appearance of pregnancy complications. To improve this, several methodologies (pat-
terned microchannels, sacrificial molds, or self-assembled networks) have been developed
to generate perfusable vasculature-on-a-chip [76]. Physiological flow rates (interstitial and
luminal) can be applied and regulated in these systems via hydrostatic pressure gradients,
peristaltic pumps, or syringe pumps.

Another element commonly missing from current placental models is the inclusion
of immune cells, in particular fetal villus macrophages (Hofbauer cells), whose function
within the stroma has not yet been fully elucidated [77]. Hofbauer cells are some of the most
abundant immune cells in the human placenta and are thought to play an important role in
angiogenesis and remodeling [78]. Perturbed function and abundance of macrophages are
associated with pregnancy complications, as in cases of chorioamnionitis, pre-eclampsia,
gestational diabetes mellitus, and severe outcomes associated with viral infection [77]. To
date, phenotypic and functional characterization of human placental macrophages has
been performed only in isolated cells. Therefore, circulation of macrophages within 3D
placenta-on-a-chip models may help us understand the role of immune cells in human
placental development and pathophysiology.

A better understanding of the formation and function of the placenta will be gained
by exposing in vitro models to oxygen levels encountered by the tissue in vivo. During
pregnancy, placental oxygen concentrations change dramatically, with earlier timepoints
(up to 10 weeks) associated with low oxygen (1–2% O2, 20 mmHg) and increasingly
higher oxygen levels in the later stages (8% O2, 60 mmHg in the second trimester) [79].
Physiological oxygen concentrations relevant to placental tissue have been considered
in only one in vitro study [27] to date, and to the best of our knowledge. Therefore,
additional experimental interrogations are needed to elucidate in vivo placenta adaptation
to a hypoxic environment.

The incorporation of biological factors present in the bloodstream of patients with
pregnancy complications can enhance our knowledge on placental dysfunction. Together
with the use of patient-derived primary cells, maternal blood constitutes a valuable re-
source of factors (principally proteins and hormones) that can influence placental function.
For instance, the blood composition of patients with pre-eclampsia differs from that of
individuals with uncomplicated pregnancies in the levels of sex steroids [80], pro- and
anti-angiogenic factors [81], and inflammatory modulators [82]. Thus, perfusion of vas-
cularized microfluidic placental models with blood serum obtained from women with
adverse pregnancies could help to understand the etiology of placental dysfunction and to
identify new therapeutic targets for future clinical applications.

Although microfluidic technologies reduce the required materials and costs compared
with other culture systems, the use of small volumes could represent a limitation in the
detection sensitivity of analytes. To overcome this, the integration of biosensor technologies
can enhance sensing capabilities and analysis of real-time responses in on-a-chip placental
models, facilitating studies on drug response and placental development [83]. Biosensors
are analytic devices that comprise a biological sensing element connected to a transducer
capable of providing a measurable signal. Based on the type of transducer, biosensors
can be classified as optical, electrochemical, or mechanical sensors. Electrochemical-based
TEER measurement, usually employed in transwell systems [26], is now becoming relevant
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to assess placental barrier integrity on-a-chip. For example, Schuller et al. generated a
placenta-on-a-chip system containing a porous PET membrane with interdigitated elec-
trodes that allowed for real-time and noninvasive analysis of impedance across a tro-
phoblast monolayer, revealing the permeability of the tissue barrier during exposure to
various types of nanoparticles [84].

7. Conclusions and Future Perspective

Placenta-on-a-chip models have recently contributed enormous progress to our un-
derstanding of human placental biology. These models overcome the ethical limitations
linked to pregnancy-related studies and can be used to elucidate the pathophysiology
of placental disease and act as tools for examining maternal-fetal barrier function and
exchange. Biomimetic in vitro systems minimize the need for animal studies, bridge the
gap between human and animal physiology, and comply with the 3Rs of research. Recent
advances in in vitro approaches have enabled the arrangement of human placenta com-
ponents with control over geometry and fluidics; however, many challenges are yet to be
resolved. Certain aspects of placental physiology (cell types, physical features, mechanical
cues) are yet to be considered in the future for the creation of physiologically relevant
models. Specifically, recapitulation of the physiological features of the native tissue will
help to address several open questions and advance our understanding of the mechanisms
underpinning normal and pathological placental development; transport of drugs, im-
mune cells, and hormones across the barrier and the endothelium of fetal vasculature; and
response to environmental factors and pathogenic infections.
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35. Bojić-Trbojević, Ž.; Krivokuća, M.J.; Vilotić, A.; Kolundžić, N.; Stefanoska, I.; Zetterberg, F.; Nilsson, U.J.; Leffler, H.; Vićovac, L.
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