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a b s t r a c t

Organisms have developed effective mechanisms to sense the external environment. Human-designed 
biosensors exploit this natural optimization, where different biological machinery have been adapted to 
detect the presence of user-defined molecules. Specifically, the pheromone pathway in the model organism 
Saccharomyces cerevisiae represents a suitable candidate as a synthetic signaling system. Indeed, it ex-
presses just one G-Protein Coupled Receptor (GPCR), Ste2, able to recognize pheromone and initiate the 
expression of pheromone-dependent genes. To date, the standard procedure to engineer this system relies 
on the substitution of the yeast GPCR with another one and on the modification of the yeast G-protein to 
bind the inserted receptor. Here, we propose an innovative computational procedure, based on geometrical 
and chemical optimization of protein binding pockets, to select the amino acid substitutions required to 
make the native yeast GPCR able to recognize a user-defined ligand. This procedure would allow the yeast to 
recognize a wide range of ligands, without a-priori knowledge about a GPCR recognizing them or the 
corresponding G protein. We used Monte Carlo simulations to design on Ste2 a binding pocket able to 
recognize epinephrine, selected as a test ligand. We validated Ste2 mutants via molecular docking and 
molecular dynamics. We verified that the amino acid substitutions we identified make Ste2 able to ac-
commodate and remain firmly bound to epinephrine. Our results indicate that we sampled efficiently the 
huge space of possible mutants, proposing such a strategy as a promising starting point for the development 
of a new kind of S.cerevisiae-based biosensors.

© 2023 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and 
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The development of sensors able to sensitively and selectively 
detect environmental small molecules is of paramount importance 
for synthetic biology applications and it is still a difficult task [1,2]. 
Monitoring the presence of some molecules is important in many 
fields, such as environmental, medical, or food sample control [3,4].

However, sensing the surrounding environment is one of the 
most important tasks a cell has to fulfill in order to perform its 
physiological activities. Therefore, evolution devised very effective 
mechanisms to recognize the presence of a huge variety of chemicals 
and to respond to such stimuli. From this point of view, biosensors 
are built to exploit naturally evolved biological elements able to 
signal target chemicals [5], obviously modified to detect user-de-
fined molecules. In the past years, many protein systems have been 

chosen to work as sensors: allosteric transcription factors [6], 
binding proteins that undergo computational design [7,8] or 
others [9–11].

Among these, G-Protein Coupled Receptors (GPCRs) are good 
candidates as synthetic signaling systems [12]. These proteins re-
present the largest family of trans-membrane proteins, expressed in 
virtually any tissue [13]. Indeed, the binding with a ligand in the 
extracellular environment promotes a protein conformational 
change. Thus, the associated G-protein can detect this switch in the 
cytosol. These proteins are therefore associated with a very wide 
variety of physiological and pathological responses [14–16]. More-
over, GPCRs share a very conserved architecture, a seven-helices 
trans-membrane domain. They are usually encoded by small genes, 
making the transfer of engineered GPCRs in other tissues or species 
easy [17].

In this framework, Saccharomyces cerevisiae constitutes one of 
the most used models in biotechnological research. Indeed, such 
yeast is characterized by a high growth rate and stability, and low 
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cost. These characteristics make its engineering very useful in per-
forming both theoretical and technological settings [18]. In addition, 
the easiness of yeast genetic modifications makes it a cell system 
very suitable for the deletion, installation, and transformation of 
genes and genetic circuits, even more with the advent of CRISPR 
genome editing [18,19].

Interestingly, the haploid yeast of mating type MATa expresses 
just one GPCR (Ste2), whose function is to control the pheromone 
pathway [20,21]. As a consequence, the engineering of such a yeast 
represents an established and promising strategy [22,23]. Indeed, 
the pheromone pathway can be modified with two main steps. First, 
the native yeast GPCR has to be substituted with another one, able to 
recognize the user-defined small molecule. Later, the last 5 residues 
of the Gα associated with the inserted GPCR have to be introduced in 
the native yeast Gα. This strategy can pair the inserted GPCR with the 
yeast signaling pathway, while secondary modifications in the yeast 
can furnish experimental evidence of the GPCR-small molecules 
activation [22,24].

However, this strategy presents two major limitations. Indeed, it 
is necessary the prior knowledge of the ligand-associated GPCR, 
effectively limiting the set of possible chemicals that can be con-
sidered for engineering. In addition, also the association between 
GPCR and the corresponding G-protein has to be known a-priori, a 
condition not always satisfied.

To overcome these limitations, we developed a computational 
procedure aiming to select the minimum set of amino acid sub-
stitutions that make the native yeast GPCR Ste2 able to recognize a 
user-defined ligand. This result is achieved by modifying locally the 
wild-type (WT) GPCR to mimic the geometry and the physical- 
chemicals features of a protein binding pocket experimentally ob-
served to be in interaction with such a small molecule.

However, the activation mechanism of Ste2 has been recently 
experimentally studied in great detail [25], revealing the con-
formational changes that Ste2 undergoes upon agonist ligand 
binding. The modification of the functional agonist-Ste2 pair has to 
be performed finely, to preserve the possibility for the selected small 
molecule to activate the GPCR.

Once identified the compound, we preliminary identify in the 
literature a protein-ligand interaction whose structural details 
have been previously deposited on Protein Data Bank [26]. Here, 
we select epinephrine as the test ligand, whose interaction with 
the beta2 adrenoceptor has been determined in X-ray crystal-
lography [27].

This protocol aims to mutate Ste2 GPCR to reproduce the geo-
metrical and physicochemical properties of the protein pocket ex-
perimentally observed in interaction with the compound. In 
particular, on one side we describe the geometry of protein regions 
employing a method based on the 2D Zernike polynomials form-
alism [28]. In this protocol, we describe a portion of molecular sur-
face as a 2D function and we expand it on the basis of such 
polynomials: the norms of the expansion coefficients are an ordered 
set of numerical descriptors, compactly summarizing the geome-
trical properties of a protein region. In the past years, such a de-
scription, independent of the orientation of the proteins in the space, 
has proven their efficacy in several molecular systems and applica-
tions, including the GPCR-ligand interaction [29–35]. Moreover, it is 
worth noting that the compactness of Zernike descriptors permits an 
easy evaluation of patch similarity, adopting a metric to calculate the 
dissimilarity between two sets of descriptors. This feature allows us 
to use Zernike descriptors in computational engineering protocols 
we recently developed [36–38]. In addition, we quantify the che-
mical properties of surface regions using an in-silico derived amino 
acid hydrophobicity scale [39]. Each surface point is labeled with the 
hydrophobicity of the residue generating it, where the hydro-
phobicity of the pocket is obtained by averaging the values regarding 
all the region surface points.

Our computational protocol consists of several steps. Initially, we 
search on the Ste2 inner surface for the region most similar to the 
one experimentally seen in interaction with epinephrine, in terms of 
both shape and hydrophobicity descriptors. Selected that region as a 
template, we perform ten Monte Carlo (MC) simulations to optimize 
the similarity with the experimental pocket. In particular, with 
computational mutagenesis, we randomly mutate a residue calcu-
lating in each step the new shape and hydrophobicity descriptors. 
Each mutation is accepted according to a cost function taking into 
account both the similarity with the experimental pocket in terms of 
shape and hydrophobicity and a penalty for the introduction of 
mutations with respect to the Ste2 WT. As a result, we identify a set 
of Ste2 mutants characterized by a significantly increased similarity 
with the epinephrine experimental pocket and a reduced number of 
mutations with respect to WT Ste2.

To test the effectiveness of our protocol, we performed molecular 
docking and molecular dynamics simulations. Indeed, we docked 
epinephrine on the examined Ste2 region, both for WT and opti-
mized versions of the GPCR. Molecular dynamics simulations, per-
formed with the best docking poses obtained for both WT and 
optimized proteins, confirm that the residue substitutions in-
troduced with our protocol make the Ste2-epinephrine complex 
stable.

Such results indicate that procedure is efficient in the sampling of 
the huge space of possible GPCR mutants, outputting sets of muta-
tions that make the GPCR able to interact with a given ligand. 
Therefore, this strategy could represent a promising starting point 
for the development of S.cerevisiae-based biosensors.

2. Results and discussions

2.1. Computational protocol

In this section, we describe the computational protocol we de-
veloped to identify the amino acid substitutions to make Ste2 GPCR 
able to recognize epinephrine. The main steps involved are sche-
matically shown in Fig. 1.

Preliminary, it is necessary to identify a protein-ligand interac-
tion whose structural details are known. For this case, we select the 
beta2 adrenoceptor-epinephrine complex (PDB code: 4ldo) [27]. 
After the computation of both the protein and ligand molecular 
surfaces, we define the epinephrine binding site (EBS) as the set of 
protein molecular surface points whose distance from any ligand 
surface point is lower than 3 Å (Fig. 1.a). We aim to modify Ste2 to 
design a region as similar as possible to this EBS, in terms of geo-
metry and chemistry. To do this, we computed the 2D Zernike De-
scriptors of this EBS, summarizing its morphological properties in 
121 ordered numerical coefficient [28]. Moreover, using the hydro-
phobicity scale we developed in [39], we assigned to each EBS sur-
face point the hydrophobicity of the residue generating it. We obtain 
the EBS mean hydrophobicity averaging over all the surface points 
constituting it.

Thus, we need to select where on Ste2 it is reasonable to perform 
our protocol. Recently it has been determined the x-ray structure of 
the Ste2-pheromone molecular complex (PDB code: 7ad3) [40]. 
From this structure, we extract the set of residues involved in 
pheromone recognition (closer to any pheromone atoms more than 
4 Å). Since these residues are in interaction with the physiological 
ligand, this region constitutes the potential area of design.

However, the complex structure furnishes a bound configuration 
of the Ste2 GPCR. Since we aim to design starting from the unbound 
configuration, we adopted as template structure the Ste2 unbound 
structure, as furnished by Alpha Fold [41]. We hence calculated the 
molecular surface of Ste2 and we sampled the regions regarding the 
residues we previously saw in interaction with the physiological li-
gand (Fig. 1.b). Indeed, we selected in each surface all the points 
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generated by the ligand recognition involved residues, and we build 
around all of them a patch considering all the surface points with a 
distance to the patch center lower than 7.5 Å. This radius has been 
chosen to construct patches of the same size as EBS. In this way we 
defined over 15,000 patches, thus characterizing their properties 
with both Zernike shape descriptors and mean hydrophobicity.

Therefore, we compared all these patches with EBS, in terms of 
shape and hydrophobicity. In the molecular representation of Fig. 1.C 
we schematically report the results of such analysis, where the 
redder the molecular surface of Ste2 is the more the corresponding 
patch is similar to EBS. We, therefore, used the most similar patch 
among these studied as the starting point for our design protocol 
(see next section for the detail on how we made such a choice). In 
this way, we make sure to start with the best possible patch, so that 
the optimization protocol can start from an advantageous template. 
The selected patch is composed of the following residues: ASN 132, 
ASP 124, GLN 135, GLN 51, HIS 94, LEU 102, SER 104, SER 107, THR 
131, THR 192, TYR 101, TYR 106, TYR 128, TYR 98, VAL 127.

Lastly, we run 10 independent MC simulations to make the se-
lected regions as similar as possible to EBS (See Fig. 1.d). In each step 
one of the previously listed residues is mutated in one of the other 
possible 19. The physicochemical descriptors of the mutated surface 
were calculated and compared with EBS. The mutations have been 
accepted according to a cost function studying the similarity with 
EBS, as well as a penalty term for the introduction of a new muta-
tion. This ensures to not change too much the original Ste2 sequence.

In the next section, we will first discuss the details of the choice 
of the starting template region and later the technicalities of our MC 
simulations. Later, we will see how the optimization protocol out-
puts regions with improved similarity with EBS in terms of several 
characteristics. Lastly, we will examine the outcome of independent 
docking and molecular dynamics simulations.

2.2. Selection of the Ste2 design region and analysis of Monte Carlo 
exploration

The selection of a region on the Ste2 surface to undergo the MC 
optimization processes designed is an important issue. Indeed, the 
probability to design a binding site that actually can bind epi-
nephrine in such processes increases if the starting region is a-priori 
characterized by good compatibility.

As explained before, we built over 15,000 patches on Ste2. For all 
of them, we computed both Zernike shape descriptors and the hy-
drophobicity value and we thus compare them with EBS. We report 
in Fig. 2.a–b the distribution of the distances between EBS and all the 
sampled patches on the Ste2 surface, for shape and hydrophobicity 
respectively. In addition, in the top central panels, we show a mo-
lecular representation of these distances where a high color in-
tensity indicates a low distance.

To consider both aspects with the same weight, we normalized 
separately these distances with the Z-score. Therefore, each patch 
is labeled with 2 normalized values reflecting its similarity with 
EBS. Now it is possible to define a dissimilarity score, simply 
summing the shape and hydrophobicity Z-score. Where the dis-
similarity score is low the patch has good compatibility for both 
descriptors. Lastly, we performed a smoothing procedure aver-
aging the dissimilarity score of all the neighboring patches to 
avoid possible singularities. Hence, we selected the patch char-
acterized by the dissimilarity score minimum as the region to 
work with. The green dotted lines in Fig. 2.a–b represent the shape 
and hydrophobicity distances between the selected patch and 
EBS: as evident, this procedure selects a patch characterized by a 
low distance in both the factors.

Identified the selected patch, we performed 10 independent MC 
simulations. In each step, a residue is mutated, where shape and 

Fig. 1. Overview of the computational pipeline. a) Cartoon representation of the beta2 adrenoceptor-epinephrine complex (pdb code: 4ldo). After the computation of both the 
protein and ligand molecular surfaces, epinephrine binding site (EBS) is defined as the set of protein molecular surface points whose distance from any ligand surface point is 
lower than 3 Å. Shape and hydrophobicity of the extracted pocket are evaluated. b) Cartoon representation of Ste2 protein. The protein patches located in the protein region where 
pheromone is bound were extracted and characterized with shape and hydrophobicity descriptors. They were compared with the descriptors of EBS. c) Ste2 surface colored 
according to the local similarity with EBS. d) In the Monte Carlo optimization procedure the dissimilarity between the designed pocket and EBS is minimized, in terms of the shape 
and hydrophobicity descriptors.

L. Di Rienzo, M. Miotto, E. Milanetti et al. Computational and Structural Biotechnology Journal 21 (2023) 3002–3009

3004

http://firstglance.jmol.org/fg.htm?mol=4ldo


hydrophobicity descriptors of the resulting patch are calculated. We 
defined the shape similarity S s and the hydrophobicity similarity S H as 
the difference between the patch and the EBS corresponding de-
scriptors. In each step of MC the cost function is:

H a S b S c M M M( )s H new old new= + + (1) 

where a, b and c are constant parameters. M represents the number 
of mutations with respect to Ste2 WT. The purpose of such a term is 
to keep M low to obtain an engineered mutant not too different from 
the WT. The values of the constants a–c were selected to ensure that 
the magnitudes of these three terms are similar. This way, all three 
terms contribute roughly equally to the decision of whether to ac-
cept or reject the mutation under consideration.

The beta factor of the simulations is initially kept low and then 
progressively increased, to let the system exit from its local 
minimum before freezing it in another configuration. It is worth 
noting that the two physicochemical terms in the cost function can 
represent two main aspects: morphology and chemistry. The addi-
tion in the cost function of other terms (such as polarity, solvation 
free energy, residue size, …) could result in the addition of re-
dundant information.

In Fig. 3.a we show the trends that each of these three terms 
exhibits in a MC simulation. In the left panel, we show the distance 
between EBS and the optimized patch, as a function of the MC steps. 
As evident, the shape similarity reached after the optimization is 
significantly increased with respect to the original patch. In the 
central panel, we report the difference in average hydrophobicity 
between EBS and the optimized patch. Lastly, in the right panel, we 
report the number of mutations as a function of the number of steps. 
We defined threshold values for all these terms: where the proposed 
structure is characterized by a value better than the threshold we 
marked it with an orange point. Where the three threshold condi-
tions are jointly satisfied, we accepted the corresponding mutant as 
an optimized candidate structure. In Fig. 3.b a joint representation is 
offered with a 3D plot: the two points in red represent the structure 
explored in one MC simulation with a low shape and hydrophobicity 
dissimilarity with EBS, obtained with a low number of mutations 
with respect to Ste2 original sequence.

Working with 10 independent MC simulations, in this way we 
obtained 39 optimized candidate structures that satisfy the condi-
tions. The color maps reported in Fig. 3.c express the phase space 
exploration that occurred during all the 10 MC simulations. Indeed, 
lighter colors in the pixel are more frequently is to find during MC a 
structure with these properties.

2.3. Chemico-physical evaluation of the proposed mutants

As discussed before, during the MC simulations we identified 39 
sets of mutations that would modify the Ste2 structure to reproduce 
EBS, with a little number of residues involved to not shatter the 
overall fold. In particular, our hypothesis is that these mutants 
should be able to properly bind epinephrine.

Analyzing all these mutants we produced the results shown in 
Fig. 4. In panel a, we show the frequency of mutations for each of the 
15 residues involved in the pocket formation. In addition, each bar of 
the barplot is subdivided according to the inserted residues. It is 
interesting to note the presence of mutation hotspots, where 3 po-
sitions (HIS 94, GLN 135, THR 192) undergo a residue substitution in 
over 80% of the proposed mutants. The three WT residues are polar 
or charged, usually substituted with aromatic or non-polar lateral 
chains. Conversely, to increase shape and hydrophobicity compat-
ibility just rarely is necessary to mutate 6 out of 15 positions (TYR 
106, SER 104, GLN 51, TYR 128, TYR 98, SER 107 exhibit a frequency 
of mutations lower than 10 %), originally populated by aromatic or 
polar side chains.

To verify if actually the mutations we proposed make the patch 
on Ste2 more similar to EBS, we performed a chemical-physical 
analysis involving some of the most used indices representing 
amino-acids properties. Hence, we calculated such properties for 
EBS-forming residues and for both original and mutated Ste2 patch 
residues. In this way, we compare the EBS residues’ characteristics 
with both mutated and original Ste2 patches (Fig. 4.b). We calculated 
hydrophobicity [39], net charge, size [42], polarity [43], solvation 
free energy [44]. For each of these properties, the red dot represents 
the difference between the original Ste2 pocket and EBS, while the 
green boxplot reports the distributions for differences between EBS 
and the 39 mutants identified. Importantly, green boxplots are closer 
to 0 than red dots, meaning that the mutated patches are char-
acterized by residues more similar to EBS in almost all these prop-
erties. Only the size descriptor does not show a clear signal: this is 
probably because the protocol prefers smaller residues since their 
reduced size makes them suitable for a variety of substitution 
combinations.

2.4. Molecular dynamics validation of the optimization protocol

To verify the efficacy of the optimization protocol we developed, 
we performed independent computational validation of our results 
through molecular docking and molecular dynamics. In other 

Fig. 2. Selection of the Ste2 pocket to optimize. a) Density distribution of the Zernike distances between EBS and all the sampled patches on Ste2 surface. b) Same as in panel a) 
but for the hydrophobic distance. In the central panels, we report the molecular representation of Ste2 colored according to the shape or hydrophobicity dissimilarity, in the left 
and right boxes respectively. The bottom central figure represents the selected pocket on Ste2 surface.
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words, we would like to demonstrate if the designed Ste2 has ac-
quired the capability to recognize and form a stable complex with 
epinephrine.

Therefore, we first docked epinephrine on both the WT and the 
39 mutants of Ste2 we identified using AutoDock [45,46]. We, 
therefore, obtained 125 independent docking poses of WT Ste2- 
epinephrine complex. Considering all the optimized Ste2 structures, 
we collected 4832 independent docking poses of the complex with 
epinephrine (See Materials and Methods section for details).

Autodock associates every output pose with a predicted binding 
affinity: for both wt and engineered Ste2 we selected the GPCR- 
epinephrine pose labeled with the best binding affinity. In Fig. 5.a we 
reported a molecular representation of such poses: in the top panel 
the one regarding the WT Ste2 (predicted binding affinity − 5.7 kcal/ 
mol) while in the bottom panel the one involving the engineered 
version of Ste2 (predicted binding affinity − 6.4 kcal/mol).

To further verify the acquisition of GPCR-epinephrine stability 
due to residue substitutions, we used the 2 best docking poses as a 
starting point for molecular dynamics simulations. Indeed, using 
Gromacs [47] we performed a 200-ns long molecular dynamics of 
both systems in three replicas. Remarkably, the two systems show 
very different behaviors.

Indeed, in Fig. 5.b we show the RMSD regarding the epinephrine 
atoms, after superimposing using as a template the backbone atoms 
of the protein. In the y-axis is reported the logarithm of RMSD to 
allow easy comprehension of the general trend, while in the inset 
the boxplots highlight the distributions of RMSD values. As evident, 
the red lines, representing the epinephrine in complex with WT- 
Ste2, underline a predictable binding instability. Very differently, 
when we analyzed the complex with the optimized Ste2 (blue lines) 
all three replicas exhibit low values of RMSD, proving the stability of 
the epinephrine-engineered pocket interaction.

Fig. 3. Results of the Monte Carlo procedure. a) Differences in shape, hydrophobicity, and the number of mutations as a function of the Monte Carlo steps for a representative 
run of the optimization procedure. The orange points represent the mutants satisfying the acceptance condition for the examined descriptor. b) Same as in a) but here points are 
represented in the 3D space. The red points represent the mutants satisfying at the same time the three conditions. c) Color maps representing the probability of visiting a certain 
region of the phase space that occurred during the 10 performed MC simulations. Colors range from red to yellow as the occupancy probability increases. White regions 
correspond to unvisited regions.

Fig. 4. Analysis of the observed mutations. a) Frequency of mutations for each of the 15 residues involved in the pocket formation of the Ste2 protein during the MC simulation. 
Each bar of the barplot is subdivided according to the inserted residues. b) Boxplot representation of the distributions of the differences between the hydrophobicity, net charge, 
size, polarity, and solvation free energy of the WT with respect to the mutated versions of the Ste2 protein.
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A similar conclusion can be drawn by looking at the percentage 
of molecular contacts conserved along the simulations (Fig. 5.c). 
Indeed, a residue is defined as in contact if any of its atoms are closer 
than 4 Å to any epinephrine atom. Defined the list of residues in 
contact in the starting structure, we studied the percentage of them 
that remain in contact along the dynamics. In the WT Ste2 simula-
tions (red curves), the vast majority of initial contacts are lost during 
the simulations, since the ligand moves away from its pocket. Con-
versely, the amino acid substitution we inserted made the pocket 
more suitable for epinephrine recognition, since the blue curves 
highlight a high percentage of conserved contacts.

3. Conclusions

The ideation of biosensors is very often based on biological sys-
tems, whose evolution has developed rapid and effective signaling 
mechanisms. Because of its stability and the easiness of genetic 
handling, one of the most used organisms is the haploid version of 
S.Cerevisiae. This system employs just one GPCR pathway controlled 
by one GPCR, Ste2, whose pheromone recognition causes the ex-
pression of signaling-dependent genes.

Here, we described a computational protocol for the engineering 
of WT Ste2 to recognize a user-defined compound. The effectiveness 
of this method paired with secondary genetics modifications fur-
nishing experimental evidence of Ste2 activation could, at least in 
principle, open the way to the development of a sensor for a very 
wide range of molecules. Indeed, when a molecule has been pre-
viously seen in interaction with a protein, we perform a computa-
tional mutagenesis Monte Carlo simulation to identify the set of 

amino acid substitutions that modify a local region of Ste2 to max-
imize the similarity with the experimental region that already 
proved to recognize the examined molecule. Our formalism works 
only with local protein shape and hydrophobicity descriptors.

As a test case, we modified Ste2 to make it able to recognize 
epinephrine. It is worth noting that the choice of the test small- 
molecule is very challenging for the computational protocol we 
discussed here. Epinephrine is a very different molecule with respect 
to pheromone, testing the range of applicability of our method. 
Interestingly, the physicochemical properties of the pockets we de-
signed are more similar to the experimental target than the original 
WT Ste2 region. More remarkably, molecular docking and molecular 
dynamics independent testing highlight that the indicated residue 
substitutions confer high stability to the Ste2-epinephrine complex.

However, it has to be noted that here we focused on the GPCR- 
ligand binding stability, while additional efforts have to be even-
tually devoted to ensuring that the examined ligand can activate 
Ste2, promoting its conformational switch [48,49]. Indeed, our re-
sults seem promising since a stable binding could be the first and 
necessary step to build a reliable biosensor. But binding alone 
doesn’t ensure Ste2 activation. For this reason, further research is 
needed to properly establish new computational protocols to un-
derstand if the binding with the selected ligand can activate the 
GPCR. Eventually, it is necessary to understand if it is possible to 
identify other residue substitutions that, while maintaining a stable 
ligand binding, can promote the GPCR activation upon ligand 
binding. On the other hand, it is worth noting that the procedure in 
its current version can design binding sites for antagonist or inverse 
agonist ligands, for whose activation it is not necessary. This could 

Fig. 5. Molecular dynamics-based validation. a) Molecular representation of the docking poses of Ste2-epinephrine complexes obtained with AutoDock of the WT Ste2 (top) and 
the engineered version of Ste2 (bottom). b) Root Mean Square Deviation (RMSD) as a function of the molecular dynamics simulation time of the epinephrine atoms for three 
replicas of the WT and optimized systems. c) The boxplots highlight the distributions of RMSD values. d) Percentage of conserved contacts of the epinephrine atoms with the Ste2 
protein as a function of the molecular dynamics simulation time for three replicas of the WT and optimized systems. e)The boxplots highlight the distributions of percentages of 
conserved contacts.
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be of interest if one wants to modulate the activity of physiological 
ligands.

In conclusion, we think that our findings can pave the way to a 
very general procedure to reprogram S. cerevisiae to bind with a very 
wide range of molecules.

4. Materials and methods

4.1. Molecular surface

All the molecular surfaces in this work have been calculated 
using the DMS software with standard parameters [50].

When the Ste2 surface was sampled, all the patches were con-
structed centering it on a surface point and selecting the patch 
points closer than 7.5 Å to the patch center. We defined 5 patches per 
Å2, obtaining 15,114 patches. It has to be noted that we sampled the 
surface generated by the residues experimentally seen in interaction 
with the pheromone.

4.2. Zernike descriptors

The surface points of a patch were projected onto a plane, using a 
conical symmetry to maintain the morphology information [28]. 
Hence, a patch is described as a 2D function f(r, ϕ). It can be ex-
panded on the basis of Zernike polynomials as follows:

f r c Z( , ) ,
n m

m n
nm nm0 0

=
= =

=
(2) 

where the expansion coefficients, called the Zernike moments, are:
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The Zernike polynomials Znm(r, ϕ) are composed of a radial and 
an angular part:

Z R r e( ) .nm nm
im= (4) 

The radial function, given n and m, can be written as:
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Since the set of polynomials form an orthonormal basis, it results 
that, for each couple of polynomials, the following relation holds:

Z Z
n( 1)nm n m nn mm=

+ (6) 

The knowledge of all the coefficients {cnm} permits the complete 
reconstructions of the original function. In this formalism, the detail 
level of the description can be set by modulating the order of ex-
pansion, N max(n)= .

The modulus of the coefficient (znm = ∣cnm∣) is independent of the 
original phase since its value does not change if a rotation around 
the origin is performed. The znm constitutes the Zernike invariant 
descriptors.

The shape similarity between two patches is evaluated by com-
paring their corresponding Zernike invariants. Here, we quantified 
the similarity between two patches as the Euclidean distance be-
tween their invariant vectors. We used the order of expansion N = 20, 
therefore dealing with 121 invariant descriptors for each patch.

4.3. Hydropathy of patches

Each molecular surface point has been generated from one ex-
posed residue. Each amino acid is characterized by a hydrophobic 
value [39]. We associate each patch point with the hydrophobic 

value of the residue generating it. The hydrophobicity of a patch is 
obtained by averaging all the patch points’ hydrophobicity.

4.4. Monte Carlo simulations

Each computational mutagenesis has been performed using the 
SCWRL4 software [51].

As described in Section 2.2, in each step of the MC simulation we 
perform a random mutation generating a patch with different shape 
and hydrophobic properties. We define the shape similarity S s and 
the hydrophobicity similarity S H as the difference between the gen-
erated patch and the EBS corresponding descriptors.

The MC cost function is defined as:

H a S b S c M M M* * *( )s H new old new= + + (7) 

where a = 1, b = 5 and c = 0.1. Mnew and Mold represent the number of 
mutations with respect to the WT regarding the new and the last 
accepted mutation, respectively. Each mutation is accepted with the 
probability:

P
if H

e if H

1 0

0H
=

<

(8) 

where β is the temperature factor. β values start from 4 and go to 20 
with a jump of 4: each of 8 β values is maintained for 500 steps for a 
total of 2500 steps.

4.5. Molecular docking

We docked epinephrine on both the WT and the 39 mutants of 
Ste2 we identified using AutoDock-vina [45,46].

For each run, we used as a receptor the AlphaFold structure of 
Ste2 (WT or engineered), and ligand the epinephrine structure ex-
tracted from the pdb 4ldo. We restrained the possible docking poses 
on a 20 × 20 × 20 Å box centered on the centroid of the residues 
forming the pocket.

For each GPCR-epinephrine docking, we perform 20 experiments 
each obtained, using 20 randomly generated seeds. With each seed 
we obtained 20 different poses. We consider two docking poses as 
independent if the RMSD between their coordinates, after structural 
protein superposition, is higher than 1.5 Å. After all this procedure, 
we deal with 125 independent docking poses regarding WT Ste2 and 
4832 independent docking poses regarding 39 engineered Ste2.

4.6. Molecular dynamics simulations

The topology files for epinephrine were generated using 
SwissParam web-server [52]. All the molecular dynamics simula-
tions were performed using Gromacs 2020.6 [47]. Each system was 
minimized using the steepest descent algorithm. Next, a 0.1 ns-long 
thermalization of the system was run sequentially in NVT and NPT 
environments 0.1 ns at 2fs time-step. The temperature was kept 
constant at 300 K with v-rescale thermostat [53]. Lastly, the final 
pressure (1 bar) was set using Parrinello-Rahman barostat [54]. For 
both the WT and engineered Ste2-epinephrine complexes we per-
form three replicas of 200 ns-long molecular dynamics simulations.
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