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ABSTRACT “Leaky gut,” or high intestinal barrier permeability, is common in preterm
newborns. The role of the microbiota in this process remains largely uncharacterized. We
employed both short- and long-read sequencing of the 16S rRNA gene and metage-
nomes to characterize the intestinal microbiome of a longitudinal cohort of 113 preterm
infants born between 240/7 and 326/7 weeks of gestation. Enabled by enhanced taxonomic
resolution, we found that a significantly increased abundance of Bifidobacterium breve
and a diet rich in mother’s breastmilk were associated with intestinal barrier maturation
during the first week of life. We combined these factors using genome-resolved metage-
nomics and identified a highly specialized genetic capability of the Bifidobacterium strains
to assimilate human milk oligosaccharides and host-derived glycoproteins. Our study pro-
poses mechanistic roles of breastmilk feeding and intestinal microbial colonization in
postnatal intestinal barrier maturation; these observations are critical toward advancing
therapeutics to prevent and treat hyperpermeable gut-associated conditions, including
necrotizing enterocolitis (NEC).

IMPORTANCE Despite improvements in neonatal intensive care, necrotizing enterocolitis
(NEC) remains a leading cause of morbidity and mortality. “Leaky gut,” or intestinal bar-
rier immaturity with elevated intestinal permeability, is the proximate cause of suscepti-
bility to NEC. Early detection and intervention to prevent leaky gut in “at-risk” preterm
neonates are critical for decreasing the risk of potentially life-threatening complications
like NEC. However, the complex interactions between the developing gut microbial
community, nutrition, and intestinal barrier function remain largely uncharacterized. In
this study, we reveal the critical role of a sufficient breastmilk feeding volume and the
specialized carbohydrate metabolism capability of Bifidobacterium in the coordinated
postnatal improvement of the intestinal barrier. Determining the clinical and microbial
biomarkers that drive the intestinal developmental disparity will inform early detection
and novel therapeutic strategies to promote appropriate intestinal barrier maturation
and prevent NEC and other adverse health conditions in preterm infants.

KEYWORDS preterm infant, gut microbiome, leaky gut, intestinal barrier maturation,
human milk oligosaccharides, Bifidobacterium

Early preterm neonates are particularly vulnerable to life-threatening events and rou-
tinely require intensive care and medical intervention to survive (1). The physiologi-

cal immaturity of their gastrointestinal (GI) tract is commonly associated with
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deficiencies in barrier functions that result in a clinical syndrome known as “leaky gut”
(2–5). Under leaky gut conditions, the bacteria and bacterial products normally con-
fined to the intestinal lumen are able to translocate into the peripheral circulation
through the hyperpermeable epithelial barrier, which could lead to the widespread
invasion of the intestinal epithelium and gut lamina propria, mucosal inflammation,
epithelial cell damage, intestinal necrosis, systemic infection, and, ultimately, multior-
gan failure and death (4, 6, 7). Necrotizing enterocolitis (NEC) is a prominent bacterial
translocation-associated GI condition that affects 7 to 10% of preterm neonates or 1 to
5% of all neonatal intensive care unit (NICU) admissions, with a devastating mortality
rate as high as 50% (8–12). The early detection of an aberrant leaky gut and early inter-
vention to limit intestinal injury are of paramount importance to reduce the incidence
of subsequent complications, including NEC (12, 13).

A functional intestinal barrier combines a physical barrier that encompasses chemical,
immunological, and microbiological components (14). We and others have found that
the first week of life (day 8 6 2 after birth) is a critical window during which the most
rapid postnatal intestinal maturation occurs (15–17). More importantly, these previous
studies demonstrated that intestinal barrier function, which develops mostly in utero in
term infants, can be improved postnatally. They also showed that intestinal barrier matu-
ration does not occur at the same rate, with ;40% of preterm neonates (,33 weeks of
gestation) failing to develop a functional intestinal barrier within the first 2 weeks of life
(15, 16). Determining the factors that drive this developmental disparity will inform early
detection and novel therapeutic strategies to promote intestinal barrier maturation.

Efforts to characterize the microbiological factors that are associated with intestinal
barrier maturation have thus far yielded unsatisfactory results (18). There are no microbial
biomarkers predictive of intestinal development. A major limitation is the use of partial
16S rRNA gene sequences to evaluate the taxonomic composition of the gut microbiota.
Short sequences lack the phylogenetic signal necessary to describe the taxonomic compo-
sition at the species or even the genus level. Many of the PCR primers used to amplify vari-
able regions of the 16S rRNA gene fail to amplify members of the genus Bifidobacterium
(19–21). Bifidobacterium species are known to be frequent colonizers of the infant gut (22),
are considered to play beneficial roles in intestinal development, and influence the matu-
ration of the neonatal gut, potentially through stimulating colonic epithelial proliferation,
modulation of host defense responses, and protection against bacterial infections (23, 24).
Investigating Bifidobacterium and other bacterial groups predictive of early intestinal de-
velopment and maturation is of pivotal importance.

In this study, we sought to characterize the role of the early assembly of the infant gut
microbiota and its metabolism in postnatal intestinal barrier maturation. We build upon
the results of previous studies (15, 16), using an expanded cohort (n = 113) of early pre-
term neonates (24 weeks and 0 day to 32 weeks and 6 days of gestation) from whom stool
samples were collected daily up to 21 days after birth. High-resolution approaches were
applied to characterize the composition of the developing gut microbiota with a substan-
tially enhanced taxonomic resolution, including Bifidobacterium species, which we identi-
fied as the microbial biomarker associated with postnatal intestinal barrier maturation
within the first week of life. Whole-community metagenomes using both short- and long-
read sequences provided a detailed characterization of the genetic content of these
Bifidobacterium species, which were shown to have distinct genetic features affording
complete carbohydrate-foraging capabilities, including human milk oligosaccharides
(HMOs) and host-derived glycoprotein. The presence of specific strains of Bifidobacterium
may inform the early detection of aberrant intestinal permeability (IP). Supplementation
with these bifidobacterial strains could be leveraged in novel intervention strategies for
the prevention of leaky gut and its devastating sequelae in preterm newborns.

RESULTS
Clinical cohort. We examined a prospective cohort of 113 preterm infants at 240/7

to 326/7 weeks of gestation, including 37 subjects described in a previous analysis (see
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Table S1 in the supplemental material). Fecal samples were collected daily until post-
natal day 21 or discharge from the neonatal intensive care unit (NICU) (Fig. 1). The
mean gestational age (GA) of infants at birth was 29.96 2.3 weeks. A total of 28 infants
(24.8%) were ,28 weeks GA, and 85 (75.2%) were 280/7 to 326/7 weeks GA. The mean
birth weight was 1,381 g (6415 g); 66 (58.4%) newborns were classified as having a
very low birth weight (VLBW) (birth weight of ,1,500 g), and 26 (23.0%) were classified
as having an extremely low birth weight (ELBW) (,1,000 g).

Intestinal permeability (IP) was determined 7 to 10 days after birth, when rapid in-
testinal barrier maturation normally takes place (15, 16). IP was calculated as the ratio
of two enterally administered sugar probes, lactulose (La) and rhamnose (Rh), markers
of intestinal paracellular and transcellular pathways, respectively (25, 26). IP ranged
between 0.001 and 0.394, with an average of 0.07 6 0.007 (mean 6 standard error
[SE]), and was not significantly different among postnatal days 7 to 10 (Fig. S1A). High
IP was defined by an La/Rh ratio of .0.05, as validated and applied previously (16). Of
the 113 subjects, 48 (42.5%) were found to have high IP. Infants ,28 weeks GA were
more likely to have elevated IP (n = 18) than infants 280/7 to 326/7 weeks GA (64.3% ver-
sus 35.3% [P , 0.01]).

Postmenstrual age and mother’s own breastmilk feeding are associated with
intestinal permeability in early preterm neonates. Among the collected demo-
graphic and maternal variables for each infant, four host factors were observed to be
inversely related to IP, including GA, postmenstrual age (PMA) corresponding to chro-
nological age and GA, birth weight, and 1-min APGAR (appearance, pulse, grimace
response, activity, and respiration) score (Table 1). These variables are also highly corre-
lated with one another, with high covariates of multicollinearity (variance inflation fac-
tor of .10) (Fig. S1). PMA was the most significant factor associated with IP among the
four factors (P = 0.01; q value = 0.015) based on the Hilbert-Schmidt independence cri-
terion (HSIC) (Table S2). Other host factors such as sex and race were not significantly
associated with IP. Maternal factors, including preterm premature rupture of mem-
branes (PPROM), maternal antibiotics, antenatal corticosteroids, preeclampsia, and
delivery mode, were not associated with IP. These data indicate that younger infants
have significantly higher incidences of high IP, likely attributed to their more immature
intestinal development.

However, host factors could only partially explain IP. Longer feeding and a higher
intake volume of the mother’s own breastmilk (MOM) and a shorter antibiotic treatment
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FIG 1 Study design. *, demographic, clinical, and nutritional information was collected for each enrolled preterm neonate. Inclusion criteria include 240

to 326 weeks and ,4 days of age. Exclusion criteria include nonviable or planned withdrawal of care, severe asphyxia, chromosome abnormalities, cyanotic
congenital heart disease, intestinal atresia or perforation, abdominal wall defects, significant GI dysfunction, and galactosemia or other forms of galactose
intolerance. **, intestinal permeability was measured using the urine non-metabolized sugar probes lactulose and rhamnose at days 7 to 10 after birth. ***,
stool specimens were collected daily at every stooling event, stored in storage buffer, and archived at 280°C. WGS, whole-genome sequencing.
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duration were also significantly associated with low IP (Table 1). Compared to infants
with low IP, neonates with high IP had fewer days of MOM feeding (4 days versus
5.5 days [P , 0.01]), a lower total MOM volume (123.4 mL/kg of body weight versus
263 mL/kg [P, 0.01]), as well as a longer duration (.3 days) of antibiotic use (37.5% ver-
sus 18.5% [P = 0.03]). We adjusted host factors associated with IP and fit a generalized
logistic regression model. Newborns who were fed MOM for $4 days during the first
week were demonstrated to be 10.3-fold more likely to have low IP than those who
were fed MOM for ,4 days (adjusted odds ratio [aOR], 10.3 [95% confidence interval
{CI}, 3.21 to 33.33]) (Table 2). Additionally, newborns who had longer antibiotic treatment
($3 days) were 2.6 times more likely to have high IP; however, this association was miti-
gated when adjusting for confounders like PMA. This result is in line with our previous
observations that antibiotic use is significantly more common in the early-GA subjects

TABLE 1 Study cohort demographics and clinical variables stratified by intestinal permeability category

Variable

Value

P value
Total cohort
(n = 113)

High IP
(n = 48)

Low IP
(n = 65)

No. (%) of subjects of sex 0.28
Male 61 (54.0) 24 (50.0) 37 (57.0)
Female 52 (46.0) 24 (50.0) 28 (43.1)

No. (%) of subjects of race
White 42 (37.2) 18 (37.5) 24 (37.0) 1.00
African American 63 (55.8) 30 (62.5) 33 (50.8) 0.25
Other 8 (7.1) 0 8 (12.3) 0.02

Mean birth wt (g)6 SD 1,377.86 415.2 1,237.36 378.1 1,496.56 403.0 ,0.01
No. (%) of VLBW subjects (,1,500 g) 66 (58.4) 32 (66.7) 34 (52.3) 0.18
Mean gestational age (wks)6 SD 29.86 2.3 29.06 2.3 30.56 2.1 ,0.01
No. (%) of early-GA subjects (#28 wks) 28 (24.8) 18 (37.5) 10 (15.4) ,0.01
Mean postmenstrual age (wks)6 SD 31.16 2.3 30.36 2.3 31.76 2.1 ,0.01
No. (%) of early-PMA subjects (,31 wks) 41 (36.3) 23 (47.9) 18 (27.7) 0.03
No. (%) of subjects with caesarean delivery 77 (68.1) 37 (77.1) 40 (61.5) 0.10
No. (%) of mothers with PPROM 36 (31.9) 15 (31.3) 21 (32.3) 1.00
No. (%) of mothers with preeclampsia 25 (22.1) 11 (23.0) 14 (21.5) 1.00
No. (%) of mothers receiving antenatal corticosteroids 106 (94.0) 46 (96.0) 60 (92.3) 0.70
No. (%) of mothers receiving antibiotics 69 (61.1) 30 (62.5) 39 (60.0) 0.85
Mean APGAR score at 1 min6 SD 5.86 2.5 5.362.8 6.26 2.1 0.04
Mean APGAR score at 5 min6 SD 7.76 1.6 7.56 1.9 7.96 1.6 0.12

No. (%) of subjects receiving antibiotic
Ampicillin 64 (56.7) 30 (62.5) 34 (52.3) 0.33
Gentamicin 56 (49.6) 25 (52.1) 31 (47.7) 0.70
Vancomycin 8 (7.1) 6 (12.5) 2 (3.1) 0.07
Cefotaxime 9 (8.0) 6 (12.5) 3 (4.6) 0.16

No. (%) of subject who received at least 1 antibiotic vs no antibioticsa 68 (60.2) 33 (68.8) 35 (53.9) 0.12

No. (%) of subjects who received antibiotic fora:
#3 days 83 (73.5) 30 (62.5) 53 (81.5) 0.03
.3 days 30 (26.6) 18 (37.5) 12 (18.5)

No. (%) of subjects who received MOM fora:
,4 days 26 (23.0) 20 (41.7) 6 (9.2) ,0.01
$4 days 87 (77.0) 28 (58.3) 59 (90.8)

Mean feeding duration (no. of days)6 SDa

MOM 4.86 2.3 46 2.7 5.56 1.5 ,0.01
Formula 1.36 2.3 26 2.7 0.86 1.6 0.02

Mean feeding intake vol received6 SDa

MOM 200.86 178.8 123.46 154.2 263.06 175.6 ,0.01
Formula 61.76 146.7 99.86 194.7 32.86 91.2 0.03

aVariable measured during the time period starting from the enrollment day (within 1 to 4 days after birth depending on clinical stability) until the day when IP was
measured (day 86 2 after birth).
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(92% for ,28 weeks GA versus 32% for .28 weeks GA [P , 0.001]) (16). Statistical de-
pendence analyses showed that the cumulative intake volume of MOM prior to the IP
measurement was the most significant factor associated with IP (P , 0.001; q value ,

0.01; HSIC statistics = 1.53 and 1.46), at a significance level even higher than those for
host factors, including GA (P, 0.001; q value, 0.01; HSIC statistic = 1.12), PMA (P = 0.01;
q value = 0.015; HSIC statistic = 0.93), and body weight (P = 0.01; q value = 0.035; HSIC
statistic = 1.12) (Table S2).

Breastmilk intake is associated with improved intestinal barrier integrity.
Unfortunately, mothers who deliver preterm often produce less milk than those who
deliver at term, and milk administration is often delayed, especially in early preterm infants
(27). Formula and/or pasteurized donor human breastmilk (PDHM) is often a necessary die-
tary supplement. Only 55.7% of neonates in the cohort were exclusively breastfed (n = 63);
others had their diet complemented with either formula (n = 31) or PDHM (n = 12) or
were fed exclusively formula (n = 9) (Fig. 2A). For this reason, we investigated IP in neo-
nates grouped by feeding type. Exclusive formula feeding was significantly associated
with high IP, in either the number of days (P = 0.02) or the intake volume (P = 0.03)
(Table 1). However, when formula was used in combination with MOM, even at a minor
portion (35.2% 6 31.7% [mean 6 SE]), IP was significantly decreased to a level that was
no different from that of the cohort fed exclusively MOM (Fig. 2B). Infants whose diet was
supplemented with PDHM in addition to MOM had IP similar to that of the group fed
exclusively MOM. We further investigated how much MOM is “sufficient” relating to
improved IP during the first week after birth. A highly elevated IP was observed in infants
who received no MOM (exclusively formula or no feed), and a rapid decrease in IP was
inversely correlated with an increased MOM intake volume (Fig. 2C). Discriminatory
machine learning schemes suggested that a threshold of around 150 to 180 mL/kg of cu-
mulative intake of MOM by 7 to 10 days of age is associated with low IP. Together, our
results indicate that sufficient MOM, used alone or combined with other forms of feeding,
significantly impacts IP in early preterm infants. Even more importantly, these results imply
that the benefits of breastmilk feeding are beyond nutrition alone but extend to postnatal
intestinal barrier maturation.

Increased Bifidobacterium species abundance correlates with improved intesti-
nal barrier integrity. We further performed high-resolution characterization of the intes-
tinal microbiota in 517 fecal samples, using both short-read sequencing of the V3-V4
region of the 16S rRNA gene on an Illumina HiSeq 2500 instrument (300 bp paired-end
reads) (n = 472) and long-read sequencing of the full-length 16S rRNA gene on the Pacific
Biosciences (PacBio) Sequel II platform (n = 192). For short-read sequencing, we obtained a
total of 25,838,078 high-quality, nonchimeric ASVs (amplicon sequence variants) after the
assembly of forward and reverse reads and quality assessment, representing 51,1656 620
(mean 6 SE) ASVs per sample (see Table B at https://doi.org/10.6084/m9.figshare
.19723252.v1). On the other hand, long-read sequencing generated using circular consensus

TABLE 2 Odds ratios for factors associated with low IP adjusted for postmenstrual age and birth weighta

Factor OR 95% CI for OR P value for ORd Adjusted ORc

95% CI for
adjusted OR

P value for
adjusted ORd

Duration of antibiotic useb

#3 days 2.65 1.12, 6.25 0.02 1.56 0.58, 4.16 0.37
.3 days 1.0 (ref) 1.0 (ref)

Duration of MOM feedingb

$4 days 7.04 2.5, 19.6 ,0.01 10.30 3.21, 33.33 ,0.01
,4 days 1.0 (ref) 1.0 (ref)

aFisher’s exact test was used to calculate P values for categorical variables. Student’s t test was used for continuous variables (birth weight, gestational age [GA],
postmenstrual age [PMA], and APGAR scores at 1 min and 5 min). Intestinal permeability (IP) was calculated as the ratio of urine lactulose (La) to rhamnose (Rh), and an La/
Rh ratio of,0.05 was defined as low IP. MOM, mother’s own breastmilk; OR, odds ratio; CI, confidence interval.

bVariable measured during the time period starting from the enrollment day (within 1 to 4 days after birth depending on clinical stability) until the day when IP was
measured (day 86 2 after birth).

cThe adjusted OR model includes PMA and birth weight.
dP value calculated using logistic regression.
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sequences (CCSs) yielded 1,271,873 high-quality full-length 16S rRNA sequences or
992.9 6 16.8 (mean 6 SE) nonchimeric ASVs per sample. The full-length 16S rRNA gene
sequences (1,462 bp on average) extended the partial V3-V4 region (428 bp on average) 3.2
times and afforded species-level assignment for 87.6% of the long-read ASVs (the remaining
ASVs were not assigned due to the lack of a reference), compared to 15.3% for the short-
read ones (Fig. S2; see also Table D at https://doi.org/10.6084/m9.figshare.19723252.v1).
Using samples sequenced by both methods, taxonomic assignments for long-read ASVs
were conveyed to short-read ASVs using perfect sequence matches, thus achieving species-
level assignment for 65.3% of the short-read sequences (see Table E at https://doi.org/10
.6084/m9.figshare.19723252.v1).

In total, 508 ASVs belonging to 212 species in 15 orders and 6 phyla were identified
(see Tables A to C at https://doi.org/10.6084/m9.figshare.19723252.v1). The four most
abundant taxa were Klebsiella pneumoniae, Escherichia coli, Staphylococcus epidermidis,
and Enterobacter spp. These taxa were predominant (.50% relative abundance) and
dictated four distinct community types (Fig. S3). These four taxa belong to two classes,
Enterobacteria (K. pneumoniae, E. coli, and Enterobacter spp.) and Bacilli (S. epidermidis),
and were highly prevalent (present in 86.2 to 94.8% of the samples) in both high- and
low-IP subjects (Fig. 3A). They are also known as “first colonizers” of the infant gut (15,
28, 29). Five other taxa, including Enterococcus faecalis, Clostridium perfringens, Proteus
mirabilis, Bifidobacterium breve, and Veillonella dispar, were found to contribute to
17.4% of all sequences and were detected in 47.7 to 86.6% of all samples. These obli-
gate and facultative anaerobes were considered the “succession” microorganisms that
succeed the first colonizers (15, 30–32). Together, these nine taxa accounted for 76.0%
of all sequences in this data set. The remaining sequences were from a diverse array of
obligate and facultative anaerobes (Fig. S3, cluster 5).

A zero-inflated negative binomial random-effects (ZINBRE) model was applied to
investigate microbial biomarkers correlated with IP. B. breve was the taxon that was
most significantly associated with low IP (P , 0.001) during the first 7 to 10 days after
birth (Fig. 3B, Table S3B, and Fig. S4B). The low-IP group had significantly higher levels
of B. breve, more Bifidobacterium overall, and more MOM. An adaptive spline logistic
regression model was used independently to confirm the association of B. breve with IP
and MOM (Fig. S4C and D). Other phylotypes associated with MOM or PMA are shown in
Table S3. The high-IP-associated ASVs of S. epidermidis, E. coli, and Parabacteroides dista-
sonis were associated with early PMA (Table S3A). Veillonella dispar was revealed to
strongly associate with later PMA (P , 0.001) but not with IP. S. epidermidis and E. coli
were also associated with less MOM during the first week (Table S3C). B. breve was found
in 71.7% of samples containing Bifidobacterium, followed by B. longum (21.7%). The other
Bifidobacterium species were either rare or present at very low abundances (,0.1%).
Temporal microbiota profiling indicated that Bifidobacterium species reached higher
abundances (;5 to 20%) after.3 days of MOM (Fig. 3E) (see https://doi.org/10.6084/m9
.figshare.19709923.v1). When stratified by major feeding types, Bifidobacterium was most
abundant in the cohort fed exclusively MOM or MOM supplemented with formula
(Fig. S4A). We plotted community diversity against MOM feeding volume as a function
of time and observed that low-IP infants had significantly higher microbiota diversity
and higher Bifidobacterium species diversity when MOM reached .150 mL/kg of cumu-
lative intake within the first week (Fig. 3C and D). It is worth noting that MOM is a critical
but not the only contributor to the abundance of Bifidobacterium. Fifteen percent of the
subjects who received no MOM had .1% Bifidobacterium, and 32.5% had a detectable
level of Bifidobacterium (.0.1%). Overall, this result further supports the importance of
achieving the critical threshold of MOM intake and its critical association with low IP.

Population dynamics of Bifidobacterium species in early postnatal colonization.
Phylogenetic analyses of full-length 16S rRNA gene sequences demonstrated that B.
breve forms a monophyletic clade, and the four most abundant ASVs were nearly iden-
tical, while B. longum was more phylogenetically diverse, with four distinct clades
(Fig. 4A and B). Clade I was the most abundant and represented B. longum subsp.
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longum, while B. longum in the other three clades, II to IV, was present at low abundan-
ces. ASVs assigned to Bifidobacterium showed high sequence diversity (Fig. 4A) as well
as inter- and intrasubject variability (Fig. 4C), in that multiple ASVs can be detected in
the same subject and a single ASV can be detected in multiple subjects at multiple
time points. For instance, 35 B. longum ASVs of four different clades were observed in
one subject. Furthermore, some ASVs (i.e., unclassified Bifidobacterium spp.) were

FIG 3 Microbial biomarkers and breastmilk feeding in early preterm subjects with high and low IP. (A) Abundance of bacterial groups stratified by
postmenstrual age at study days 7 to 10. The results indicate that the Actinobacteria (Bifidobacterium) and Clostridia (Clostridiales) were observed mainly in
low-IP subjects but not in high-IP subjects (red). The abundance values of read counts for each ASVs are stacked in order from highest to lowest, separated
by a horizontal line. (B) Box plot of Bifidobacterium relative abundance and the cumulative amount of mother’s breastmilk feeding (milliliters per kilogram)
during the first 7 to 10 postnatal days in subjects with high or low IP. IP was calculated using the ratio of urine lactulose (La) to rhamnose (Rh), with low
or high IP defined by an La/Rh ratio of .0.05 or #0.05, respectively. Plotted are interquartile ranges (IQRs) (boxes), medians (lines in boxes), and means
(diamonds). Significance values were calculated using a Wilcoxon rank sum test. * denotes the level of significance. NS, nonsignificant. (C and D) Volatility
plots demonstrating the fluctuation of microbial community diversity (characterized by the Shannon diversity index) (C) and Bifidobacterium diversity over
mother’s own breastmilk (MOM) feeding volumes in high- or low-IP groups (D). The plot was generated in QIIME (October 2019 version) (106).
Nonoverlapping vertical error bars at each measuring point were considered significantly different. (E) Temporal characterization of the intestinal
microbiota of early preterm infants with profile changes over the first 21 days after birth. The taxonomic profile was generated using 16S rRNA gene
sequencing. Community type is shown in heatmap clusters in Fig. S3 in the supplemental material. The dates when IP was measured, MOM, pasteurized
human donor’s milk (PHDM), formula feeding day, and antibiotic administration are shown in the plots. Each circle is sized proportionally to the feeding
volume. Abbreviations: BW, body weight; F, female; M, male; CS, cesarean section; SVD, spontaneous vaginal delivery; AA, African American; Ap1, Apgar
score 1 minute category; Ap5, Apgar score 5 mintues category; GA, gestational age; PMA, postmenstrual age; BW, birthweight.
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FIG 4 (A) Phylogenetic tree constructed using 81 unique, full-length 16S rRNA gene ASV sequences
of Bifidobacterium. (B) ANI clustering of full-length 16S rRNA gene sequences. (C) Phylogenetic tree of
Bifidobacterium ASVs in the stool microbiota of the cohort. All full-length 16S rRNA genes assigned to
Bifidobacterium were used in the analyses. Color denotes individual subjects.
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observed only in infants with an early PMA (,33 weeks), while others did not vary in
abundance across PMA (i.e., B. breve), supporting high subspecies-level diversity and
population dynamics in the preterm infant gut community.

To characterize the genome content of Bifidobacterium species, we performed
whole metagenomic sequencing of 30 samples with .10% Bifidobacterium species
using an Illumina NovaSeq 6000 platform (see Table A at https://doi.org/10.6084/m9
.figshare.19723255.v1) and generated 26 B. breve and 4 B. longum nearly complete
metagenome-assembled genomes (MAGs) (see Table B at https://doi.org/10.6084/
m9.figshare.19723255.v1). We further performed metagenomic sequencing of two
samples using the Pacific Biosciences Sequel II platform, which afforded one closed
and one nearly complete genome of B. breve strains. The closed genome was 2.34 M
in size (Fig. S6; see also Table C at https://doi.org/10.6084/m9.figshare.19723255.v1),
similar to the median B. breve genome size of 2.33 M (million bp) in the NCBI database.
For pangenome analysis, we supplemented the 26 B. breve in-house MAGs with 107 pub-
lished genomes (see Table A at https://doi.org/10.6084/m9.figshare.19709917.v2) and the
4 B. longum MAGs with 310 published genomes (see Table B at https://doi.org/10.6084/
m9.figshare.19709917.v2) to identify homologous gene clusters (HGCs) (see Tables C and
D at https://doi.org/10.6084/m9.figshare.19709917.v2). Among the total of 4,922 B. breve
HGCs, 54.2% were considered dispensable (present in ,10% of the genomes), 29.4%
were core (present in .95% of the genomes), and the rest were accessory (see Table E at
https://doi.org/10.6084/m9.figshare.19709917.v2). The pangenome of B. longum (7,265
HGCs) was roughly twice the size of that of B. breve (3,363 HCGs), although the core
genomes of the two species were similar (1,511 versus 1,448 HCGs). The large pange-
nome size of B. longum may reflect its broader host range, which includes both infant
and adult intestines, than that of B. breve or B. infantis, which were observed exclusively
in the infant gut (33). In particular, the genes involved in the fructose 6-phosphate phos-
phoketolase-dependent glycolytic pathway for ATP-efficient carbohydrate catabolism,
or the “bifid shunt,” are conserved in both species (https://doi.org/10.6084/m9.figshare
.19907113). Furthermore, B. longum’s dispensable genome, which comprised 46.3% of its
pangenome (2,666 HGCs), was smaller than that of B. breve (54.2%; 3,363 HCGs) in both
size and proportion, indicating high genome plasticity in B. breve.

We identified 46 genes specific to B. breve strains colonizing infants with low IP (see
Table F at https://doi.org/10.6084/m9.figshare.19709917.v2). While a large number of
these genes have unknown functions, others encoded functions such as glycosyl trans-
ferases, glycosyl hydrolases, cell surface adhesion and transport, polysaccharide bio-
synthesis, quorum sensing, and phage integration. Furthermore, a number of functions
were significantly enriched in these genomes compared to the publicly available spe-
cies genomes (adjusted q value , 0.05) (see Table F to I at https://doi.org/10.6084/m9
.figshare.19709917.v2), such as cation transmembrane transporter activity; glucuronate
isomerase; methyladenine glycosylase; glycosyl hydrolase families 59, 2, 85, and 30;
and bacterial rhamnosidases A and B. Of note, B. breve HGC profiles appear to be
highly similar within subjects, indicating that B. breve genomes detected at different
time points in the same infants shared greater similarity than did those from different
subjects (https://doi.org/10.6084/m9.figshare.19907113) (see Table J at https://doi.org/
10.6084/m9.figshare.19709917.v2). Together, compared to B. longum, B. breve strains
colonizing infants with low IP have high genome plasticity and are enriched in genetic
features of carbohydrate metabolism and transport that underlie the strong niche-
adaptive capabilities of the species.

Specialized humanmilk oligosaccharide assimilation capabilities of Bifidobacterium
strains in early preterm infants. As both Bifidobacterium species abundance and MOM
were associated with postnatal intestinal barrier maturation, we next investigated whether
these two factors were linked through the ability of Bifidobacterium species to utilize the
oligosaccharides present in breastmilk. Previously characterized major HMO utilizers like
Bacteroides species and Lactobacillus (34, 35) were largely absent from our cohort (see
https://doi.org/10.6084/m9.figshare.19723252.v1), indicating that Bifidobacterium species
likely provide the genetic capabilities to metabolize HMOs. We thus examined the set of

Bifidobacterium and Intestinal Barrier Maturation mBio

May/June 2022 Volume 13 Issue 3 10.1128/mbio.01299-22 10

https://doi.org/10.6084/m9.figshare.19723255.v1
https://doi.org/10.6084/m9.figshare.19723255.v1
https://doi.org/10.6084/m9.figshare.19723255.v1
https://doi.org/10.6084/m9.figshare.19723255.v1
https://doi.org/10.6084/m9.figshare.19723255.v1
https://doi.org/10.6084/m9.figshare.19709917.v2
https://doi.org/10.6084/m9.figshare.19709917.v2
https://doi.org/10.6084/m9.figshare.19709917.v2
https://doi.org/10.6084/m9.figshare.19709917.v2
https://doi.org/10.6084/m9.figshare.19709917.v2
https://doi.org/10.6084/m9.figshare.19907113
https://doi.org/10.6084/m9.figshare.19907113
https://doi.org/10.6084/m9.figshare.19709917.v2
https://doi.org/10.6084/m9.figshare.19709917.v2
https://doi.org/10.6084/m9.figshare.19709917.v2
https://doi.org/10.6084/m9.figshare.19907113
https://doi.org/10.6084/m9.figshare.19709917.v2
https://doi.org/10.6084/m9.figshare.19709917.v2
https://doi.org/10.6084/m9.figshare.19723252.v1
https://journals.asm.org/journal/mbio
https://doi.org/10.1128/mbio.01299-22


genes encoding extracellular hydrolases, sugar transporters, and intracellular hydrolases
(Table S4), which comprise the machinery necessary to take up and metabolize HMO sub-
strates to feed central fermentative metabolism (36–38).

Intracellular HMO utilization functions were found to be encoded exclusively by
both B. breve and B. longum. We examined eight essential extracellular enzymes and
their homologs (for details, see Materials and Methods) known to be required for the
extracellular breakdown of HMOs into smaller molecules that are then transported
intracellularly. Interestingly, none of these extracellular enzymes were found in this
cohort. We investigated five essential bacterial ABC transporters and homologs involved
in the import of various oligosaccharides, known to have a high specificity for HMOs
conferred by substrate binding protein (SBP) domains (39). Both B. breve and B. longum
contained gltA (Table S4A), a gene considered crucial for the import of lacto-N-tetraose
(LNT). LNT comprises the core HMO structure that is catabolized via lacto-N-biose (LNB)
intermediates (40). Furthermore, a family 1 solute binding protein (F1SBP) gene cluster,
Blon_2177, was found in both B. breve and B. longum (Table S4B). This cluster was found
to be critical for the import of nonfucosylated type 1 oligosaccharides (41). None of the
B. longum strains but the majority of the B. breve strains of this cohort (92.4%) harbor
the LNnT (lacto-N-neotetraose) transporter that is encoded by nahS. These findings indi-
cate that both B. breve and B. longum could transport LNB and LNT, while B. breve can
further metabolize LNnT.

We then evaluated the capability of consuming the transported oligosaccharides,
and compared to B. longum, we revealed expanded metabolic capabilities of B. breve
strains of this cohort to utilize a variety of HMO molecules, including fucosylated or sia-
lylated forms, in addition to the neutral types of HMOs (i.e., LNB, LNT, and LNnT).
Seventeen key glycoside hydrolases (GHs) involved in essential HMO degradation and
utilization were investigated (Table S4C). The key intracellular enzymes GH2 (b-1,4-ga-
lactosidases) (LacZ2/6), GH112 (galacto-N-biose [GNB]/LNB phosphorylase) (lnpA),
GH20 (b-N-acetylglucosaminidase), and GH42 (b-1,3-galactosidase) (lntA; bga42A) are
highly conserved in both B. breve and B. longum. These enzymes lack transmembrane
domains or signal peptide sequences and are required to degrade HMOs intracellularly
(42). While almost all B. breve strains contained GH95 a-fucosidase (afcA) (homolog of
Blon_2335), GH33 a-sialidase (homolog of Blon_0646), and GH20 b-N-acetylglucosami-
nidase (nahA) (homolog of Blon_0459) (Table S4C), only a small portion of B. longum
strains (;10%) contained these enzymes. Furthermore, B. breve strains present in these
preterm infants carry the gene encoding GH29 a-fucosidases more often (53.8% versus
12.7%) than B. breve strains isolated from other sources obtained from GenBank. The
presence of GH29 a-fucosidase genes underlines the ability to consume fucosylated oli-
gosaccharides such as 29-fucosyllactose (29-FL) and larger fucosylated HMOs such as
lacto-N-fucopentaose (38, 42). The GH29-containing B. breve strains in our cohort also
encode GH95. In fact, GH29 and GH95 a-fucosidases are highly complementary since
they target specific substrates of a-1,3/4- and a-1,2-fucosyl linkages, respectively (42),
and the activation of both enzymes enables the degradation and utilization of a larger va-
riety of HMOs. Moreover, a prominent gene cluster termed FHMO (fucosylated human
milk oligosaccharide) that contains both GH29 and GH95 a-fucosidase-encoding genes
was observed in some B. breve strains but was largely absent from B. longum strains
(Table S4D). This cluster was reported to enable B. breve strains to preferentially consume
fucosylated HMOs over neutral HMOs during early bacterial growth (42). In particular, the
putative fucosyllactose SBP (BLNG_1257) present in this cluster confers glycan binding
specificity and is present consistently in B. breve strains of this cohort but rarely in other B.
breve strains in GenBank. Overall, our results revealed an expanded, specialized HMO
assimilation capability of B. breve strains, conferring a competitive growth advantage in
the gut of this preterm infant cohort when fed breastmilk.

Host-derived glycoprotein utilization is limited to B. breve in early preterm infants.
Besides HMOs, host-derived glycoproteins such as mucin and proteoglycan (mucus or
milk) are critical carbon sources for bacteria in the infant intestinal microenvironment.

Bifidobacterium and Intestinal Barrier Maturation mBio

May/June 2022 Volume 13 Issue 3 10.1128/mbio.01299-22 11

https://journals.asm.org/journal/mbio
https://doi.org/10.1128/mbio.01299-22


Human glycoproteins are often heavily sulfated and could not be metabolized without
bacterial glycosidases (43, 44). We investigated two sulfatase-encoding gene clusters
essential for sulfatase metabolism, ats1 and ats2 (45, 46), and they each encode glyco-
sulfatases and the accompanying anaerobic sulfatase-maturing enzymes (anSMEs)
with an associated transport system and transcriptional regulator (46). The primary
mucin degradation capabilities of this cohort are shown to be limited to B. breve strains
(Table S4F), as the two clusters are present in 100% of B. breve strains in our cohort and
;70% of all B. breve genomes available. B. longum strains rarely harbor ats1, and no
strains carry ats2.

In addition to sulfated residues, more than half of human colonic mucin oligosac-
charides also contain sialic acid residues (47). The release of sialic acid is an initial step
in the sequential degradation of mucins and sialylated HMO substrates (46, 48).
Hence, we investigated the two gene clusters essential for the uptake and metabo-
lism of sialic acid, the nagA2-nagB3 cluster (Bbr_1247-Bbr_1248) and the nan-nag
cluster (Bbr_0160-Bbr_0172) (49–51). These two gene clusters are highly conserved
in B. breve, while they are present in only 14% of B. longum genomes (https://doi.org/
10.6084/m9.figshare.19709917). Our results demonstrate that the capability of forag-
ing sulfated and/or sialylated host-derived glycoproteins is attributed to B. breve
strains in this cohort. This metabolic versatility of B. breve may greatly improve its fit-
ness and facilitate its mucosal adherence, hence facilitating colonization under nutri-
ent- or energy-limited conditions in the preterm infant gut environment.

DISCUSSION

Early preterm neonates are a vulnerable and challenging population that often
requires intensive medical care. As a result of their premature birth, these neonates of-
ten have an aberrantly permeable intestinal barrier that fails to limit bacterial translo-
cation. Our group has previously reported positive associations between persistently
elevated intestinal permeability and delayed feeding, prolonged antibiotic exposure,
and altered development of the intestinal microbiota as well as a lack of a progres-
sively increased abundance of Clostridiales (15, 16). These Clostridiales became abun-
dant mostly at the end of the second week after birth; this is after the extensive barrier
maturation that occurs during the first week. In this study, we determined the minimal
intake of maternal breastmilk necessary to significantly decrease IP and identified spe-
cific Bifidobacterium species and strains as biomarkers associated with low-IP develop-
ment in preterm infants in the first week of life.

We posited that the benefits of breastmilk extend beyond nutrition and include
improved gut barrier function and that the two factors associated with reduced IP,
MOM feeding and Bifidobacterium strains, are, at least in part, linked by the ability of
Bifidobacterium to metabolize human milk oligosaccharides (illustrated in Fig. 5). To
investigate this link, we evaluated the carbohydrate-metabolizing capabilities of
Bifidobacterium strains and uncovered a complement of genes dedicated to utilizing a
wide variety of HMO molecules as well as host-derived glycoproteins. These genetic
features were enriched in preterm infant gut-associated Bifidobacterium strains com-
pared to those isolated from other sources like dairies or the adult gut. Our results are
concordant with those of previous studies showing that the establishment of a bifido-
bacterium-dominant community was facilitated by specific gene clusters supporting
HMO metabolism, which are absent in many adult-associated bifidobacterial strains
(52–55). Functional characterization of the contribution of B. breve metabolizing MOM
to low IP would be critical for its translational significance. Future studies modeling
both the transcriptional activities of bifidobacterial biomarkers and host responses in a
longitudinal design are warranted to address the cause-effect relationships of MOM
and Bifidobacterium for intestinal barrier maturation. Furthermore, the production of
short-chain fatty acids via carbohydrate consumption by bifidobacteria, particularly ac-
etate and butyrate, was demonstrated to correlate with their anti-inflammatory proper-
ties and promoted the defense functions of the epithelium (56–58). Together, the
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results of our study support the notion that intestinal barrier function can develop
postnatally, and this process could be induced through supplementation with breast-
milk substrates as well as Bifidobacterium strains that consume them. These elements
are promising therapeutic targets to reduce NEC and other life-threatening conditions
associated with intestinal hyperpermeability.

B. breve is a known dominant Bifidobacterium species in both preterm and term
infant gut microbiota (59) and was also observed in breastmilk and vaginal microbiota
(60, 61). In humans, B. breve appears to be found exclusively in these environments
and is largely absent in the adult gut. The factors contributing to B. breve persistence
in infants are not well understood. Most studies were performed using the type strain
B. breve ATCC 15700 (JCM1192), which has a limited ability to consume HMOs (62, 63).
As demonstrated by us and others, strains of B. breve vary greatly in their abilities to
metabolize HMOs (55). The B. breve strains in our cohort displayed extensive enzymatic
capabilities designed to efficiently utilize a broad range of dietary and host-derived
carbohydrates, thus maximizing their colonization of the infant intestinal environment.

FIG 5 Illustration of mature and immature intestinal barriers in neonates. Peristalsis (reduced intestinal motility), maldigestion of nutrient sources, and a
compromised gut barrier may render the mucosa susceptible to invasion by opportunistic pathogens in the gut environment. The resulting imbalance
between epithelial cell injury and repair leads to a vicious cycle of maldigestion, bacterial invasion, immune activation, and uncontrolled inflammation. The
illustration is not drawn to scale. (Created with BioRender.com.)
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In particular, we demonstrated that LNnT utilization was limited exclusively to strains
of B. breve. Growth on LNnT was shown in vitro to enable B. infantis to outcompete
other species such as Bacteroides species (64). LNnT can be fermented by specific
strains of Bifidobacterium found only in the infant gut (65). Digestion of neutral HMOs
(i.e., LNT and LNnT) was actually shown to induce a significant shift in the ratio of
secreted acetate to lactate compared to the catabolism of the simpler carbohydrates
that they contain (66). Furthermore, the GH29 a-fucosidase, an uncommon enzyme
correlated with the ability to grow on fucosylated HMOs (38), was enriched in only B.
breve strains in this cohort. The presence of key gene sets expands B. breve metabolic
capabilities (i.e., FHMO, GH29, and GH95) and is reminiscent of those found in B. infan-
tis ATCC 15697, the model strain that can also consume a broad repertoire of HMOs
(41, 67). Previous clinical trials administering B. breve strains in early preterm infants
yielded contradicting results, which may be related to the selection of different strains.
For example, Kitajima and coauthors reported that a B. breve BBG strain could colonize
the immature bowel effectively, with significantly fewer abnormal abdominal signs
and greater weight gain in VLBW infants (68). However, the clinical trial of the type
strain BBG-001 in very-preterm infants observed no evidence of a benefit in terms of
preventing NEC and late-onset sepsis (LOS) (69). These data highlight the importance
of strain characterization in prophylactic supplementation with live biotherapeutics.
Further characterization of these key genes will be necessary to understand the range
of oligosaccharides that B. breve strains can transport and consume. Collections of B.
breve strains isolated from both preterm infants with rapidly decreasing IP and healthy
term infants should be established to achieve this important goal.

The specialized HMO and glycoprotein utilization capabilities of B. breve, particularly
the degradation of sulfated and sialic residues, further confer a competitive capability
that improves B. breve fitness and facilitates its adherence to and colonization of the
gut mucosa (70). The release of sialic acid is an initial step in the sequential degrada-
tion of mucins and sialylated HMO substrates (46, 48), and the abilities to utilize the
heavily sulfated mucin glycoprotein and sialic residues were found to be highly corre-
lated (46, 49). Sialic acid concentrations are highest in the colostrum in preterm infants
but decrease by almost 80% after 3 months (71). Furthermore, breastmilk from moth-
ers who delivered preterm was reported to be a rich source of oligosaccharide-bound
sialic acids, with 20% more sialic acid residues than in breastmilk from term mothers
and 25% more than that found in formula (72). A recent in vivo study showed that sia-
lylated HMOs are on the causal pathway of a microbiota-dependent infant growth out-
come and hence were considered the most growth-discriminatory HMO structures
(73). Interestingly, and supporting its importance in infant health, only strains of B.
infantis and B. breve isolated from the infant gut have been reported to be capable of
utilizing sialic acid and sialylated lacto-N-tetraose as sole carbon sources (54, 74, 75). A
few B. breve strains were actually reported to preferentially consume sialylated HMOs,
in particular sialyl-LNT b (LSTb) and sialyl-lacto-N-hexaose (S-LNH), over neutral HMOs
(38, 49). Given that bacteria with pathogenic potential are capable of utilizing sialic
acid, B. breve strains could rapidly sequester sialic acid away from these pathogens and
offer nutritional immunity, i.e., sequestering nutrients to limit infection, thus contribut-
ing to a healthy intestinal environment (76). It would be highly insightful to further
characterize maternal HMO variations in MOM and the composition of specific formu-
las, in addition to the information on HMO assimilation capabilities of bifidobacterial
strains, for a comprehensive understanding of the essential factors contributing to
postnatal intestinal maturation.

HMO utilization by Bifidobacterium species in this cohort appears to be exclusively an
intracellular process, which would be unlikely to allow cross-feeding of intermediates
with other gut bacterial species. Extracellular digestion of HMOs would afford fucose
and sialic acid monomers to be cross-fed to other bacteria, some of which have patho-
genic properties (77). Bacteroides spp., which are largely absent in this cohort, are known
to employ an exclusively extracellular process in HMO utilization (64). The “internalize,
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then degrade” approach for HMO consumption is a critical Bifidobacterium property that
affords protection against infection for the infants. Interestingly, the preference for intra-
cellular digestion of HMOs is not conserved across all infant gut Bifidobacterium species
or strains. A recent study revealed that Bifidobacterium strains in the gut microbiome of
breastfed infants in Malawi and Venezuela similarly employed an intracellular HMO
digestion strategy, while Bifidobacterium strains in a cohort of U.S. infants fed formula
and breastmilk preferentially employed extracellular HMO digestion strategies (36). This
difference may relate to galactooligosaccharide (GOS) transporter genes present in
strains that internalize HMOs to metabolize them, especially the GNB/LNB-BP (gltA) gene
(36, 78), although the mechanisms remain unclear.

Our study highlights the strong potential for the prophylactic administration of spe-
cific B. breve strains early in life along with specific HMOs to enhance the intestinal bar-
rier in preterm neonates. We previously defined a “window of opportunity” of day
8 6 2 after birth for intervention prior to the onset of leaky gut-associated conditions
such as NEC (15, 16). Our study proposed the role of breastmilk feeding in promoting
the growth of beneficial Bifidobacterium species and strains that could consume breast-
milk HMOs during that critical window period of time. In the absence of these prophy-
lactic Bifidobacterium strains, the benefit of breastmilk feeding is expected to be dra-
matically reduced. Counting on the vertical transmission of these Bifidobacterium strains
from the mother’s gut or vaginal microbiota or breastmilk is not reliable and could leave
many infants unprotected (79, 80). It is thus critical to gain further mechanistic insight
into bifidobacterium-rich microbiota formation in the infant gut by prophylactic supple-
mentation with live biotherapeutics that possess the ability to effectively utilize them.
Such an understanding will inform the design of clinical interventions with supplementa-
tion with HMOs and Bifidobacterium as live biotherapeutic prophylaxis to enhance intesti-
nal barrier integrity early in life and ultimately reduce the risk of NEC.

MATERIALS ANDMETHODS
Study cohort and feeding protocol. The study protocol was approved by the institutional review

boards of the University of Maryland, Baltimore, and Mercy Medical Center. Written informed parental
consent was obtained. Eligibility criteria were described previously (16). One hundred thirteen eligible
preterm infants at 240/7 to 326/7 weeks of gestation were enrolled within 4 days after birth from combin-
ing cohorts enrolled from June 2013 to October 2014 and from October 2018 to November 2019. Prior
to the study procedures, a complete physical examination, including vital signs, weight, height, and
head circumference, was performed. Demographic, obstetric, clinical, medication exposure, feeding
practice, and adverse event data were collected from the medical record.

Enteral feeds by the orogastric or nasogastric route were initiated between the first and fourth day
of life depending on clinical stability. After initial feeds of 10 mL/kg expressed breastmilk or 20 kcal/oz
preterm formula daily for 3 to 5 days, feedings were advanced by 20 mL/kg/day until 100 mL/kg/day
was reached. Subsequently, caloric density was advanced to 24 kcal/oz prior to increasing the feeding
volume by 20 mL/kg/day to 150 mL/kg/day. The total volume of each source of feeds was calculated as
the sum of the daily amount of milk intake per kilogram of the administered expressed mother’s breast-
milk, donor milk, or preterm formula from the initial feed day until postnatal days 7 to 10, when intesti-
nal permeability (IP) was measured. Feedings were held or discontinued for signs of feeding intolerance
such as abdominal distension, gastric residuals, or hematochezia or for clinical deterioration. Pooled pas-
teurized human donor breastmilk (PHDB) was purchased from Prolacta Biosciences (Duarte, CA, USA).
PHDB was collected from mothers of term infants who have breastfed for at least 6 months (81).

In vivo intestinal permeability measurement. In our previous pilot studies that employed a small
cohort of neonates (n = 37) (15, 16) with IP measured at study days 1, 8 6 2, and 15 6 2, it was shown that
IP is high within 4 days of birth in all preterm infants, with a rapid maturation of the intestinal barrier over
the first week of life. A persistently high IP and/or a late increase in IP indicates the physiological immaturity
of intestinal tract barrier function. Hence, the first 7 to 10 days in preterm infants are a critical observation pe-
riod for monitoring IP. Eligible preterm infants received 1 mL/kg of the nonmetabolized sugar probes on
postnatal days 7 to 10, which included lactulose (La; Cumberland Pharmaceuticals, Nashville, TN), which is a
marker of intestinal paracellular transport, and rhamnose (Rh; Saccharides, Inc., Calgary, Alberta, Canada),
which is a marker of intestinal transcellular transport. One milliliter of a solution containing 8.6 g La plus
140 mg Rh/100 mL was administered enterally by nipple or by gavage via a clinically indicated orogastric
tube (82). A minimum of 2 mL of urine was collected over a 4-h period following the administration of the
La/Rh dose as previously described (16). La and Rh concentrations were measured by high-pressure liquid
chromatography (HPLC) at the University of Calgary (Calgary, Canada). High or low intestinal permeability
was defined by an La/Rh ratio of .0.05 or #0.05, respectively, as validated and applied previously (16).
Postmenstrual age at sugar probe dosing was calculated as the gestational age at birth plus the postnatal
age on the dosing day (83).
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Fecal specimen collection and nucleic acid extraction. Fecal samples (;1 g) collected daily from
enrollment until postnatal day 21 or NICU discharge were stored immediately in 1 mL of DNA/RNA
Shield (Zymo Research, Irving, CA, USA). Stool specimens were collected from within the stool mass
from the diaper as much as feasible to avoid frequent air exposure. The stool sitting time was 0 to 3 h,
and the sample was collected during diaper changes every 3 h. Urine and fecal samples were archived
at280°C until processing.

Genomic DNA was extracted from homogenized fecal samples using the MagAttract PowerMicrobiome
DNA/RNA kit (Qiagen) implemented on a Hamilton Star robotic platform and after a bead-beating step on a
TissueLyser II instrument (Qiagen) in 96-deep-well plates at the Microbiome Service Laboratory (MSL) at the
University of Maryland, Baltimore (Baltimore, MD, USA). DNA purification from lysates was done on a
QIAsymphony automated platform.

Short-read sequencing of 16S rRNA gene amplicons and whole-community metagenomes. PCR
amplification of the 16S rRNA gene V3-V4 hypervariable region was performed using dual-barcoded uni-
versal primers 318F and 806R as previously described (84). In brief, amplicon pools were prepared for
sequencing with AMPure XT beads (Beckman Coulter Genomics, Danvers, MA), and the size and quantity
of the amplicon library were assessed on the LabChip GX system (PerkinElmer, Waltham, MA) and with a
library quantification kit for Illumina (Kapa Biosciences, Woburn, MA), respectively. The PhiX control
library (v3) (Illumina, San Diego, CA) was combined with the amplicon library. High-throughput sequenc-
ing of the amplicons was performed on an Illumina MiSeq platform using the 300-bp paired-end proto-
col. Sequence libraries were prepared from the extracted DNA using the Nextera DNA Flex kit (Illumina,
San Diego, CA) according to the manufacturer’s specifications. Libraries were then pooled in equimolar
proportions and sequenced on a single Illumina NovaSeq 6000 S2 flow cell providing an average of
6.5 million pairs of 150-bp reads per library at the Genomic Resource Center at the University of
Maryland School of Medicine.

Long-read sequencing of the full-length 16S rRNA gene and whole-community metagenomes
on the Pacific Biosciences Sequel II platform. Amplification of the full-length 16S rRNA gene was
performed using dual-barcode, two-step PCR on diluted (1:10) genomic DNA. The first round of PCR
amplification of the 16S rRNA full-length gene was performed using universal primers 27F
(AGRGTTYGATYMTGGCTCAG) and 1492R (RGYTACCTTGTTACGACTT) according to Pacific Biosciences
(Menlo Park, CA, USA) specifications for 20 cycles. The cycling conditions for the first-step PCR were
95°C for 30 s, 57°C for 30 s, and 72°C for 60 s. The PCR mixture was then diluted in water (1:5) and
amplified with Pacific Biosciences universal forward/reverse 96-plate primers for an additional 20
cycles according to Pacific Biosciences specifications. Cycling conditions are described in the manu-
facturer’s protocol (85). DNA quantification was carried out using the Quant-iT PicoGreen double-
stranded DNA assay (Invitrogen) and visualized on a 2% agarose E-gel. The amplicon libraries were
normalized, cleaned, and concentrated using AmPure XP SPRI beads (Beckman Coulter, Brea, CA,
USA) at 0.6� the reaction volume.

Library pools were prepared with SMRTBell template prep kit 1.0 with barcoded adaptors. Libraries
were then size selected on a BluePippen system (Sage Science, Beverly, MA) with a cutoff of 5 kb.
Sequencing was performed on the Sequel II platform (PacBio, Menlo Park, CA) with loading at 60 pM.
Multiplexed samples were sequenced on PacBio Sequel II cells using S/P3-C1/5.0-8M sequencing chem-
istry. Demultiplexing was done with lima (version 1.9.0) using default parameters, except for a minimum
barcode score of 26 and a minimum length of 50 bp; both tools are part of the SMRTLink 6.0.1 software
package with updated CCS version 3.4.1 (Pacific Biosciences, 2019). Raw reads were assembled via Canu
v1.8 and the -pacbio-raw protocol (86). The resulting contigs were taxonomically annotated using
BLASTN v2.8.1 (87) and the nonredundant nucleotide database (updated on 3 May 2019) to pool all con-
tigs identified under the same species name to form metagenomic bins. Binned contigs were circular-
ized and rotated using Simple-circularise (88) and were retained if the circularized contigs were in the
range of the full genome size according to published closed genomes of that species based on the
GenBank genome database. Metagenome bins were further confirmed using GTDB-Tk v1.1.0 (89).
Genomes were annotated using PROKKA v1.13 (90).

Epidemiological analyses. Covariates identified based on previous literature and biological plausibility
were collected at the time of enrollment of the participants and evaluated. Categorical data were compared
using Fisher’s exact test, and continuous data were compared using Student’s t test. Multicollinearity
between covariates was assessed using the variance inflation factor (VIF) and tolerance, where covariates
with a VIF of .10 were considered collinear. Covariates with a P value of ,0.05 in the bivariate analysis
were considered confounding factors and were adjusted in the multivariable analysis as random factors.
Generalized logistic regression was used to determine the association between IP category and continuous
variables, including the duration of antibiotics and the duration of MOM feeding. Analyses were conducted
using SAS version 9.4 software (SAS Institute, Cary, NC), and the code used for this statistical analysis was
deposited at https://github.com/igsbma/IP_microbiome/tree/main/statistical_analyses.

Bioinformatics analysis of the intestinal microbiota. For 16S rRNA V3-V4 gene amplicon analysis, raw
data were demultiplexed, and barcode, adaptor, and primer sequences were trimmed using tagcleaner
v0.16 (91). Quality assessment and sequencing error correction were performed using the DADA2 v1.14
software package (92) and the following parameters: forward reads were truncated at position 240 and
reverse reads were truncated at position 210 based on the sequencing quality plot, and no ambiguous
bases and a maximum of 2 expected errors per read were allowed (93). The quality-trimmed reads were
used to infer amplicon sequence variants (ASVs) and their relative abundances in each sample after remov-
ing chimeras. The SILVA database (94), release 132, was used to assign taxonomy. The following criteria
were applied for an ASV: (i) the ASV was at least 400 bp in length for long-read sequencing, (ii) it was
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observed in at least two samples, (iii) there were at least 5 counts in at least one sample, and (iv) it was not
assigned to taxonomic groups of mitochondria or chloroplasts.

For full-length 16S rRNA gene analyses, CCS reads were generated using the ccs application with a
minPredictedAccuracy of 0.99, and the rest of the parameters were default, including a minimum of 3
subread passes. Demultiplexing was done with lima (version 1.9.0) with a minimum barcode score of 26
and a minimum length of 50 bp; both tools are part of the SMRTLink 6.0.1 software package with
updated CCS version 3.4.1 (Pacific Biosciences, 2019). The microbiota analyses were modified from a pre-
viously reported bioinformatics pipeline that incorporates the DADA2 protocol (95). The quality-trimmed
reads were used to infer ribosomal sequence variants and their relative abundance in each sample after
removing chimeras. Taxonomy was assigned to each ASV generated by DADA2 using both the SILVA
(release 132) database and the Genome Taxonomy Database (GTDB) (96) and the RDP naive Bayesian
classifier as implemented in the DADA2 R package (97, 98). In a few cases when conflicting taxonomic
assignments appeared, the NCBI RefSeq 16S rRNA database combined with the RDP database (99, 100) and
the Human Intestinal 16S rRNA database (HITdb v1) (101) was used to resolve the conflict. Pacific
Biosciences long-read sequencing complements short-read sequencing for its high accuracy and extended
length. To boost taxonomy assignments for short-read sequencing, we performed a BLASTN search of the
short-read ASVs to the long-read ASVs and assigned a taxonomic name to the short reads if there was
100% identity and a unanimous assignment if there were multiple hits for long-read sequences.

A heatmap was constructed from the relative abundances of the 50 most abundant intestinal bacterial
taxa in samples collected from the 113 preterm infants enrolled in the study. The ASVs were normalized
using the total sum to calculate their relative abundances. Ward linkage clustering was used to cluster sam-
ples based on their Jensen-Shannon distance calculated using the vegan package in R (102). The number of
clusters was validated using gap statistics implemented in the cluster package in R (103) by calculating the
goodness-of-clustering measure. The raxml package (v8.0.0) (104) was used to construct the phylogeny, and
the Phyloseq R package (v1.38.0) (105) was used to display the phylogeny and the bar plot. A volatility plot
was used to demonstrate the fluctuation of microbial community diversity (characterized by the Shannon di-
versity index) over the MOM feeding volume in the high- or low-IP groups. The plot was generated in QIIME
(October 2019 version) (106) (option-longitudinal plot-feature-volatility).

Statistical analysis of the intestinal microbial community. The Hilbert-Schmidt independence cri-
terion (HSIC) R package dHSIC (107) was used to examine the independence between any variables and
IP. Longitudinal modeling was performed using zero-inflated negative binomial random-effects (ZINBRE)
models. These models account for the possibility of the existence of more than the expected zeros (from
the negative binomial distribution) as well for correlations between samples from the same subject.
Although IP was categorized into high and low groups, it is inherently continuous, and hence, we mod-
eled IP as a continuous value in our analyses. Subject was included as a random factor. Read count data
of phylotypes detected in at least 15% of the samples were modeled using ZINBRE models. The same
principle was applied to MOM and PMA. The model was fitted using the JAGS R package (108), and
10,000 iterations with the same number of burn-in iterations were used. The convergence of the model
was assessed using Gelman and Rubin’s potential scale reduction factor (109) and visual inspection of
each coefficient’s Markov chains. The means of the posterior distributions of the estimated coefficients
and their corresponding 95% credible intervals were calculated using the model’s Markov chains. The
credible intervals without overlap are considered significant. P values were computed by assuming the
normality of the posterior distributions of the corresponding coefficients. An adaptive spline logistic
regression model implemented in the spmrf R package (110) was used independently to confirm the
association of B. breve with IP and MOM. This model is a locally adaptive nonparametric fitting method
that operates within a Bayesian framework, which uses shrinkage-prior Markov random fields to induce
sparsity and provides a combination of local adaptation and global control (110). The Bayesian good-
ness-of-fit P value implemented in the R package rstan (111) was used to assess the significance of the
association. The R code implementation of the model has been deposited at https://github.com/
igsbma/IP_microbiome/tree/main/statistical_analyses. Discriminatory machine learning scheme compu-
tations were implemented in weka (112, 113), including J48 decision tree, REPTree, decision stump, and
logistic model trees. The functional enrichment test was performed for each functional group (based on
Clusters of Orthologous Groups [COG] and Pfam annotations) and each of the homologous gene clusters
(HGCs) generated in genome comparison analyses. Frequency tables of each function or HGC in each
category (i.e., metagenome-assembled genomes [MAGs] from this study versus the GenBank genomes)
were generated, which were used to fit a generalized linear model with the logit linkage function to
compute an enrichment score and P value for each unit (114). False detection rate correction for P values
was used to account for multiple tests using the R package qvalue (115).

Intestinal microbiome analyses.Metagenomic sequence data were preprocessed using the follow-
ing steps: (i) human sequence reads and rRNA large-subunit (LSU)/small-subunit (SSU) reads were
removed using BMTagger v3.101 (116) using a standard human genome reference (GRCh37.p5) (117);
(ii) rRNA sequence reads were removed in silico by aligning all reads using Bowtie v1 (118) to the SILVA
PARC ribosomal-subunit sequence database (94), and sequence read pairs were removed even if only
one of the reads matched the human genome reference or rRNA; (iii) the Illumina adaptor was trimmed
using Trimmomatic (119); (iv) sequence reads with an average quality greater than Q15 over a sliding
window of 4 bp were trimmed before the window, assessed for length, and removed if they were ,75%
of the original length; and (v) no ambiguous base pairs were allowed. The taxonomic composition of the
microbiomes was established using MetaPhlAn version 2 (120). The MAG pipeline includes de Bruijn ge-
nome assembly using SPAdes v.3.10.1 (121), and the bins were defined through distance clustering based
on coverage and tetranucleotide signature using MetaBat v2 (122) and refined using GTDB-Tk (89).
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Genomes were annotated using PROKKA v1.13 (90), annotated through evidence from the nomenclature of
the Consortium for Function Glycomics, eggNOG (v4.5) (123), KEGG (18 March 2013 release) (124), Pfam
(v30.0) (125), and CAZy (2014 release) (126, 127). Similarity searches were performed for comparison with
previously annotated enzymes or transporter proteins based on the accession numbers (36–38) using
BLASTP and confirmed with COG, Pfam, and CAZy annotation evidence to ensure the integrity of the results.
The 8 essential extracellular enzymes that are known to be required for the extracellular cleavage of HMOs
before importing selected products of degradation were investigated (36–38), including 1,2-a-L-fucosidase
(AfcA), 1,3/4-a-L-fucosidase (AfcB), 2,3/6-a-sialidase (SiaBb2), lacto-N-biosidase (LnbB and LnbX), the chaper-
one for LnbX (LnbY), b-1,4-galactosidase (BbgIII), and b-N-acetylglucosaminidase (BbhI). Five essential bac-
terial ABC transporters and homologs involved in the import of oligosaccharides were examined, which are
known to show an exquisite specificity conferred by substrate binding protein (SBPs) for different HMO
molecules (39), including the GNB/LNB (galacto-N-biose/lacto-N-biose I) transporter SBP (GltA), the FL trans-
porter SBPs (FL1-BP and FL2-BP), and the LNnT transporter SBP (NahS). In addition to similarity searches on
Bifidobacterium genomes and MAGs, we also confirmed the results by searching the metagenomic commu-
nity gene content to verify that the target genes are not from species other than Bifidobacterium.

Metapangenomes were prepared using the MAGs constructed in this study and publicly available
genomes under the species names B. breve (taxID 1685) and B. longum (taxID 216816) (https://doi.org/10
.6084/m9.figshare.19709917). The metapangenome was constructed using anvi’o version 6.2 (128)
according to the pangenome workflow (114). HGCs were identified in this set of genomes based on all-
versus-all sequence similarity. Briefly, this workflow uses BLASTP to compute the average nucleotide
identity (ANI) between all pairs of genes, uses the Markov cluster algorithm (MCL) (129) to generate ho-
mologous gene clusters, and aligns amino acid sequences using MUSCLE (130) for each gene cluster.
Each gene was assigned as core or accessory according to the hierarchical clustering of the gene clus-
ters. Sourmash version 3.3 (131) was used to compute ANIs across genomes. To count a gene as being
present in the sample, it had to be of at least 50 reads mapping to at least one Bifidobacterium species
genome, and the total abundance had to be at least 0.1% after normalizing over the total number of
reads. For long-read data sequenced on the Pacific Biosciences Sequel II platform, quality control (QC)
and assembly were performed using Canu-1.8 (86). The assemblies were assigned species names
through BLAST to the RefSeq data set and confirmed with GTDB-Tk v1.1.0 (89). Genomes of the assem-
blies assigned to B. breve were aligned to reference B. breve genome JCM1192 using MAUVE aligner
(132, 133).

Code availability. The R code for processing these sequences and the SAS code used in this statistical
analysis have been deposited at https://github.com/igsbma/IP_microbiome/tree/main/statistical_analyses.
Detailed information on sequences and annotation of the pangenome can be retrieved at https://github
.com/igsbma/IP_microbiome/tree/main/pangenome.

Data availability. All metagenomic, metataxonomic, and genomic data were deposited in the NCBI
database under BioProject accession number PRJNA774819 for open assessment. Illumina 16S rRNA V3-V4
gene amplicon and Pacific Biosciences full-length 16S rRNA gene data were deposited in the Sequence
Read Archive under accession numbers SRX12805867 to SRX12806634. Data deposition includes samples of
positive and negative controls in each plate. Metagenomic data using the Pacific Biosciences platform were
deposited in the Sequence Read Archive under accession numbers SRR16598000 and SRR16598001.
Metagenomic data using the Illumina platform were deposited in BioProject under accession numbers
SRX12798907 to SRX12798933. The assembled genomes of B. breve were deposited in GenBank under
accession numbers JAJGBR000000000 and JAJGBS000000000.
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