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A B S T R A C T   

Since December 2019, coronavirus SARS-CoV-2 (COVID-19) has rapidly developed into a global epidemic, with 
millions of patients affected worldwide. As part of the diagnostic pathway, computed tomography (CT) scans are 
used to help patient management. However, parenchymal imaging findings in COVID-19 are non-specific and can 
be seen in other diseases. In this work, we propose to first segment lesions from CT images, and further, classify 
COVID-19 patients from healthy persons and common pneumonia patients. In detail, a novel Dynamic Fusion 
Segmentation Network (DFSN) that automatically segments infection-related pixels is first proposed. Within this 
network, low-level features are aggregated to high-level ones to effectively capture context characteristics of 
infection regions, and high-level features are dynamically fused to model multi-scale semantic information of 
lesions. Based on DFSN, Dynamic Transfer-learning Classification Network (DTCN) is proposed to distinguish 
COVID-19 patients. Within DTCN, a pre-trained DFSN is transferred and used as the backbone to extract pixel- 
level information. Then the pixel-level information is dynamically selected and used to make a diagnosis. In this 
way, the pre-trained DFSN is utilized through transfer learning, and clinical significance of segmentation results 
is comprehensively considered. Thus DTCN becomes more sensitive to typical signs of COVID-19. Extensive 
experiments are conducted to demonstrate effectiveness of the proposed DFSN and DTCN frameworks. The 
corresponding results indicate that these two models achieve state-of-the-art performance in terms of segmen-
tation and classification.   

1. Introduction 

The world is experiencing a global pandemic due to the outbreak of 
coronavirus 2019 (COVID-19). This outbreak is caused by severe acute 
respiratory syndrome coronavirus 2 (SARS-CoV-2). As reported by the 
Center for Systems Science and Engineering (to data June 26, 2020), 
there have been 9,586,769 confirmed cases and 488,824 deaths 
worldwide. Reverse-transcription polymerase chain reaction (RT-PCR) 
is the gold standard for diagnosis of COVID-19. However, RT-PCR is 
time-consuming and labour-intensive. Therefore, the radiological im-
aging techniques, particularly chest radiography (CXR) and computed 
tomography (CT), have emerged as an important complement to RT- 
PCR. 

Among the radiological imaging techniques, CT screening is widely 

researched due to its low energy consumption and anatomical infor-
mation of the lungs. In recent researches [1,2], it has been demonstrated 
that the parenchymal imaging findings of COVID-19 pneumonia on CT 
scans include multi-focal peripheral ground-glass opacity (GGO) and 
pulmonary consolidation, which respectively appear in the early and 
late stages of COVID-19. Therefore, automated evaluation of CT scans 
can be helpful in fighting against COVID-19. 

Many deep learning methods have been proposed and achieved 
excellent performance [3]. For example, Fan et al. [4] use a parallel 
partial decoder to aggregate high-level features, and propose a 
semi-supervised network to segment COVID-19 CT scans. In Ref. [5], a 
COVID-Net is proposed to diagnose COVID-19 patients from CXR. Zhang 
et al. [6] propose an anomaly detection model to analyse CXRs in 
COVID-19. Most existing research only focuses on segmenting lesions or 
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classifying CT images, and may be insufficient for assisting clinicians. 
This is because, clinicians first review CT images to identify any lesion 
and their location, and then make decisions of the likely diagnosis based 
on the location and morphology of lesions. This indicates that segmen-
tation and classification tasks are closely interrelated in clinical practice, 
and the segmentation task can provide necessary information for clas-
sification. Therefore, we propose a COVID-19 diagnosis methodology 
that employs both segmentation and classification tasks. However, as 
discussed in previous works, COVID-19 segmentation in CT scans is still 
a challenging task due to two issues: 1) Multi-scale context information 
is not fully utilized [7], 2) The high variance in texture, size and position 
of infections are challenging for segmentation, and inter-class variance 
of lesions are small [4]. On the other hand, the already challenging 
overlap in appearances between the different causes of pneumonia are 
always further complicated by limited image resolution [8]. 

To address the above issues, this work proposes the Dynamic Fusion 
Segmentation Network (DFSN) and Dynamic Transfer-learning Classi-
fication Network (DTCN), and Fig. 1 provides a rough view of proposed 
networks. On the one hand, segmentation-related issues are addressed 
by two modules in DFSN, namely the inter-stage and intra-stage fusion 
module. To address the first issue of utilizing context information, 
several inter-stage fusion modules are employed to combine low-level 
features with high-level ones, thus providing global information guid-
ance flow for generating segmentation results. In contrast to methods 
that use skip-connections to fuse features from symmetrical layers (i.e., 
from front or end of networks, layers have the same order) [7,9], the 
inter-stage fusion module takes features from unsymmetrical layers as 
inputs. It adopts convolution layers with large kernels to estimate such 
guidance. Besides, high-level features are dynamically fused by an 
intra-stage module to address issues of lesion characteristics (e.g., 
texture, size and position). This module first takes several pixel-wise 
convolution layers to estimate location-specific fusion weights, then 
uses these weights to fuse features related to different lesions. Based on 
DFSN, a transfer-learning-based network (i.e., DTCN) is then proposed to 
address the issue of distinguishing signs of diseases. Concretely, DTCN 
first utilizes a DFSN with transferred weights to extract pixel-level in-
formation, then adaptively selects this information according to clinical 
knowledge, and finally, generates image labels. In this way, paren-
chymal changes due to infection can be comprehensively estimated, and 
by considering their clinical meanings, accurate classifications can be 
easily achieved. 

The main contributions of this work can be summarized as follows:  

● We propose a novel Dynamic Fusion Segmentation Network (DFSN) 
for COVID-19 segmentation. Inside this network, inter-stage and 
intra-stage fusion modules are employed to fuse multi-scale context 
information and semantic information. To the best of our knowledge, 
this is the first work to consider differences of low-level and high- 
level features for designing fusion methodologies.  

● Based on DFSN, we further introduce a novel Dynamic Transfer- 
learning Classification Network (DTCN) for classifying COVID-19 
patients. Inside DTCN, a pre-trained DFSN is transferred as the 
backbone to extract pixel-level semantic information. Through sys-
tematic experiments, we also demonstrate the clinical significance of 
pixel-level information and their importance for COVID-19 diag-
nosis. According to our best knowledge, this is the first work to 
consider clinical significance of segmentation results for designing 
deep networks. 

● We evaluate the proposed methods through comprehensive experi-
ments. The results demonstrate that our methods achieve state-of- 
the-art performance in terms of segmentation and classification. 

2. Related work 

In this section, we briefly review several researches closely related to 
this work, including segmentation in CT, classification in CT and deep 
learning for COVID-19. 

2.1. Segmentation in CT 

Compared with RT-PCR, CT imaging is a more popular technique for 
the diagnosis and assessment of lung diseases [10,11]. As observed in 
Refs. [12,13], by segmenting organs and lesions from CT scans, doctors 
can quickly obtain information crucial for diagnosing lung diseases. 
Following this observation, many segmentation methods have been 
proposed and achieved significant performance. For example, in 
Ref. [14], the support vector machine (SVM) classifier is proposed to 
segment lung nodules from CT images. Shen et al. [15] present an 
automated lung segmentation system by taking the bidirectional chain 
code. Though this system achieves better performance than its coun-
terparts, it still suffers from similar visual appearances of nodules and 
other tissues. To address this issue, methods based on convolutional 

Fig. 1. The proposed DFSN is trained to generate semantic segmentation results accurately. In the proposed DTCN, DFSN is transferred as the backbone and fine- 
tuned in datasets with different distributions. 
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neural networks are widely studied. Wang et al. [16] introduce a central 
focused convolutional neural network to extract nodule-sensitive fea-
tures from both 2D and 3D CT images. Jin et al. [17] utilize generative 
adversarial network (GAN) with multi-mask reconstruction loss to 
improve the robustness of progressive holistically nested network 
(P–HNN). According to their experiments, additional data, synthesized 
by GAN, is beneficial to overall segmentation performance. Jiang et al. 
[18] add multiple residual streams of varying resolutions and propose 
two networks to segment lung tumours. For further capturing global and 
multi-scale context information, Feng et al. [7] combine two pyramid 
convolutional modules and propose the Context Pyramid Fusion 
Network (CPFNet). In this work, we utilize the above context informa-
tion further by employing two different feature fusion modules. Addi-
tionally, via comprehensive experiments, we demonstrate that, for an 
encoder-decoder network such as UNet and CPFNet, fusing features 
from the encoder is beneficial to locate infected regions, and fusing 
features from the decoder is beneficial to estimate pixel labels. 

2.2. Classification in CT 

Apart from segmenting organs and lesions on CT scans, computer- 
aided diagnosis (CAD) systems are also thought to be useful in effec-
tively classifying multi-category CT images. For example, Li et al. [19] 
design a 2D convolutional neural network (CNN) to distinguish CT im-
ages in three categories, i.e., COVID-19 pneumonia, community ac-
quired pneumonia (CAP) and non-pneumonia. Specifically, input CT 
slices are fed through a pre-trained ResNet50 [20] to extract features. 
Then these features are combined and fed through a fully connected 
layer. In Ref. [8], Kang et al. conduct the classification task with 
multi-view presentation learning, which are achieved by encoding in-
formation from different aspects of features. In contrast, Wang et al. [21] 
combine two 3D-ResNets [20] and use a prior-attention strategy to guide 
them to learn more discriminative representations for the 
pneumonia-type classification. In Ref. [22], a 3D segmentation model is 
first used to segment lesion locations. Then, all locations are separately 
classified, and the overall classification result is obtained by using the 
Noisy-or-Bayesian function. In this work, we conduct a three-category 
classification task by transfer learning, which is achieved by 
fine-tuning a pre-trained segmentation model (i.e., DFSN). In addition, 
through systematic experiments, we observe the clinical significance of 
segmentation results is vital for classifying on COVID-19 CT scans. 

2.3. Deep learning for COVID-19 

Deep learning methods have been widely employed in many CAD 

systems for COVID-19 [3]. Joseph et al. [23] categorize these methods 
into three classes: patient scale (e.g., medical imaging for diagnosis), 
molecular scale (e.g., protein structure prediction) and population-scale 
(e.g., epidemiology). In this Section, we briefly discuss patient-specific 
methods. In Ref. [24], a Spatial Transformer Network is proposed to 
predict disease severity in lung ultrasonography and localize patholog-
ical signatures. In Ref. [25], FC-DenseNet is first used to provide seg-
mentation results. Based on this result, different patches of a CXR are 
cropped and fed into different classification networks. Then, the final 
classification result is obtained by majority voting from the results of 
cropped patches. Wu et al. [26] propose a Joint Classification and Seg-
mentation (JCS) system to perform classification and segmentation of 
COVID-19 CT images. However, the JCS system performs the segmen-
tation diagnosis only if the classification results are COVID-19 pre-
dictions. In Ref. [27], the authors proposed an AI system to conduct both 
classification, segmentation, and quantitative measurement tasks. 
Within this system, input images are initially put through a segmenta-
tion network to obtain lung-lesion maps. Then, the maps are taken as the 
input of a classification network for generating image labels, which are 
finally incorporated with clinical metadata to make quantitative mea-
surements. Similar to Ref. [26], authors of [28] proposed a multi-task 
model, which contains parallel classification and segmentation 
branches and is supervised by a multi-task loss function. 

Besides, several network architectures and mechanisms are consid-
ered in developing COVID-19 diagnosis models. For example, given an 
input image, previous [9] takes an encoder and a recurrent decoder to 
provide pixel-level diagnosis, while ResNet [20] and DenseNet [29] both 
utilize residual blocks and skip connections to make image-level clas-
sification. However, because high-level features tend to lose details of 
the input image, the above methods are easy prone to failure on 
complicated imaging data. For solving this issue, mechanisms such as 
attention mechanisms [30], multi-view presentation learning [8] and 
semi-supervision [4] are employed into the above models. By contrast, 
in this work, we first explore characteristics of multi-level features, and 
propose separate fusion blocks for features in different levels. As a result, 
the proposed DFSN can segment CT images more accurately. In addition, 
DFSN is used to form the transfer learning, which aims at diagnosing CT 
images. During this process, medical knowledge of different lesions is 
utilized to form model architectures. 

3. Proposed method 

In this Section, we first introduce the proposed Dynamic Fusion 
Segmentation Network (DFSN). Then, we discuss the motivation of 
integrating transfer learning and feature selection within a joint 

Fig. 2. The overall architecture of the proposed DFSN.  
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framework, which we coin Dynamic Transfer-learning Classification 
Network (DTCN). 

3.1. Dynamic Fusion Segmentation Network 

The architecture of the proposed DFSN is shown in Fig. 2. A CT image 
is first stacked on a three-dimensional tensor for alleviating the rapid 
increase of channels. After that, the three-dimensional tensor is fed 
through a U-shape model to extract features with different channels and 
resolutions. The tensor is first fed to an encoder (the five blocks on the 
left) to extract context information. Then encoder-generated features are 
fed to a decoder (the five blocks on the right) to obtain semantic in-
formation. Inside the encoder and decoder, feature maps are processed 
by several max pooling and convolution layers. Despite their demon-
strated ability to estimate context information, this architecture blurs 
fine detail such as lesion boundaries, leading to poor segmentation 
performance [7]. Inspired by existing methods [4], features at different 
levels are fused to avoid this problem. In addition, by considering 
characteristics of multi-level features [31], two feature fusion modules 
are designed. For convenience, they are named as inter-stage and 
intra-stage fusion modules, and will be detailed in following subsections. 

3.1.1. Inter-stage fusion module 
As discussed in Ref. [31], the encoder can learn context information, 

including boundaries and category characteristics of objects. However, 
this information may be progressively weakened after going through 
deep layers. Besides, the simple skip-connection between the encoder 
and decoder is an indiscriminate combination, which always introduces 
irrelevant clutter [7]. Therefore, in this work, we propose the inter-stage 
fusion module to better use context information. 

Fig. 3 shows the proposed inter-stage fusion module, which has three 
different inputs, namely pooling indices from max-pooling layers, fea-
tures from the encoder and the decoder. For convenience, these three 
inputs are denoted as PI, Fe and Fd, respectively. Inside this module, the 
PI is used to magnify resolutions of Fd, which contains more semantic 
information than Fe [32]. After that, Fd is concatenated with Fe, thus 
integrating the context information extracted by the encoder and the 
semantic information estimated by the decoder. The three local fusion 
blocks comprising pixel-wise convolution, batch-normalization, and 

ReLU layers, provide semantic and contextual information into the 
decoder. The proposed module differs from Refs. [4,9,29] for the 
following reasons: 1) The fused features are different. To be specific, 
Ronneberger et al. [9] fuse the encoder and decoder features in a 
balanced manner (e.g., in Fig. 2, features generated by the left-upper 
block are combined to the right-upper block), while the proposed 
module fuses features transported by the purple arrows. 2) Their fusion 
methods are different. The method proposed in Ref. [9] directly adds 
different features, and the model proposed by Ref. [7] fuses features 
through diluted convolution layers with 3 × 3 kernel. In contrast, the 
proposed module only takes pixel-wise convolution layers, with a 1 × 1 
kernel.1 Comprehensive experiments are conducted and presented in 
Section 4.3.1, which demonstrate the effectiveness of the intra-stage 
fusion module. According to the results, it is demonstrated that 
pixel-wise convolution layers can effectively utilize context information. 

3.1.2. Intra-stage fusion module 
As we mentioned in the introduction, infection characteristics such 

as texture, size and position are highly variable. At the same time, the 
inter-class variance of lesions is small. However, semantic edge infor-
mation in high-level features help locate lesions and can provide useful 
constraints to guide label estimation for segmentation [4,33–35]. Thus, 
in this subsection, we propose an intra-stage fusion module to generate 
segmentation results dynamically.Four feature maps from the decoder 
are fused by the proposed intra-stage fusion module, whose architecture 
is shown in Fig. 4. As the resolutions and channels of these inputs are 
different from each other, they are first processed by feature normali-
zation blocks with different parameters. The feature normalization 
blocks contain a pixel-wise convolution layer, a batch-normalization 
layer and a transposed convolution layer. The former two layers aim 
at reducing feature channels and covariate shift [36], while the last one 
recovers feature resolutions. Then, for generating location-adaptive 
fusion weights, output features of the Feature Normalization-7 are 
further fed into the Adaptive Weight Learner proposed in Ref. [32]. 
Specifically, this learner is formed by three pairs of convolution, batch 

Fig. 3. The architecture of the proposed inter-stage fusion module has three inputs. It takes several pixel-wise convolution layers to fuse these inputs.  

1 For simplicity, batch normalization and ReLU layers of [7] and the proposed 
module are ignored. 

X. Zhang et al.                                                                                                                                                                                                                                   



Computers in Biology and Medicine 150 (2022) 106136

5

normalization and ReLU layers. A notable difference is that, in this work, 
the kernel size of these convolution layers is set to 5 × 5. This is because 
lesion contours are blurrier than boundaries in healthy tissues [7], and 
compared with pixel-wise convolution, convolution layers with big 
conceptive fields (e.g., big kernels) are more robust to the blurry con-
tours [37]. After that, output features of Adaptive Weight Learner and 
the bottom four feature normalization layers are deformed to two 4D 
tensors by different methods. Specifically, output features of the Adap-
tive Weight Learner are deformed according to channel numbers. In 
contrast, features of the Feature Normalization-5 are first concatenated 
with other features, then, these four concatenated features are further 
concatenated to obtain the 4D tensors (indicated by coloured rectangles 
in Fig. 4). Finally, these two 4D tensors are multiplied to generate seg-
mentation results (i.e., the right-bottom tensor). Overall, the intra-stage 
fusion module dynamically fuses features by the Adaptive Weight 
Learner, whose kernel sizes are different from Ref. [32]. To demonstrate 
the influence of this different configuration, several experiments are 
conducted in Section 4.3.1. 

3.2. Dynamic Transfer-learning classification network 

Fig. 5 provides an overview of the proposed Dynamic Transfer- 
learning Classification Network (DTCN), which takes a pre-trained se-
mantic segmentation network to conduct the image classification task. 
To be specific, inside DTCN, a pre-trained DFSN is taken as a backbone 
to extract pixel-level information (i.e., segmentation results presented by 
features). Then, these extracted features are adaptively selected ac-
cording to medical knowledge. Finally, an adaptive pooling layer re-
duces feature resolutions, and a fully connecting layer generates 
categories of the input image. The motivation to use DTCN comes from 
considering that, during diagnosis, clinicians first scout CT images, then 
locate lesions regions, and finally, make decisions according to regional 
appearances and contours of the detected regions. Thus, the goal of the 
first step is similar to the semantic segmentation task that predicts pixel- 
level categories, and the other steps aim at making decisions. In addi-
tion, it is easy to find that the above methodology can also be utilized for 
analyzing other medical images, which indicates that the proposed 
DTCN is efficient and heuristic for other tasks. Therefore, semantic 
segmentation methods can provide classification models with pixel-level 
information [22]. However, whether the semantic segmentation 
methods should be pre-trained and whether segmentation results are 
beneficial to classification remains unclear. In the following subsections, 
we discuss the above two questions by detailing the proposed DTCN. 

3.2.1. Joint segmentation and classification by transfer learning 
It is widely known that semantic segmentation aims at estimating 

categories of each pixel, and image classification aims at obtaining 
image-level categories. Therefore, these two tasks are closely related to 
one another, and their complementary relationship has been explored in 
medical image analysis. To be specific, Wu et al. [26] considered the 
results of semantic segmentation and classification tasks are jointly 
considered during diagnosis. Zhang et al. [27] first utilize a segmenta-
tion network to generate lung-lesion features, then provide prognosis 
analysis by considering the lung-lesion features and clinical metadata. 
However, it can be noted that method proposed in Ref. [27] requires not 
only numerous manually segmented images, but also need multi-modal 
data such as clinical metadata. However, achieving these two re-
quirements is difficult and time-consuming. In addition, as discussed in 
Refs. [38–40], fine-tuning pre-trained models in datasets with different 
distributions can improve the robustness and effectiveness of learned 
feature space. Therefore, a pre-trained segmentation network is needed 
to provide pixel-level information. 

3.2.2. Feature selection 
Fig. 5 shows that output features of DFSN form a 4D feature map. A 

simple method is to directly take this 4D feature map to make classifi-
cations. However, for a segmentation network (i.e., DFSN), values of 
each pixel represent probabilities of a specific class. According to 
channels with the highest probability, the category of a single pixel can 
be obtained. Therefore, it is easy to find that each channel contains in-
formation about a particular class, and not all channels are beneficial to 
diagnose CT images. For example, during the process of distinguishing 
COVID-19 CT scans, channels related to the background (e.g., tissues 
around the lung) are useless. In this work, DFSN is trained for seg-
menting pixels of four categories, including background, GGO, consol-
idation and pleural effusion. Therefore, in the 4D feature maps, the 
feature at the second channel relates to consolidation, which is char-
acterized by a homogeneous increase in lung parenchymal attenuation 
[41]. However, as indicated in Ref. [42], the most frequently observed 
features of COVID-19 pneumonia are bilateral involvement, peripheral 
distribution with GGO, rather than consolidation. Besides, perhaps 
consolidations are small, and their appearances are similar to adjacent 
structures, resulting in false-negative detection [4]. Due to the above 
two reasons, segmentation of consolidation is likely to be less useful for 
classifying COVID-19 images. For demonstrating this observation, 
comprehensive experiments are conducted and presented in Section 
4.3.2. 

Fig. 4. The architecture of the proposed intra-stage fusion module. Multi-level features from the decoder are taken as input and processed by different feature 
normalization blocks. After that, the output features of these block are dynamically fused. 
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4. Experiments 

4.1. Data and metrics 

4.1.1. Data for segmentation 
As discussed in Ref. [4], only the COVID-19 CT Segmentation data-

set, which consists of 100 axial CT images from different COVID-19 
patients, is publicly accessible. In this dataset, all images are collected 
by the Italian Society of Medical and Interventional Radiology.2 For 
identifying lung infections, all CT images are manually segmented by a 
radiologist, and all pixels are labeled by four categories, i.e., back-
ground, GGO, consolidation and pleural effusion. For comparing DFSN 
and other methods, all images are randomly split into two subsets. 
Table 1 summarizes these two subsets. As discussed in Ref. [4], though 
this is the first open-access dataset for lung infection segmentation, it 
still suffers from the limited size and low-resolution images. Therefore, 
we also conduct a 5-fold experiments to further compare DFSN and other 
methods. 

4.1.2. Data for classification 
For comparing DTCN and other methods, we obtain a three-category 

dataset by combing COVID-CT-Dataset [43] and the dataset proposed in 
Ref. [27]. This approach ensures there are no duplicated images in the 
classification and segmentation datasets. In total, this synthetic dataset 
contains 1136 images, which are labeled as non-COVID-19, COVID-19 
and common pneumonia. Images of common pneumonia are randomly 
extracted from the dataset described by Ref. [27], while images of other 
categories are taken from the COVID-CT-Dataset. As Table 2 presents, all 
images are split into train, validation and test subsets. 

4.1.3. Metrics 
In this work, the Intersection over Union (IoU), Dice coefficient 

(Dice), Precision (Pre) and Accuracy (Acc) are taken to evaluate per-
formance of the proposed DFSN. For the three-category classification 

task, the Accuracy (Acc), Precision (Pre) and Recall (Rec) are used to 
verify the classification ability of DTCN. 

4.2. Implementation details 

In this work, the proposed DFSN and DTCN are implemented on the 
PyTorch platform with NVIDIA Tesla K80 GPU. For training DFSN, the 
stochastic gradient descent (SGD) optimizer is used, in which mo-
mentum and learning rate are set to 0.9 and 0.001, respectively. During 
training, the batch size is fixed to 1, and the learning rate is decayed 
every 10 epochs. All training batches are randomly rotated for data 
augmentation. In addition, for alleviating the unbalanced segmentation 
problems, a weighted cross entry loss function is adopted, and these 
weights are 0.0013, 0.0261, 0.0501 and 1.000, respectively. On the 
other hand, the proposed DCTN is trained with the Adam optimizer [44] 
and an unweighted cross entry loss. In Adam, the first and second mo-
mentum values are fixed to 0.9 and 0.999, and the weight-decay is set to 
0.1. The learning rate is set to 0.00001, and is dynamically decayed 
according to validation loss. 

4.3. Model analysis 

4.3.1. Analysis of segmentation 
As discussed in Section 3.1, DFSN takes two modules to capture 

complementary relationships between multi-level features. Therefore, 
here we provide several baselines to demonstrate the effectiveness of the 
two fusion modules. Configurations of these baselines are shown in 
Table 3. Specially, as both SegNet [45] and the proposed DFSN take max 
pooling and un-pooling layers to change feature resolutions, we take 
SegNet as a baseline without the two proposed fusion modules, rather 
than the widely used UNet [9]. For the Addition-Fusion baseline, fea-
tures from the encoder are additionally fused by the inter-stage fusion 
module. 

Experimental results of these baselines are shown in Table 4. By 
comparing metrics of SegNet, Inter-Fusion, Intra-Fusion and Dual- 
Fusion, effectiveness of these two fusion modules is demonstrated. On 
the one hand, performance degradation of Addi-Fusion indicates that 
fusing multi-level features from the encoder is not beneficial for 
extracting context information. Similarly, the comparison result be-
tween Deeper-Fusion and Dual-Fusion indicates that taking deep mod-
ules to fuse multi-level features is ineffective. There are two reasons for 
this observation: 1) Deep fusion modules inevitably cause an increase in 
model parameters, which makes it hard to train with limited images; 2) 
Deep fusion modules can easily cause the gradient vanishing problem. 
On the other hand, features from different stages should be fused 
differently. That is, to capture multi-scale context information, pixel- 
wise convolutions are more effective than large-kernel convolutions. 
The latter, however, perform better at fusing semantic information. 

4.3.2. Analysis of classification 
Here we provide seven baselines to verify the performance of the 

transferred DFSN and feature selection layer. Table 5 provides a clear 
view of these seven baselines. Among them, maintained features of 
DFSN-Class124+ are additionally fused with the 2nd feature through a 
point-wise convolution layer. For the SegNet-Class, a pre-trained SegNet 

Fig. 5. The overall architecture of the proposed DTCN. The DTCN, with a CT scan as input, makes a classification using the transferred DFSN, feature selection layer, 
adaptive pooling layer, and the fully connected layer. 

Table 1 
Summary of the segmentation subsets.  

Subset Background GGO Consolidation Pleural Effusion 

Train 70 66 56 19 
Test 30 30 22 6 
Total 100 96 78 25  

Table 2 
Summary of the classification subsets.  

Subset Common Pneumonia Non COVID-19 COVID-19 

Train 200 234 191 
Validation 100 58 60 
Test 100 105 98 
Total 400 387 349  

2 https://www.sirm.org/category/senza-categoria/covid-19. 
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is taken as the backbone. 
Table 6 presents results of DTCN and the proposed baselines. By 

comparing results of w/o transfer and DTCN, it can be found that the 
pre-trained DFSN remarkably improves the overall performance. Results 
of SegNet-Class and DTCN also demonstrate the effectiveness of the 
transferred DFSN. The five baselines related to the feature selection 
layer indicate that features related to the consolidation are unhelpful to 
classification. In detail, comparing configurations of w/o selection, 
DFSN-Class123, DFSN-Class134, DFSN-Class234 and DTCN, it can be found 
GGO are the most important features, and features related to the pleural 
effusion are secondarily important. In addition, by comparing DFSN- 
Class124 + and DTCN, effectiveness of the proposed feature selection 
layer is further demonstrated. Overall, the above comparison results 
demonstrate that: 1) Using a pre-trained segmentation network as the 
backbone of classification models is a promising method, 2) Segmen-
tation results should be considered according to their clinical means. 

4.4. Comparisons with other methods 

4.4.1. Comparison of segmentation 
In this subsection, the proposed DFSN is compared with several 

segmentation networks. As Table 7 presents, the compared methods 
include classical networks, such as SegNet [45], DeepLab v2 [46] and 
DeepLab v3 [47]. Furthermore, five segmentation networks designed for 
medical images and their variants are also compared. Inside UNet [9], 
an encoder-decoder architecture is taken to learn semantic information, 
and skip-connections are taken to fuse features from the encoder and 
decoder. Based on UNet, the Attention UNet [30] and R2UNet [48] are 
obtained by employing attention mechanisms and residual blocks. By 
combining these two models, the Attention R2UNet,3 which has shown 

Table 4 
Results of segmentation baselines. The best and second-best results are respec-
tively denoted by red and blue colors.  

Baselines IoU Dice Pre Acc 

SegNet 0.74 0.50 0.46 0.87 
Inter-Fusion 0.78 0.49 0.46 0.87 
Intra-Fusion 0.76 0.52 0.46 0.90 
Dual-Fusion 0.79 0.51 0.47 0.90 
Addi-Fusion 0.79 0.46 0.42 0.83 
Deeper-Fusion 0.77 0.51 0.46 0.90 
Dual-Fusion-3 0.77 0.47 0.44 0.84 
Dual-Fusion-5 0.78 0.53 0.49 0.92 
Dual-Fusion-7 0.77 0.49 0.46 0.84 
Dual-Fusion-5+ 0.79 0.46 0.43 0.83 
DFSN 0.80 0.53 0.49 0.90  

Table 5 
Configurations of classification baselines.  

Baselines Transfer 
Learning 

1st 
Feature 

2nd 
Feature 

3rd 
Feature 

4th 
Feature 

w/o transfer – ✓ ✓ – ✓ 
SegNet-Class SegNet ✓ ✓ – ✓ 
w/o 

selection 
DFSN ✓ ✓ ✓ ✓ 

DFSN- 
Class123 

DFSN ✓ ✓ ✓ – 

DFSN- 
Class134 

DFSN ✓ – ✓ ✓ 

DFSN- 
Class234 

DFSN – ✓ ✓ ✓ 

DFSN- 
Class124+

DFSN ✓ ✓ – ✓ 

DTCN DFSN ✓ ✓ – ✓  

Table 7 
Results of compared segmentation methods. The best and second-best results are 
respectively denoted by red and blue colors.  

Methods IoU Dice Pre Acc 

SegNet [45] 0.74 0.50 0.46 0.87 
UNet [9] 0.47 0.52 0.61 0.96 
DeepLab v2 [46] 0.59 0.42 0.39 0.85 
DeepLab v3 [47] 0.68 0.40 0.37 0.76 
Attention UNet [30] 0.75 0.49 0.43 0.89 
R2UNet [48] 0.31 0.24 0.25 0.83 
Attention R2UNet a 0.47 0.34 0.33 0.79 
InfNet-ResNet [4] 0.72 0.45 0.40 0.87 
InfNet-VggNet [4] 0.76 0.38 0.35 0.87 
Triage [28] 0.75 0.47 0.44 0.85 
CopleNet [49] 0.74 0.50 0.48 0.88 
DFSN 0.80 0.53 0.49 0.90  

a https://github.com/FENGShuanglang/Image_Segmentation. 

Table 3 
Configurations of segmentation baselines. For the Addition-Fusion baseline, features from encoder are additionally fused by the inter-stage fusion module.  

Baselines Inter-Stage Fusion Inter-Stage Fusion Depth KernelsInter KernelsIntra 

SegNet [45] – – – – – 
Inter-Fusion ✓ – 3 1-1-1 – 
Intra-Fusion – ✓ 3 – 1-1-1 
Dual-Fusion ✓ ✓ 3 1-1-1 1-1-1 
Addi-Fusion ✓ ✓* 3 1-1-1 1-1-1 
Deeper-Fusion ✓ ✓ 6 1-1-1-1-1-1 1-1-1-1-1-1 
Dual-Fusion-3 ✓ ✓ 3 1-3-1 1-3-1 
Dual-Fusion-5 ✓ ✓ 3 1-5-1 1-5-1 
Dual-Fusion-7 ✓ ✓ 3 1-7-1 1-7-1 
Dual-Fusion-5+ ✓ ✓ 3 5-5-5 1-1-1 
DFSN ✓ ✓ 3 1-1-1 5-5-5  

Table 6 
Results of classification baselines. In the Pre and Rec columns, values in the three 
sub-columns are metrics related to certain categories (from left to right, non- 
COVID-19, COVID-19 and common pneumonia). The best and second best re-
sults are respectively denoted by red and blue colors.  

Baselines Acc Pre Rec 

w/o transfer 0.64 0.55 0.00 0.75 0.90 0.00 0.98 
SegNet-Class 0.40 0.63 0.31 0.00 0.49 0.70 0.00 
w/o selection 0.74 0.70 0.66 0.82 0.69 0.53 0.99 
DFSN-Class123 0.65 0.56 0.00 0.78 0.93 0.00 1.00 
DFSN-Class134 0.47 0.37 0.71 0.00 0.78 0.60 0.00 
DFSN-Class234 0.56 0.00 0.67 0.51 0.00 0.72 1.00 
DFSN-Class124+ 0.70 0.62 0.75 0.78 0.88 0.21 0.98 
DTCN 0.77 0.73 0.76 0.82 0.76 0.57 0.98  

3 https://github.com/FENGShuanglang/Image_Segmentation. 
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better segmentation performance, is obtained. For InfNet-ResNet and 
InfNet-VggNet, they are variants of InfNet [4]. As most methods in our 
comparison are trained with different datasets, all compared methods 
and DFSN are trained under the same protocol for a fair comparison. 

Comparison results are shown in Table 7, Table 8 and Fig. 6. As can 
be seen from Table 7, the proposed DFSN achieves the best performance 
in terms of IoU and Dice. For other metrics (i.e., Pre and Acc), DFSN also 
achieves state-of-the-art performance. In detail, compared with methods 
based on UNet, such as Attention UNet, R2UNet and Attention R2UNet, 
DFSN outperforms them by about 6%. This demonstrates that the pro-
posed fusion modules are more effective than attention mechanisms 
used in Refs. [30,48]. Further, by comparing SegNet and DFSN, it can be 
found that context information is beneficial to segmentation, and 
effectively utilizing such information can remarkably improve seg-
mentation performance. As Table 8 shows, during the 5-fold experiment, 
the proposed DFSN has the minimum standard deviation, which in-
dicates that DFSN are more robust than these compare methods. On the 

other hand, compared with recent methods such as Triage [28], JCS 
[26], and CopleNet [49], DFSN not only outperforms them in terms of 
values of most metrics, but also the standard deviation. The above 
comparison results demonstrate that DFSN achieves comparable per-
formance and better stability than recent works. Fig. 6 further demon-
strates the effectiveness of DFSN. It can be found that, compared with 
other methods, the results of DFSN are more similar to the ground truth. 
However, this figure also indicates that all methods wrongly classify 
background into consolidation or pleural effusion. There are two reasons 
for this phenomenon: 1) The adopted segmentation dataset is highly 
unbalanced (see Table 1), 2) Most of the CT images contain not only a 
large number of dark regions (e.g., the corners of the bottom image), but 
also a broad and complex variation of tissues (e.g., corners of the upper 
image). 

Table 8 
The 5-fold results of compared segmentation methods. The best and second-best 
results are respectively denoted by red and blue colors. Each metric is shown 
together with the standard deviation.  

Methods IoU Dice Pre Acc 

SegNet [45] 0.67 ± 0.13 0.47 ± 0.08 0.43 ± 0.07 0.86 ± 0.04 
UNet [9] 0.71 ± 0.07 0.51 ± 0.03 0.50 ± 0.06 0.90 ± 0.05 
DeepLab v2 [46] 0.60 ± 0.08 0.37 ± 0.10 0.36 ± 0.06 0.72 ± 0.16 
DeepLab v3 [47] 0.68 ± 0.06 0.50 ± 0.04 0.45 ± 0.04 0.88 ± 0.04 
Attention UNet [30] 0.75 ± 0.03 0.51 ± 0.06 0.47 ± 0.06 0.88 ± 0.04 
R2UNet [48] 0.47 ± 0.11 0.32 ± 0.06 0.36 ± 0.07 0.80 ± 0.08 
InfNet-ResNet [4] 0.68 ± 0.09 0.47 ± 0.06 0.42 ± 0.05 0.86 ± 0.03 
InfNet-VggNet [4] 0.70 ± 0.03 0.51 ± 0.06 0.48 ± 0.07 0.88 ± 0.03 
Triage [28] 0.63 ± 0.06 0.50 ± 0.04 0.50 ± 0.04 0.91 ± 0.02 
JCS [26] 0.41 ± 0.06 0.35 ± 0.08 0.36 ± 0.08 0.88 ± 0.04 
CopleNet [49] 0.64 ± 0.06 0.47 ± 0.05 0.46 ± 0.05 0.86 ± 0.08 
DFSN 0.73 ± 0.01 0.52 ± 0.03 0.48 ± 0.02 0.88 ± 0.02  

Fig. 6. Qualitative results of compared segmentation methods and the proposed DFSN. The red, green and blue pixels indicate GGO, consolidation and pleural 
effusion, respectively. Best viewed in color. 

Table 9 
Results of compared classification methods. In the Pre and Rec columns, values 
in the three sub-columns are metrics related to certain categories (from left to 
right, non-COVID-19, COVID-19 and common pneumonia). The best and second- 
best results are respectively denoted by red and blue colors.  

Methods Acc Pre Rec 

EfficientNet [50] 0.65 0.71 0.51 0.80 0.19 0.79 0.99 
DenseNet [29] 0.72 0.64 0.65 0.82 0.65 0.52 0.98 
Inception-v3 [51] 0.37 0.41 0.34 0.40 0.27 0.53 0.33 
ResNext-50 [52] 0.76 0.72 0.73 0.81 0.74 0.57 0.96 
DarkCovidNet [53] 0.67 0.59 0.57 0.79 0.66 0.36 1.00 
Jin et al. [54] 0.72 0.66 0.63 0.83 0.72 0.43 1.00 
AdderNet [55] 0.52 0.52 0.45 0.58 0.43 0.40 0.75 
GhostNet [56] 0.59 0.49 0.47 0.77 0.16 0.68 0.96 
Res2Net [57] 0.65 0.58 0.51 0.81 0.56 0.42 0.98 
Res2Next [57] 0.70 0.63 0.64 0.79 0.63 0.49 0.97 
COVNet [19] 0.76 0.73 0.69 0.82 0.71 0.55 1.00 
DTCN 0.77 0.73 0.76 0.82 0.76 0.57 0.98  
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4.4.2. Comparison of classification 
For demonstrating the performance of the proposed DTCN, six clas-

sification models are compared. Table 9 provides quantitative results of 
the six compared models and DTCN. Among these compared models, 
COVNet [19] and DarkCovidNet [53] are recently published methods for 
classifying COVID-19 images. For DenseNet [29] and ResNext-50 [52], 
the classification result is generated by using stacked convolution layers 
and skip-connections, which are widely used in both medical image 
analysis and traditional image classification. Other methods, e.g., Effi-
cientNet [50], rely on efficient network design, such as multiple 
branches and convolution layers with different kernel sizes. 

As Table 9 indicates, the proposed DTCN achieves the best perfor-
mance in terms of Acc, Pre and Rec. Concretely, DTCN outperforms 
COVNet and DarkCovidNet by 0.01 and 0.1 in term of Acc. For classi-
fying images of the first and second categories, the performance of DTCN 
indicates that pixel-level information aids the classification of Non- 
COVID-19 and COVID-19 CT scans. Thus DTCN can effectively locate 
lesions (e.g., GGO and pleural effusion) and make more accurate clas-
sifications than its counterparts. Besides, during the detection of COVID- 
19 CT scans, the Rec of DTCN is worse than EfficientNet. This indicates 
that DTCN makes more false-negative classifications than EfficientNet. 
By analyzing classification baselines of DTCN, DTCN and EfficientNet, 
the reasons can be attributed to that segmentation results related to the 
background frequently introduce irrelevant information. In addition, by 
comparing DTCN with recent models, it can be found that DTCN out-
performs most of them. Specifically, compared with novel models such 
as AdderNet [55], GhostNet [56], and Res2Net [57], it can be seen that 
owing to the transfer learning and the feature selection, DTCN can 
achieve better performance with limited parameters and simple archi-
tectures. It can also be found that DTCN achieves comparable perfor-
mance of recent works proposed for medical image analysis, e.g., Jin el 
al. [54] and COVNet [19]. Compared with [54], the proposed DTCN is 
mildly worse in term of Rec. However, by observing the middle column 
of Pre and Rec, it is demonstrated that DTCN can distinguish COVID-19 
images more accurately than [54]. For the other work COVNet [19], 
DTCN also achieves better performance in terms of Acc and Pre. On the 
Rec metric, though DTCN does not outperform COVNet in classifying 
images of common pneumonia, it still achieves better performance in 
classifying images of non-COVID-19 and COVID-19. 

5. Conclusion 

In this work, we propose a novel Dynamic Fusion Segmentation 
Network, which adopts two fusion modules to improve the identification 
of lesion regions. Moreover, we also design a transfer-learning-based 
network (i.e., Dynamic Transfer-learning Classification Network) to 
distinguish COVID-19 CT images from Non-COVID and common pneu-
monia scans. This network employs a pre-trained segmentation network 
to extract pixel-level information (i.e., segmentation results), which 
makes classifications according to selected pixel-level information. For 
demonstrating effectiveness of DFSN and DTCN, extensive experiments 
are conducted on benchmark segmentation dataset and a three-class 
classification dataset. Experimental results demonstrate that the pro-
posed models achieve not only state-of-the-art performance, but also 
have great potential in the clinical assessment of patients with suspected 
COVID-19. 
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