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Large-scale models of neuronal structures are needed to explore emergent properties of mammalian brains. Because these models
have trillions of synapses, a major problem in their creation is synapse placement. Here we present a novel method for exploiting
consistent fiber orientation in a neural tissue to perform a highly efficient modified plane-sweep algorithm, which identifies all
regions of 3D overlaps between dendritic and axonal projection fields. The first step in placing synapses in physiological models
is neurite-overlap detection, at large scales a computationally intensive task. We have developed an efficient “Staggered Walk”
algorithm that can find all 3D overlaps of neurites where trillions of synapses connect billions of neurons.

1. Introduction

Simulating brain structures with large-scale neuronal models
lets researchers precisely manipulate features of simulated
neural tissues and observe both local and global properties
of neural systems. During the last decade, large-scale brain
modeling has risen in prominence, with a wide range of
publications on brain-scale models [1–3].

Most large-scale modeling research groups focus either
on networks that are highly realistic down to the individual
axon collaterals and dendrite branches of each neuron [4]
or on systems simplified enough to simulate in near real-
time on massively parallel hardware [1, 2]. Rather than
emphasizing details or simulation speed, our group is
more interested in a balanced approach that capitalizes on
general structural connectivity and data acquired through
multiunit electrode experiments, diffusion tensor imaging,
and connectomics studies with stacked slices of brain tissues
stained for scanning [4–6]. To develop and test our model-
creation code, we have derived parameters for cerebellar
models from the detailed connection and density data for the
cerebellar cortex in the compendium by Eccles et al. [7].

Large-scale neuronal models range in accuracy from sim-
ple, randomly probabilistic networks [8, 9] to realistic

neuronal mappings [4]. The level of detail we need for our
models is roughly at the tissue level [10], where probabilities
of connectivity between distinct volumes of neural tissue
and specified neuronal groups can be derived well enough
to create alternative models for comparison. The resulting
parameters allow for the generation of microcircuitry for
particular areas of the brain. The microcircuits can be
repeated, with small changes, up to millions of times in some
brain regions [10, 11].

A critical and complex part of large-scale neuronal mod-
eling is the creation, or initialization, of the myriad of specific
details within the model. Even though many modeling
studies focus on analyzing and improving simulation run
times, the setup and initialization of models with trillions
of details can be time intensive and represent significant
computational challenges when connectivity patterns are
complex [12]. Designing and implementing fast algorithms
for model initialization can increase the speed of simulations
and make the creation of scalable models more straightfor-
ward [12, 13].

Synapse placement is of great concern in large-scale
models, since synaptic connection patterns control the flow
of excitation and inhibition through a neuronal network.
A typical approach to initialize synapse placement is to
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prespecify a few pools of interconnected neurons and define
the likelihood that any two neurons in a given pool are con-
nected by a synapse [8].

Rather than specifying neuronal pools, our approach
draws from both statistical connectivity and spatial location
mappings. Instead of defining neuronal pools without any
sense of spatial geometry, we place neurons in a three-
dimensional (3D) Cartesian (XYZ) space. Each neuron has
axonal and dendritic synaptic regions at preset positions
relative to its soma. We let each neuron form connections
with other neurons within 3D overlap volumes of their
synaptic regions. In this way, synapse locations are based on
the spatial proximity of axons and dendrites by a method
which is more detailed than placing synapses between
randomly selected neurons, but less detailed than finding
them where axonal and dendritic arborizations touch [4].

The most critical step for our approach is determining
axonal-dendritic intersections once all volumes of poten-
tial connectivity have been specified by placement of all
neuron instances. The task requires walking through three-
dimensional space and determining where synaptic volumes
overlap. For neuronal simulations involving many millions
of neurons, finding overlapping volumes poses a significant
computational challenge.

To perform neurite-overlap detection efficiently, we have
developed a practical algorithm that performs a walk
through axonal and dendritic volumes. There are two vari-
ants of the algorithm: one “Staggered Walk” (SW) that per-
forms the walk blindly in one predetermined dimension
(e.g., X) and the other “Staggered Walk Dynamic” (SWD)
that uses a quick method to determine the optimal dimen-
sion for starting the staggered walk.

The algorithm is particularly useful in the rapid deter-
mination of connectivity between millions of neurons in
moderate-scale to large-scale models. Staggered walks pro-
vide an automated method to create verifiable simulation
models by reproducibly specifying details of neuron place-
ment and synaptic connectivity. Our algorithm scales well
and within hours permits the rapid creation, or replication,
of models containing trillions of synapses.

2. Methods and Models

Our method uses C++ programs crafted to give the same
results on many different computers. Models are specified by
textual descriptor files. Results of model creation are checked
by visualization programs that show neuronal soma locations
and synaptic connections.

2.1. Computers and Programming Languages. Our staggered
walk algorithm is implemented in C++ and uses the C++
Standard Template Library (STL) for data structures [14].
Our program compiles and runs on multiple computer plat-
forms. It has been tested on a Windows desktop and laptop,
a Mac laptop, and a Blue Gene supercomputer. All tests
resulted in identical synaptic connectivity regardless of com-
puter platform and degree of parallelism. At first, each C++
compiler generated different random number sequences
even from the same initial seed. To ensure cross-platform

uniformity of random numbers, we implemented a gener-
ator of random numbers based on Marsaglia’s method [15].
We also have coded a graphical visualization tool to view the
structures built by our algorithm. The visualizer is in C++
using the OpenGL graphics library [16].

2.2. Model Description Parameter Files. Our approach to
building brain models starts with the creation of detailed
parameter specifications. The program reads in a param-
eter text file that statistically describes the neuronal and
synaptic configuration of the brain tissues to be modeled.
Our program can be modified to accept input files in
other formats, such as neuronal description parameters in
NeuroML [17].

We have tested our algorithm with cerebellar models
based on statistical and morphological data collected from
the literature [7, 18, 19] for humans and other mammals.
Our initializer reads an input text file that describes the
neuronal and synaptic configurations for a structured neu-
ronal model. In Algorithm 1, we present an excerpt from a
parameter file that produces human cerebellar models.

The input parameter file contains a list of cell types, what
pairs of cell types can form synapses, the density of each
type of soma in the model space, the axonal and dendritic
process shapes and positions relative to the soma of each
instance of a cell type, plus statistical properties about
synapse concentrations and whether they are inhibitory or
excitatory. See the Appendix section for more details. The
distances of each synapse from its axonal and dendritic somas
combined with parameters specifying propagation speeds in
axons and speeds at different distances within dendritic trees
determine propagation delays (and attenuations) for action
potentials passing though each synapse. To lessen computer
memory needs and execution times, our present modeling
system does not consider branching details within dendritic
trees.

After parsing the input file, the program places all cell
instances in the 3D space. The axonal and dendritic regions,
where all synapses are located, are approximated as axis-
aligned bounding boxes (AABBs), as seen in Figure 1. All
instances of neurons of the same type have their synaptic
region boxes in the same positions relative to the soma or
center of the cell.

2.3. Visualized Examples from Cerebellar Model. Figure 1
illustrates instances of three different cell types with overlap-
ping axonal and dendritic regions. We depict only four cells
that have several overlapping regions based on their relative
positions. Billions of tiny granule cells are densely packed
into the lower third of the cerebellar cortex. We show just
two oversized granule cells; they would be indistinguishable
dots if drawn at full density and size relative to the Purkinje
and Golgi cells. All pairwise overlaps of axonal (blue) and
dendritic (green) regions may contain synapses if permitted
by the synapse density specifications for their cell types and
by the volume of the overlap between the two regions. Some
overlapped regions may have no synapses, especially if the
overlap volume is small; other overlaps may generate many
synapses, if so defined statistically by model parameters.
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Human Cerebellar Parameters

$PARAMS
NCELLT = 12,
MSIMYMX = 6000, MSIMXMX = 2800,
$END

P N G B A S T I C M R D

P IS FOR PURKINJE CELLS
$CELL
MCY = 50, MCX = 75,
MAYY = 2, MAXX = 2, MAZZ = 2, MAZO = −10000
DN = 2, MDY = 10,2, MDX = 240,2, MDZ = 320,2, MDZO = 160, −5,
...
SYNDA = 0,0,0,0,0,0,0,0,0,0,0,1000,
$END

N IS FOR GRANULE CELLS
$CELL
MCY = 5, MCX = 5, MCZLVL = −20, MCZ = −20, CZLN = 16,
TCZP = 750,750,750,750,750,750,750,750,750,750,750,750,750,750,750,750,
MAYY = 6000, MAXX = 2, MAZZ = 2, MAZO = +0330,
MDY = 10, MDX = 10, MDZ = 20,
...
SYNDA = 1000,0,250,750,750,750,750,750,0,0,0,0,
$END

Algorithm 1: Excerpt from a parameter file for a human cerebellum model (defining only the first two cell types).

Purkinje cell Granule cells Golgi cell

Figure 1: Illustration of four cerebellar neurons and their synaptic
regions.

Axonal and dendritic AABBs can be broken into several
smaller regions to model cell synaptic positions more
accurately. In a test of a cerebellar model that contained
65 million synapses, we halved each dendritic region along
X, Y, Z to produce an octet of eighth-sized regions that
together exactly filled the same volume. We did not alter any
axonal regions but did adjust synapse density parameters to
produce the same number of synapses within 0.03%. The
octet version of the model needed a total of 6.4 times more
1D-overlap comparisons but the total run time was only 1.23
times longer.

We use our visualization code to inspect and analyze
models created with the SWD algorithm. Figure 2 shows an

Figure 2: Computer-generated image of Purkinje, Golgi, and
granule cell axonal (blue) and dendritic (green) synaptic regions.

image that represents a tiny section of a cerebellar model
our application created when configured to generate the
model shown in Figure 1. The two horizontal lines at the
top of the image are the two parallel fiber axons from the
two granule cells. Each of these long axonal fibers passes
through many hundreds of dendritic regions in a human
brain. In the sample model of four neurons, the overlapped
regions were identified, and fifteen synapses were placed in
accordance with the statistical parameters provided in the
input configuration file.
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3. Algorithms

In this section we define the problem of neurite overlap
detection, discuss the limitations of previously published
search methods, and explain our staggered walk methods in
detail.

3.1. Problem Definition. The task of finding volume overlaps
in a three-dimensional space of billions of axonal and den-
dritic volumes can be expressed by the following generalized
problem definition:

(i) There are billions of densely packed rectilinear boxes.

(a) Sides form axis-aligned bounding boxes
(AABBs)

(b) Box sides are axis-aligned in three dimensions:
X , Y , and Z

(c) Boxes vary drastically in sizes and shapes.

(ii) There are two classes of boxes: axonal (blue) and
dendritic (green)

(iii) Boxes can be colinearly located; faces may end at the
same X , Y , or Z coordinates.

(iv) Boxes can be enclosed within other boxes.

The goal is to identify all axonal and dendritic intersec-
tions and compute overlapping pairwise (axonal-dendritic)
regions in 3D space.

3.2. Similar Known Algorithms. The most straightforward
way to determine all pairs is to compare all axons to all
dendrites. The obvious first optimization is to look for
overlaps between neuronal synaptic regions only for cell
type pairs that can form synapses. We refer to this pairwise
constrained full comparison as the Naı̈ve Algorithm. For
each type-pair allowed to form synapses, the locations of all
axonal boxes versus all dendritic boxes need to be compared
to find all XYZ spatial overlaps that may contain synapses.
The pairwise Naı̈ve Algorithm has a cost of O(AD), where
A is the number of axonal regions and D is the number
of dendritic regions for the pair of cell types. When A ≈
D, the cost is O(n2), where O( ) “order of” refers to the
computational complexity and n is the total number of
each class of region, axonal and dendritic. The complexity
estimates how run time will grow as the size of a model
increases.

From computer science, we have many traditional one-
dimensional sweep line algorithms, such as Shamos and
Hoey [20] or Bentley and Ottmann [21]. Both are imprac-
tical for our neurite-overlap detection problem, because our
models may contain many densely packed overlapping 3D
regions that can have colinearly located edges or can be
completely nested within one another. Furthermore, our goal
is not just to find all box intersections but axonal-dendritic
pairs of 3D region overlaps.

Kozloski et al. [3, 13] have devised a “touch detection”
algorithm that takes a highly distributed approach to address
the problem of neurite-overlap detection. In comparing

their methods to ours, we will use the terms “overlap,”
“3D-overlap,” and “1D-overlap.” Plain “overlap” and “3D-
overlap” are equivalent; each results in an overlapping vol-
ume, or “touch.” The terms “touch” and “synapse” are
roughly equivalent measures of model complexity. Our cere-
bellar models have an overall average of four synapses placed
for every five touches.

Kozloski’s touch-detection algorithm has a similar goal
to ours of locating synapses, but it targets models with much
greater morphological detail and spatial precision than ours
[3, 13]. Kozloski’s models involve complex morphological
neurons containing thousands of precisely placed small
segments. Our SWD algorithm has been applied to simpler
models of neurons, each described by a few dozen parameters
and containing only two or three neuritic fields around each
soma. Because of the higher level of detail, Kozloski et al.
have created moderate-sized models that contain up to a
million neurons [3]. On 4096 nodes of a Blue Gene/P, they
have achieved touch detection rates of 10 billion touches
per hour [3]. Our SWD algorithm has placed all synapses
in a cerebellar model with 4.2 billion neurons and 3.3
trillion synaptic touches in 4.1 hours on 4096 nodes of
a Blue Gene/L. With one-fourth the Blue Gene memory
and processing power, SWD has already reached a touch
detection rate of 680 billion touches per hour.

An important part of the approach of Kozloski et al. is
the decomposition of each model into many small parts,
distributing the work evenly onto thousands of Blue Gene
processors. Touch-detection efficiency is improved by slicing
the model into small volumes in which only segments
close enough to touch are analyzed to compute precisely
whether a touch occurs. To find touches rapidly in parallel,
they distribute the segment data across 4096 supercomputer
nodes, with four processing cores per node.

Apart from general differences in the applicability of
Kozloski’s and our synapse placement algorithms, the meth-
ods differ markedly in their steps to find actual touches where
a synapse should be placed. Within each volume of Kozloski’s
volume-based data decomposition, the initial determination
of a possible touch is calculated by finding intersections
between segment bounding spheres. The complexity of their
algorithm is O(n2), where n exceeds 200,000 segments per
node. O(n2) will become prohibitively costly for models
of a billion neurons, which would need a million times
more computing power than a million neurons. We believe
that Kozloski’s algorithm may benefit from implementing a
staggered walk step in the initial touch detection phase of the
algorithm.

Touch detection algorithms differ by the bounding
objects being compared, for example, spheres or boxes.
Many factors should be considered when choosing bounding
objects that both tightly fit the model and can be compared
efficiently on the available computing hardware. AABBs can
be described easily by a minimum and maximum 3D point
pair. Determining whether two AABBs have a 3D overlap
is computationally easy because it requires only simple
subtractive comparisons and allows fast rejection as soon as
a comparison fails in any dimension. Spheres have an advan-
tage that they require slightly less storage space, just a single
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3D point and a 1D radius length, but their comparisons
involve four multiplicative operations and have fewer fast
rejection points. For instance, when comparing two AABBs,
touch detection fails if the minimum X value for one box is
greater than the maximum X value for the other; one failed
comparison stops the computation early.

The cerebellar cortex has a highly regular structure with
specific dendritic and axonal ramification patterns and loca-
tions [7]. In our models, the regular alignment of neuritic
regions allows them to be approximated by axis-aligned
bounding boxes. AABBs fit our application well. An addi-
tional advantage is that the bounding boxes for the neuritic
regions are not perfect cubes and mostly may be thin in
one or two dimensions. Walking along a predominantly thin
dimension can rapidly exclude many boxes from 1D-overlap
comparisons. For example, a cerebellum has billions of long,
thin axonal parallel fibers that are aligned longitudinally (Y
axis). The dynamic version of our algorithm (SWD) checks
to find the thinnest dimension.

3.3. The “Staggered Walk” Algorithm. Our solution to finding
axonal-dendritic 3D overlaps in which to place synapses uses
a sweeping plane algorithm, similar to existing sweeping
line predecessors [20, 21], but with modifications to handle
densely packed overlapping boxes. During a sweep in one
dimension, or a “walk,” we consider each green-to-blue
and blue-to-green 1D overlap as a possible intersection and
quickly reject most other box combinations that cannot
overlap. The name “Staggered Walk” comes from an image of
staggering along a path, checking all dendritic box signposts
on one side versus axonal box signposts on the other.

3.3.1. Algorithm Steps

Outer Loop Steps (Cell Type to Cell Type Pairs)

(1) Consider only pairs of cell types that are allowed to
make connections.

(2) Count the overlaps per sweep in each dimension, X,
Y, and Z. This step is only required for SWD. For
SW, choose a fixed primary, secondary, and tertiary
dimension for all walks.

(3) Set the order for axes to be searched in future
comparisons of region face coordinates to match the
axes in the ascending order of overlap counts from
Step 2; the axis with the fewest 1D-overlaps along its
dimension is walked first.

Primary => Secondary => Tertiary

(e.g., Y => X => Z or Z => X => Y)

(4) Find all overlaps along the primary axis using a
sweeping plane search, which we call a staggered
walk∗.

∗The staggered walk step analysis assumes that the counts of
axonal and of dendritic boxes have roughly the same value,
n; the term O(nlogn) is a compact form of O(nlog(n)).

Inner Loop Steps (Neuritic Region to Neuritic Region Analysis)

(a) Sort the list of green boxes and the list of blue
boxes by primary dimension (ordered by begin-face
coordinates). Complexity is O(nlogn).

(b) Traverse both lists with a plane sweep in the primary
dimension, queuing “open” items (ordered by end-
face coordinates). Complexity depends on the data
structure used to hold open items; O(nlogn) for a self-
balanced binary search tree (BST) [22] or a skip list
[23].

(c) Any new green or blue faces are compared against
their complementary (blue versus green) “open” box
items. Complexity depends on the data structure;
O(Kp) for BST or skip list, where Kp is the number of
collisions in the primary dimension p.

(d) The “open” items are “closed” when they are no
longer able to intersect any item newly reached on
the opposite side. Complexity depends on the data
structure; O(nlogn) for BST or skip list.

(e) For each overlap in the primary dimension (1D-
overlap), see if there are coordinate overlaps in both
the secondary and tertiary dimensions (3D overlap).
Complexity is O(Kp).

(f) Calculate the volume of each overlap which occurs in
all three dimensions and place the expected number
of synapses randomly within the overlap volume.
Complexity is O(Kp).

Total cost for SW is O(nlogn + Kp), where Kp is the number
of collisions in the primary dimension p, and a self-balanced
BST or a skip list is used to store “open” items.

Total cost for SWD is also O(nlogn + Kp); optional Step
2 for the SWD variant incurs two additional O(nlogn) sorts
and six O(n) traversals, but yields the same total complexity.

Other interesting data structures that can be imple-
mented for storage of “open” items during a staggered
walk may change the costs of Steps (b), (c), and (d). At
present, our C++ code uses a variable length vector for
simplicity and optimal data locality. The number of vector
element reorderings is small when compared to the number
of traversals of the open list for comparisons (Kp). For
example, in creating a model of a 2× 5 mm patch of human
cerebellar cortex, there are over 25 billion checks for overlaps
(Kp) versus a mere 40,000 triggered vector tail reorderings,
totaling a nominal 113 million items shifted. Other models
may have more tail reorderings and need a self-balanced BST
or a skip list for runtime efficiency.

3.3.2. Primary Dimension Determination. Determining the
best dimension (X, Y, or Z) along which first to perform
the staggered walk can impact the efficiency of the algorithm
depending on the model parameters. A worst-case example
is where all axonal and dendritic regions overlap in the
dimension chosen for the walk. In this degenerate case, our
algorithm would yield a large O(n2) number of comparisons,
as would all other sweep algorithms previously cited.
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Table 1: Difference in performance between the naı̈ve full comparison and our staggered walk dynamic (SWD) algorithm.

56,462,784 Overlaps
45,675,172 Synapses

(X = 2.8 mm,
Y = 0.5 mm)

222,400,035 Overlaps
181,870,586 Synapses

(X = 2.8 mm,
Y = 1.0 mm)

496,905,207 Overlaps
405,607,980 Synapses

(X = 2.8 mm,
Y = 1.5 mm)

14,163,610,444 Overlaps
11,303,512,563 Synapses

(X = 2.8 mm,
Y = 12.0 mm)

Naı̈ve algorithm 51 minutes 4 hours 10 hours 28–34 days∗

Staggered walk dynamic 1 minute 3 minutes 6 minutes 150 minutes
∗

The 28–34 days value is extrapolated based on two factors: the required number of calculations of overlaps and the calculations per time demonstrated by
the Naı̈ve and SWD data runs for smaller patch sizes on the same computer.

X primary Y primary Z primary
1D comparisons 790,349,070 18,144,072,000 8,165,257,193

0
2
4
6
8

10
12
14
16
18
20
×109

Figure 3: Number of primary comparisons to detect all one
dimensional overlaps of granule axons with Purkinje dendrites.

To minimize the danger of O(n2) comparisons along
the primary axis, the three dimensions can be analyzed
separately, each in only O(nlogn) time, to determine which
is the most efficient to use for the walk. This preprocessing
is the same algorithmic complexity as the O(nlogn) sorts
already required for the walk and therefore does not increase
total complexity. We refer to this refinement of picking the
best dimension to perform the walk per neuronal type pair
as “Staggered Walk Dynamic” (SWD).

Without SWD, there is no quick way to know the best
possible dimension to perform the walk. Traversing all three
dimensions or guessing the wrong primary dimension can
require a large number of comparisons. As seen in Figure 3,
when walking the dimensions to analyze granule cell axons
to Purkinje dendrites, the primary dimension selected can
drastically impact the number of comparisons required.
Any algorithm that compares all dimensions independently
incurs the maximum cost for any dimension. Linear lazy
evaluation algorithms do not continue comparisons when
any previous dimension has no overlap. If a lazy evaluation
algorithm has a fixed comparison order (e.g., X then Y
then Z), it will incur more overhead for some pairwise
comparisons, because the optimal primary dimension often
changes with the cell type pair. Highly regular regions of the
brain benefit more from using SWD than those that have
irregular cell orientations. If cell irregularities are localized
to small spatial regions, the walk will only incur high costs
within those localized regions during the primary plane
sweep.

In the SWD version, additional Step 2 determines the
best dimension along which to perform the primary plane
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Figure 4: Computing hours for Staggered Walk (SWD) to find the
billions of overlaps in twelve sizes of cerebellar models.

sweep for the selected cell type pair. It requires sorting
both classes of neuritic boxes three times, once for each
dimension; complexity is O(nlogn) for all six sorts. A
simplified staggered walk is made for each sorted list of boxes.
Instead of performing edge comparisons, the simplified walk
only calculates how many comparisons will be needed by
adding the count of still “open” neuritic boxes on the other
side for every new box that opens. The total of the counts
for the simple walk measures the future cost for a full walk
in its dimension. The dimension with the least sum total
becomes the primary dimension. The complexity cost of
each simple walk is only O(n), which is dominated by the
O(nlogn) incurred by the two sorts before each walk. For
models with millions of neurons and billions of overlaps, the
extra three simple walks incur only 4–6% of total SWD run
times.

3.3.3. Results of the Algorithm: Cerebellar Models, Sizes,
Timings, Efficiency. Table 1 shows that only small models can
be created with the Naı̈ve Algorithm because of its long O(n2)
run times. For the largest model in Table 1, taking just 150
minutes versus one month, SWD is 300 times faster than
Naı̈ve. In 4.1 hours on 4096 Blue Gene/L nodes, the SWD
algorithm generated a large model for a 70 mm × 100 mm
patch of cerebellar cortex with 3.3 trillion touches, resulting
in 2.7 trillion synapses. On a home computer, SWD took just
2.5 hours to detect 14 billion touches for a smaller (2.8 mm
× 12 mm) model. As seen in Figure 4, run times for the
staggered walk dynamic algorithm scales reasonably well as
model sizes increase.
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The data for Table 1 and Figure 4 were gathered from
one CPU of a 3.1 GHz Windows desktop computer. The
duration of the runs for the Naı̈ve Algorithm quickly
became impractically long. The monthlong time for the
Naı̈ve Algorithm to create the largest model (Table 1) was
extrapolated from shorter runs. The data show that SWD can
generate large models in a few minutes or hours on both a
Blue Gene supercomputer and a home personal computer.

4. Conclusions and Discussion

In this paper, we have targeted efficient model initialization
as a key aspect of large-scale morphological neuronal model-
ing. We describe a staggered walk algorithm that successfully
solves the problem of neurite overlap detection and synapse
placement between axonal and dendritic regions in three-
dimensional space. On a supercomputer, creation of models
with trillions of synapses can be achieved within hours,
rather than days or months.

Despite the demonstrated utility of our SWD approach,
several limitations should be noted before attempting to
implement this algorithm. Rather than just knowing roughly
which areas project to which other areas, as is the case
in simpler, faster brain modeling methods, our algorithm
requires information about the geometric spans of axons and
dendrites. This information may be prohibitively difficult
to gather in some regions of the brain. Cerebellar cell and
synapse structures are very consistent and regular; our
algorithm makes use of the regularity when determining the
critical primary dimension for the walk to locate synapses.
Irregular axonal and dendritic regions may require many
smaller bounding boxes to accurately represent their com-
plex morphology.

The staggered walk dynamic algorithm allows us to gen-
erate dense neuronal models with trillions of overlaps and
synapses in only a few hours of processing, hundreds of
times more efficiently than naive O(n2) searches, as shown
in Table 1. With this powerful method for wiring neuronal
models based on biological data, areas of the brain where
there is ample information about cellular layouts are clear
choices for further applications of this technology. Regions
such as the neocortex, cerebellum, and hippocampus all
are well studied with known topologies amenable to our
method. As computational power slowly rises to levels
where more detailed ultralarge-scale models are feasible,
methods such as ours that combine detail and speed will be
instrumental for the development of comprehensive brain
simulations.

Appendix

A. Detailed Description of Parameter
File (Algorithm 1)

After one section ($PARAMS . . . $END) with overall model
parameters, each input file has a section ($CELL . . . $END)
dedicated to each cell type. The section for a cell type specifies
the density and placement of its somas in the model space,

the shapes and soma-relative positions of the axonal and
dendritic synaptic regions for each soma, the density of
synapses from its axons to each other cell type wherever
their axonal and dendritic regions overlap, and electrical
characteristics of its dendrites, somas, and axons.

The section for Purkinje (P) cells places the centers of
all P-cell somas into a single plane at Z = 0 (by default), at
points 50 µm apart in Y (MCY) and 75 µm in X (MCX). The
second line (MAYY) describes each P-cell’s single tiny (2×2×
2µm) axonal region ending in the dentate nucleus 10,000 µm
(MAZO) below the P-cell center. The third line (DN = 2)
gives the widths and locations of the two dendritic regions
for each P-cell: the thin but huge (10 × 240 × 320µm—
MDY, MDX, MDZ) main dendritic tree above (MDZO =
160 µm) each soma and a tiny (2× 2× 2µm) synaptic region
5 µm below (MDZO = −5) each soma center. P-cell electrical
parameters for neurite signal propagation speeds, synapse
strengths, and soma spiking behaviors are omitted (. . .).
The last line (SYNDA) of synapse densities (in thousandths)
reveals that each P-cell axon forms no (0) synapses except
(1000) where it overlaps (“touches”) the dendritic region of
a dentate nucleus cell (D), the last type in the model.

Parameters in the section for granule cells (N) specify
that granule centers are packed 5 × 5µm apart below the
P-cells in 16 (CZLN) layers 20 µm (MCZ) apart from Z =
−20µm (MCZLVL) to Z = −320µm. The second (TCZP =
750) line says only a randomly chosen 75% of the possible
5× 5× 20µm positions actually contains a granule cell. The
next line (MAYY = 6000) says that each tiny granule cell has
a long, thin 2×6000×2µm “parallel fiber” axon that extends
3 mm each way (+Y , −Y), passing through the dendritic
trees of nearly 400 Purkinje cells. In this model, each granule
cell interacts with afferent axon endings within its 10 × 10 ×
20µm dendritic synapse region. Each granule cell axon forms
one synapse in all P-cell dendritic regions that it penetrates,
in 25% of the Golgi cell regions, and in 75% each of the
five types of inhibitory stellate interneurons found within
the upper cortical layer dominated by the densely packed
dendritic trees of Purkinje cells.

This sample parameter file shows an excerpt from a
text file for a model of a 6,000 µm by 2,800 µm patch of
human cerebellar cortex. The model contains somas and
synapses for 12 morphologically distinct types of neurons.
Each thin (2 × 2µm) granule cell axon, or “parallel fiber,”
extends 6.0 mm in the longitudinal (Y) direction [MAYY =
6000]. Parameters are shown only for Purkinje cells plus
their axonal and dendritic potential synapse regions and
for the granule cells plus their synaptic regions. Electrical
parameters for dendrites, somas, and axons have been elided
(. . .). See Algorithm 1.

A.1. Additional Details for Figure 1. In Figure 1, the axonal
(blue) and dendritic regions (green) where all synapses are
located are approximated as axis-aligned bounding boxes
(AABBs). All instances of neurons of the same type have
their field boxes in the same positions relative to the soma
or center of the cell. The two horizontal lines at the top of
the image are the parallel fibers from the two granule cells.
Each parallel fiber axon has a rising vertical segment before
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it bifurcates into horizontal segments that form hundreds of
synapses with dendrites of Purkinje cells and of inhibitory
interneurons up to 3 mm away longitudinally (Y) in both
directions.

A.2. Additional Details for Figure 2. Axonal (blue) and den-
dritic (green) regions were generated from a tiny cerebellar
model. Individual synapses are identified by red dots and
can occur only where blue and green boxes overlap. The two
horizontal lines, at the top of the image, are the horizontal
segments of the parallel fibers from the granule cells. See
Figure 2.

A.3. Additional Details for Figure 3. Three nondynamic stag-
gered walks produced drastically different comparison
counts depending on which was the fixed starting dimension
(X, Y, or Z). The secondary dimension selected is arbitrarily
based on alphabetical ordering (XYZ versus XZY ; YXZ versus
YZX; ZXY versus ZYX). The order of the second two axes
checks has no impact on the 1D-comparison counts and
resulting run times. The data were collected from a 2.8 mm
by 3.0 mm model. See Figure 3.

A.4. Additional Details for Figure 4. Data for these models
were generated on a single processor of a desktop computer
using our full human cerebellar cortex parameters for
different sizes of cortical patches. Data were collected for
twelve models ranging from 2.8 mm × 1.0 mm to 2.8 mm ×
12.0 mm. See Figure 4.

A.5. Additional Details for Table 1. Only models of modest
sizes can be created with the O(n2) Naı̈ve Algorithm because
of its long run times. Times are from a single processor of a
desktop computer. The Staggered Walk Dynamic times were
measured on the same computer as the Naı̈ve times. See
Table 1.

References

[1] R. Ananthanarayanan, S. K. Esser, H. D. Simon, and D. S.
Modha, “The cat is out of the bag: Cortical simulations with
109 neurons, 1013 synapses,” in Proceedings of the Conference on
High Performance Computing Networking, Storage and Analysis
(SC ’09), November 2009.

[2] E. M. Izhikevich and G. M. Edelman, “Large-scale model
of mammalian thalamocortical systems,” Proceedings of the
National Academy of Sciences of the United States of America,
vol. 105, no. 9, pp. 3593–3598, 2008.

[3] J. Kozloski and J. Wagner, “An ultrascalable solution to large-
scale neural tissue simulation,” Frontiers in Neuroinformatics,
vol. 5, article 15, 2011.

[4] H. Markram, “The blue brain project,” Nature Reviews
Neuroscience, vol. 7, no. 2, pp. 153–160, 2006.

[5] G. A. Ascoli, D. E. Donohue, and M. Halavi, “NeuroMor-
pho.Org: a central resource for neuronal morphologies,”
Journal of Neuroscience, vol. 27, no. 35, pp. 9247–9251, 2007.

[6] J. W. Lichtman, J. Livet, and J. R. Sanes, “A technicolour
approach to the connectome,” Nature Reviews, vol. 9, no. 6,
pp. 417–422, 2008.

[7] J. C. Eccles, M. Ito, and J. Szentagothai, The Cerebellum as a
Neuronal Machine, Springer, 1967.

[8] R. Ananthanarayanan and D. S. Modha, “Anatomy of a cortical
simulator,” in Proceedings of the ACM/IEEE Conference on
Supercomputing (SC ’07), November 2007.

[9] J. Iglesias, J. Eriksson, F. Grize, M. Tomassini, and A. E. P. Villa,
“Dynamics of pruning in simulated large-scale spiking neural
networks,” BioSystems, vol. 79, no. 1–3, pp. 11–20, 2005.

[10] J. Kozloski, “Automated reconstruction of neural tissue and
the role of large-scale simulation,” Neuroinformatics, vol. 9, no.
2-3, pp. 133–142, 2011.

[11] G. M. Shepherd, “Introduction to synaptic circuits,” in The
Synaptic Organization of the Brain, chapter 1, pp. 1–38, 2004.

[12] C. Peck, J. Kozloski, A. R. Rao, and G. A. Cecchi, “Simulation
infrastructure for modeling large scale neural systems,” in
Proceedings of the International Conference on Computational
Science (ICCS ’03), p. 713, 2003.

[13] J. Kozloski, K. Sfyrakis, S. Hill, F. Schürmann, C. Peck, and
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