
HDAC Activity Is Required during Xenopus Tail
Regeneration
Ai-Sun Tseng1., Kátia Carneiro2., Joan M. Lemire1, Michael Levin1*

1 Department of Developmental Biology, Center for Regenerative and Developmental Biology, Tufts University, Medford, Massachusetts, United States of America,

2 Department of Histology and Embryology, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil

Abstract

The ability to fully restore damaged or lost organs is present in only a subset of animals. The Xenopus tadpole tail is a
complex appendage, containing epidermis, muscle, nerves, spinal cord, and vasculature, which regenerates after
amputation. Understanding the mechanisms of tail regeneration may lead to new insights to promote biomedical
regeneration in non-regenerative tissues. Although chromatin remodeling is known to be critical for stem cell pluripotency,
its role in complex organ regeneration in vivo remains largely uncharacterized. Here we show that histone deacetylase
(HDAC) activity is required for the early stages of tail regeneration. HDAC1 is expressed during the 1st two days of
regeneration. Pharmacological blockade of HDACs using Trichostatin A (TSA) increased histone acetylation levels in the
amputated tail. Furthermore, treatment with TSA or another HDAC inhibitor, valproic acid, specifically inhibited
regeneration. Over-expression of wild-type Mad3, a transcriptional repressor known to associate in a complex with HDACs
via Sin3, inhibited regeneration. Similarly, expression of a Mad3 mutant lacking the Sin3-interacting domain that is required
for HDAC binding also blocks regeneration, suggesting that HDAC and Mad3 may act together to regulate regeneration.
Inhibition of HDAC function resulted in aberrant expression of Notch1 and BMP2, two genes known to be required for tail
regeneration. Our results identify a novel early role for HDAC in appendage regeneration and suggest that modulation of
histone acetylation is important in regenerative repair of complex appendages.
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Introduction

Tadpoles of the African clawed frog, Xenopus laevis, have the ability

to rapidly regenerate their tails upon amputation [1,2,3,4]. The tail is

a complex, highly-patterned appendage consisting of multiple tissues

including epidermis, muscle, spinal cord, nerves and vasculature.

Thus an understanding of how natural regeneration occurs may

provide approaches for developing human regenerative repairs.

Recent studies have identified a set of processes that occur when

the tail is lost. Amputation of a tail results in migration of the

epidermal cells to cover the wound within 2–3 hours [5]. By

24 hours post amputation (hpa), a swelling called the regeneration

bud is formed at the wound site. This regeneration bud contains

the progenitor cells necessary to re-grow the entire appendage

properly. Notably, grafting experiments have shown that these

progenitors are lineage-restricted and will only reconstitute their

particular tissue type; no metaplasia has been observed. Within 2

weeks, an entirely new tail is fully regenerated [3,4] via a process

that comprises both bioelectrical [6,7,8] and biochemical

[5,9,10,11,12] signaling pathways.

The critical process of tail regeneration requires that cells re-enter

the cell cycle and differentiate from a lineage-restricted progenitor

cell population into a specific cell type to replace the damaged tissue

and reconstitute the missing tissue. Organ rebuilding using the

newly generated cells must also be orchestrated in three dimensions

in order to properly restore the complex morphology of the intact

neuromuscular appendage. Thus, tail regeneration is a tractable in

vivo model well-suited to understand how differentiated cell types

can transiently convert to a highly proliferative state that also

recapitulates developmental gene expression programs [13,14].

How do the cells involved in tail regeneration revert to a highly

proliferative state? How this state is achieved and executed at the

molecular levels is of great interest because of its relevance to

regenerative strategies for human tissue and/or organ repair.

The proliferation of differentiated somatic cells upon injury is a

process mostly dictated by the epigenetic markers they harbor on

regulatory regions of tissue specific genes [15]. In contrast to

epigenetic modifications that occur on a genome-wide scale during

the initial stages of animal development, the epigenome of somatic

cells is generally stable. Thus, in order to re-enter the cell cycle,

somatic cells must undergo remodeling of the epigenetic landscape

from its differentiated epigenetic program to a highly proliferative

state through chromatin remodeling [16,17].

One important aspect of chromatin remodeling is controlling

DNA through histone acetylation. Histones are dynamic compo-

nents of the transcriptional machinery that can be modified by

post-translational modifications such as acetylation, methylation

and phosphorylation [18,19]. This landscape of modifications
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plays a dynamic role in chromatin structure, as they may influence

histone-DNA interactions that regulate genetic activities [20]. In

addition, it has been shown that acetylation of the chromatin is a

crucial scaffold for histone methyl transferases to amplify the

complex milieu of epigenetic markers found in the cell [21].

In particular, the acetylation of the e-amino group of lysines

residues on the histone tail by Histones acetyltranferases (HAT) is

tightly correlated to gene transcription during development [22]

and conditions such as cancer, inflammatory lung diseases and

viral infections [23]. Conversely, histone deacetylases (HDACs)

reverse the modifications made on histone tails and this correlates

with a repressive state of the chromatin that is linked to terminal

differentiation and cell cycle exit [24].

HDACs are highly conserved enzymes with homologues in

yeast, humans, Xenopus, and zebrafish [25]. HDACs are classified

based on their homology with yeast HDACs. Class I HDACs (1–3,

and 8, homologous to yeast RPD3) are nuclear, expressed widely,

and play an important role in cell proliferation and survival. Class

II HDACs (4–7, and 9–10) shuttle between the nucleus and

cytoplasm and have tissue-specific functions. Furthermore, HDAC

activity has been shown to be important during multiple aspects of

animal development including stem cell differentiation [26] and

heart [27] and skull [28] morphogenesis.

Because HDACs are transcriptional repressors that lack DNA

binding domains, their specificity is mediated by direct interaction

with transcriptional repressors in large multi-protein complexes

containing components such as NuRD, CoREST, or Sin3 proteins

[29]. In particular, Class I HDAC complexes containing Sin3 also

interacts with Mad proteins to act as a repressor of gene

transcription [30]. Mad is a repressor of gene expression belonging

to the basic-region-helix-loop-helix-leucine zipper (bHLH-Zip)

family of transcription factors that binds to E-box sequences on the

DNA [31]. Thus, Mad proteins are important modulators of

HDAC action, targeting HDAC activity to specific regions on the

chromatin.

As epigenetic regulation of DNA has been shown to be

important for modulating stem cell states, such regulation may also

play an important role in complex organ regeneration in vivo.

Previous studies have identified methylation states and histone

demethylases as regulatory components of regeneration in Xenopus

tadpole limbs [32] and zebrafish fins [33]. However, the role of

acetylation and histone acetylases is unknown. In order to

determine whether modulation of histone acetylation can regulate

regeneration, we took advantage of the tractable Xenopus tail model

and used molecular and pharmacological tools to show that

HDAC activity is required for regeneration. Inhibition of HDAC

function blocks regeneration by altering the histone acetylation

state and results in aberrant expression of the downstream genes

involved in driving regenerative outgrowth. Furthermore, HDACs

likely associate with the transcriptional repressor Mad3 to regulate

histone acetylation.

Results

HDAC1 and Mad3 are expressed during tail regeneration
To determine whether HDACs play a role in regeneration, we

first examined the endogenous expression patterns of Xenopus

HDACs during regeneration. We identified full-length clones of

Xenopus HDAC1 [34], and HDAC6 [35] using Xenbase [36]. We

then examined their expression at several timepoints after tail

amputation. RNA in situ hybridization with gene-specific probes

showed that HDAC1 (also known as Rpd3) was strongly expressed

at 24, 48, and 72 hpa (hours post amputation) in the mesenchymal

cells of the regeneration bud (Fig. 1A–C, black arrowheads and

Fig. S1) as compared to base levels of expression in flank (proximal

tail) tissues. In contrast, HDAC6 expression was absent at both 24

and 48 hpa (Fig. 1G–H, open arrowheads). The difference in

expression of HDAC1 and HDAC6 during regeneration suggests

that, like their mammalian counterparts [22], HDAC function is

likely not redundant and that subsets of HDACs play roles in

different biological processes. While our expression data suggests

specific HDACs as likely participants in regeneration, our studies

do not rule out involvement of additional HDACs.

HDACs are known to associate with Mad3 to form a complex

that regulates transcription; thus we also examined the expression

pattern of Mad3 after tail amputation. Both HDAC1 and Mad3

RNAs were detected at low levels throughout the un-amputated

tail, consistent with potential roles during primary tail develop-

ment (Fig. S1). As expected, Mad3 RNA also becomes expressed

in the regeneration bud at 24, 48, and 72 hpa (Fig. 1C, F).

Together, our data indicate that HDAC1 and Mad3 are present in

the correct spatiotemporal pattern to participate in appendage

regeneration.

HDAC function is required during early stages of tail
regeneration

To determine whether HDAC function is required for tail

regeneration, we assessed the effect of pharmacologically ablating

HDAC activity. To effectively block HDAC function, we used

Trichostatin A (TSA), a well-known specific and potent chemical

inhibitor of both Class I and Class II HDACs [37]. Tadpoles

(whether control or amputated) that were treated with 25 nM TSA

grew similarly to their untreated control siblings, and were

indistinguishable with respect to developmental stage, axial

proportions, gross organ morphology, and size (data not shown).

After amputation at st. 40, tails of control larvae regenerated fully

(Fig. 2A). In contrast, treatment with 25 nM TSA after tail

amputation specifically inhibited regeneration (a decrease of 62%

as determined by the Regeneration Index (RI), Fig. 2B). Similarly,

treatment of st. 40 tadpoles after tail amputation with 500 mM of

Valproic Acid (VPA), another well-characterized HDAC inhibitor

[38], also significantly blocked regeneration (Fig. 2C). Together,

these results demonstrated that HDAC activity is required for

regeneration.

Our RNA expression data showed that HDAC1 is present

during the events occurring right after tail amputation. Thus, we

tested the hypothesis that HDAC activity is required during the

early stages of regeneration by determining the temporal

requirement for HDAC function. Tadpole tails were amputated

and incubated for specific durations with TSA and assayed for

their regenerative ability at 7 dpa (days post amputation) (Fig. 2D).

Treatment through the entire length of the assay was sufficient to

inhibit regeneration in 78% of tails (regenerates scored as weak or

none) when compared to control siblings (1%) with no effects on

overall development. Our RNA expression data showed that

HDAC1 is expressed during the first two days of regeneration.

Consistent with this observation, TSA treatment for the first 2 days

after amputation caused 89% inhibition of tail regeneration. This

result fully recapitulates the phenotype seen when the blocker was

present for the entire duration of the assay. Further supporting an

early role for HDACs, addition of TSA after 2 dpa had no effect

on tail regeneration (1%), similar to control siblings. Together, our

results demonstrate that HDAC activity is required specifically

during the first 2 days of regeneration.

Mad3 is required during regeneration
Class I HDACs are widely expressed transcriptional repressors

that lack DNA binding domains. Thus their specificity is due to

HDAC and Tadpole Tail Regeneration
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direct interaction with transcriptional repressors in large multi-

protein complexes harboring NuRD, CoREST, or Sin3 proteins

[29]. In particular, the HDAC-Sin3 complex also associates with

the transcriptional repressor Mad proteins to regulate gene

transcription [30].

Our previous work showed that Mad3 and the maternal HDAC

functionally interact in the establishment of left-right asymmetry

during early Xenopus development [39]. As Mad3 is expressed

following tail amputation (Fig. 1D–F), it is a likely candidate for

participation in the regenerative response. To further characterize

the role of HDAC in regeneration, we looked to determine

whether its partner Mad3 also participates in this process.

First, we characterized the potential role of Mad3 in

regeneration. The over-expression of Mad3 has been shown to

exert a dominant-negative effect on the HDAC1-Mad3 complex

[39] and thus decreases its activity (likely via a titration

mechanism). To determine whether Mad3 function affects

regeneration, wild-type Mad3 RNA was injected into each

blastomere of embryos at the 4-cell stage and expressed

ubiquitously. As predicted, ectopic expression of Mad3 decreased

tail regenerative ability by 25% when compared to control siblings

(Fig. 3B), indicating that Mad3 participates in this process.

The ability of Mad3 to repress gene expression is dependent on

its Sin3-Interacting Domain (SID), which enables Mad3 to interact

with Sin3 co-factors. Sin3 in turn, recruits HDAC1 multi-protein

complexes containing Mad, leading to transcriptional repression

[40]. Indeed, the repressive activity is of Mad3 is dependent on the

presence of HDAC and is fully blocked by HDAC inhibitors [30].

Because we showed that tail regeneration is sensitive to a HDAC

blockade by TSA and VPA (Fig. 2B–C), we hypothesized that the

requirement for Mad3 in regeneration is dependent upon HDAC

function. To test this hypothesis, we generated a mutant Mad3

construct carrying a deletion of SID (Fig. 3A). This mutant Mad3

can not interact with Sin3-HDAC and should thus block HDAC-

dependent functions during embryogenesis. This was indeed

observed: ectopic expression of Mad3-DSID RNA reduced

regenerative ability by 36% when compared to control siblings

(Fig. 3B). This result shows that the function of Mad3 in

Figure 1. HDAC1 and Mad3 are Expressed During Xenopus Tail Regeneration. (A–C) RNA in situ hybridization to detect gene expression in
tail regenerates at 24, 48 and 72 hpa for HDAC1, (D–F) Mad3, and (G and H) HDAC6. Probe targets are shown at the left. Black arrowheads indicate
presence of RNA whereas open arrowheads indicate absence of expression. Anterior is to the left.
doi:10.1371/journal.pone.0026382.g001

HDAC and Tadpole Tail Regeneration
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regeneration requires SID and likely its interaction with HDAC

via Sin3.

Inhibition of HDAC Function Alters Regenerative Gene
Expression

Histone Deacetylases (HDAC) act to remove acetyl groups from

the lysine amino acid on histones. To better understand the

mechanism by which inhibition of HDAC activity blocks

regeneration, we examined the effect of the HDAC inhibitor,

TSA, on the acetylation state of the tail regenerate. Using an

antibody that specifically detects acetylation on Histone H4, we

observed a weak signal on control 24 hpa regeneration buds,

consistent with our data that a low acetylation level of histone H4

is necessary for regeneration (Fig. 4A). In contrast, treatment with

TSA immediately after tail amputation greatly increased the level

of acetylation as seen by the strong acetylated Histone H4 signal in

the regeneration bud (Fig. 4D compared to 4A). This result

demonstrates that TSA acts to inhibit HDAC activity by altering

the acetylation state of histones in the tail regeneration bud during

regeneration.

The acetylation state of histones modulates genes expression.

The removal of acetyl groups on histones by HDACs acts to

repress transcription whereas the presence of acetyl groups enables

transcription [41]. Our data indicated that HDAC inhibition

abrogates tail regeneration by altering the acetylation state of

histones. A likely reason for the regeneration defect is altered

transcription of genes necessary for tail regeneration in regener-

ation bud. To assess the consequence of HDAC inhibition on key

regenerative gene transcription, we examined the RNA expression

pattern of Notch1 [13] and BMP2 [12], two genes that are

required for promoting tail outgrowth after amputation. Individ-

ually activating either pathway promotes tail regeneration whereas

inhibition prevents regeneration [13].

At 24 hpa, Xenopus BMP2 is up-regulated in the regeneration

bud (Fig. 5A and A’, black arrowhead) and at the regenerating fin

edge of the amputation site (Fig. 5A, blue arrowhead). Notch1 is

Figure 2. Pharmacological HDAC Blockade using TSA or VPA Inhibits Tail Regeneration. (A) After st. 40 tail amputation, tadpoles were
assayed for tail regeneration at 7 days post amputation (dpa). Yellow arrowheads demarcate amputation site. (B) Control tadpoles (RI = 290, n = 69).
25 nM TSA treatment (RI = 109, n = 69), * denotes p,0.001. (C) Control tadpoles (RI = 283, n = 72). 500 mM Valproic Acid treatment (RI = 126, n = 53),
* denotes p,0.001. (D) Temporal requirement for HDAC activity during regeneration. Percentage of regeneration shows total number of tail
regenerates scored as full or good. TSA treatment as follows: Control/untreated (98.6%, RI = 290, n = 69), 0–2 dpa (10.8%, RI = 105, n = 65), 0–7 dpa
(22.1%, RI = 118, n = 77), and 2–7 dpa (1.5%, RI = 272, n = 65). * denotes p,0.01 as compared to either Control or 2–7 dpa treatment.
doi:10.1371/journal.pone.0026382.g002

HDAC and Tadpole Tail Regeneration
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expressed in the neural ampulla of the regeneration bud (Fig. 5C

and C’, black arrowhead). Addition of TSA after tail amputation

resulted in expanded expression for both BMP2 and Notch1 in the

regeneration bud (Fig. 5 B, B’, D, and D’, black arrowheads).

Notably, expression of BMP2 at the regenerating tissue edge was

lost (Fig. 5B and B’, open blue arrowheads) suggesting that BMP2

expression during regeneration is regulated differentially by

epigenetic control. Our data demonstrate that alteration in

acetylation state causes mis-expression of regenerative gene

programs.

The ectopic expression of genes that normally drive appendage

regenerative outgrowth is counter-intuitive because HDAC

inhibition blocks regeneration. However, our observations are

consistent with other studies which have shown that TSA

treatment increases BMP2 mRNA level in human osteoclasts

[42] and also up-regulates Notch1 expression in cancer cells

resulting in growth suppression [43]. Our observation that TSA

treatment de-regulates normal regenerative gene expression

further suggests that the proper control of gene expression pattern

is an important requirement for regeneration.

Discussion

Our results identify a novel role for HDAC activity during the

early stages of Xenopus tail regeneration. We showed that a Class I

HDAC, HDAC1, is highly expressed during endogenous regen-

eration but a Class II HDAC, HDAC6, is likely absent, although

additional unidentified HDACs may also participate in regener-

ation.

The requirement for HDAC during regeneration is early,

during the first two days following tail amputation. While the

epigenetic control of DNA and its relationship to appendage

regeneration is not well understood, previous studies have

indicated that methylation states of gene enhancers may regulate

regeneration. Work by Yakushiji and coworkers suggested that the

epigenetic regulation of a gene expressed during regeneration,

Sonic hedgehog (Shh), affects regenerative ability. They showed

that the Shh enhancer, MFCS1, is hypomethylated during tadpole

limb regeneration but is hypermethylated when the limb is unable

to regenerate [32]. Moreover, Shh expression correlates strongly

with the changes in DNA methylation state of the MFCS1

Figure 3. Over-Expression of Mad3 Inhibits Tail Regeneration. (A) Schematic showing the structure of Mad3 protein. Green indicates the
Sin3-interacting domain (SID) important for the Mad3 interaction with HDACs. The DNA binding domain is represented in blue. Mad3 WT shows the
full-length sequence and Mad3-DSID showing the construct that lacks the SID domain. (B) Mad3 WT, Mad3-DSID and lacZ mRNA were injected into
early embryos at the 4 cell stage. Embryos were allowed to develop until st. 40, when tail amputation was performed. Graph showing effects of
ectopic expression of Mad3 WT and Mad3-DSID on tail regeneration at 7 dpa. Control regenerates (RI = 250, n = 95). Wild-type Mad3 expression
(RI = 188, n = 68, p,0.01). Mad3 with SID deletion expression (RI = 159, n = 88, p,0.01). p value denotes comparison to control. Comparison of the 2
ectopic expression experiments yielded p.0.05.
doi:10.1371/journal.pone.0026382.g003
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enhancer. Additionally, it has also been shown that a histone

demeythlase is required for zebrafish fin regeneration [33].

Analogous to DNA methylation control, our study indicates that

the establishment of a regenerative DNA acetylation state is

important for enabling the correct spatial expression of genes that

promote regeneration. A correct balance between DNA methyl-

ation and acetylation may be required to properly control

regeneration.

Numerous studies support the hypothesis that HDACs can act as

promoters of growth and proliferation [44]. For this reason, HDAC

inhibitors have generated great interest and been pursued for their

potential as anti-cancer therapies [45]. Our work is consistent with

these previous studies in that treatment with TSA blocked tail

regeneration. Surprisingly, we observed that inhibition of HDAC

function caused aberrant expression of genes in pathways (BMP and

Notch) that drive regenerative outgrowth (Fig. 4). This result was

not unexpected since BMP2 mRNA has been demonstrated to

increase in the presence of TSA treatment [42], and HDAC

inhibitor treatment results in the up-regulation of Notch and

suppressed cellular growth [43,46]. Previous Xenopus work used

constitutively-active forms of either the BMP receptor Alk3 or the

intracellular active Notch domain (NICD) [13] to promote tail

regeneration. Although the expression of BMP2 and Notch1

correlates with regenerative ability [8], it is not known whether

the specific over-expression of BMP2 or Notch1 acts similarly.

Notably, our data show that HDAC function is critical for

properly regulating the expression patterns of regenerative genes as

an essential component of this process. Importantly, the direct

regulation of Notch1 and BMP2 by histone acetylation is unlikely to

account for the regenerative failure due to HDAC inhibition. It has

been shown that HDAC inhibitor treatment in myeloma cells can

modulate the mRNA levels of approximately 2% of expressed genes

[47]. The identification of the affected genes during regeneration is

of great interest, as they are likely to regulate the response to

regeneration and coordinately act to re-grow the tail. It will be

necessary to undertake global studies of acetylation states and

corresponding microarray studies during the regenerative and non-

regenerative states to identify these genes, as well as understand the

interplay between genetic, epigenetic, and bioelectrical programs

that are known to drive the regenerative response. A comprehensive

understanding of this process will enable exciting new biomedical

therapies for promoting regenerative repair of complex structures.

Materials and Methods

Tail regeneration assay
Xenopus laevis larvae were cultured via approved protocols

(Institutional Animal Care and Use Committee, #M2008-08).

Tails at stages (st.) 40–41 [48] were amputated at the midpoint

between the anus and the tip. Tadpoles were separated into

control or treated groups, to which 25 nM of Trichostatin A (TSA,

Calbiochem) was added in 0.1X MMR at 22uC for 7 days and

scored for tail regeneration. To quantify and compare regener-

ation in groups of tadpoles treated with or without TSA, a

composite regeneration index (RI), ranging from 0 (no regener-

ation) to 300 (complete regeneration) was calculated as described

previously [8]. Tail regenerates are scored into 4 phenotype

categories (full, good, weak, none) (see Fig. S2). For example, a

group of tails in which .80% were fully regenerated would have

an RI ranging from 240 to 300; if full regeneration occurred in

Figure 4. HDAC Inhibition Increases Histone Acetylation During Regeneration. The acetylation state of tail regenerates were examined at
24 hpa using an anti-acetylated Histone H4 antibody. Yellow arrowheads denote regeneration bud. Top row shows untreated controls. Bottom row
shows tadpoles treated with 25 nM TSA after tail amputation. (A, D) Acetylated Histone H4. (B, E) Hoechst DNA stain. (C) merge of A and B. (F)
merge of D and E.
doi:10.1371/journal.pone.0026382.g004
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10% of the animals within the group, the RI would range from 0

to 30.

Xenopus embryo microinjection
For microinjections, capped, synthetic mRNAs [49] for Xenopus

Mad3 and Mad3DSID were generated using the mMessage

mMachine kit (Ambion). Embryos at the 4-cell stage were

transferred to 0.1X MMR containing 3% Ficoll and synthetic

mRNA was injected into each of the 4 blastomeres along with the

lineage tracer rhodamine-labeled dextran (Invitrogen). At 30

minutes post-injection, embryos were transferred to plain 0.1X

MMR and cultured at 18uC until they reached st. 40–41.

In situ hybridization and immunohistochemistry
Sequence data for this paper were retrieved from Xenbase,

University of Calgary, Alberta T2N 1N4, Canada; URL: http://

www.xenbase.org/.Wholemount RNA in situ hybridization was

performed according to standard protocols [50] with probes to

Xenopus Mad3 (Open Biosystems clone ID: 4175511), HDAC1/Rpd3

(Open Biosystems clone ID:4683530), HDAC6 (Open Biosystems

clone ID:5542663), Notch1 [51], and BMP2 [52]. Embedding of tails

were performed using Polysciences JB-4 Embedding Kit according to

the manufacturer’s protocol. A Leica Microtome (VT1000S) was

used to obtain 50 mm sections. Xenopus embryos were fixed overnight

in MEMFA buffer [53], permeabilized in PBS and 0.1% Triton X-

100 for 30 min, and processed for immunohistochemistry using

fluorescent secondary detection (Invitrogen). Anti-acetyl Histone H4

antibody was purchased from Millipore.

Statistical analysis
To compare tail regeneration experiments, raw data from

scoring was used. Comparison of two treatments was analyzed

with Mann–Whitney U test for ordinal data with tied ranks, using

normal approximation for large sample sizes. Multiple treatments

were compared using a Kruskal–Wallis test, with Dunn’s Q

corrected for tied ranks.

Supporting Information

Figure S1 Expression of HDAC1 and Mad3 in Xenopus
Tail. RNA in situ hybridization to detect gene expression in st. 40

uncut and amputated tail for (A–B) HDAC1, (C–D) Mad3, and

(E–F) b-gal. Probe targets are shown to the left of the panels.

(TIF)

Figure S2 Tail Regeneration Assay. Individual animals for

each specific treatment were scored as follows: Full: complete

regeneration. Good: robust regeneration with minor defects

(missing fin, curved axis). Weak: poor regeneration (hypomor-

phic/defective regenerates). None: no regeneration. Shown are

representative examples of each regenerate class.

(TIF)
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