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Reproductive success is attained by various mechanisms in insects. Prolonged post insemination associ-
ation is one such mechanism to increase the reproductive success. The present study was conducted to
assess the role of post insemination association of mating partners on reproductive performance in
Chrysomelidae beetle, Zygogramma bicolorata Pallister. The matings were disrupted at different time
intervals and fecundity and percent egg viability of the females were recorded. In addition, the mounting
attempts, mating attempts, time to commencement of mating and latent period were also recorded. It
was hypothesized that: (1) the mounting and mating attempts would not exist, (2) copulation duration,
would not affect the reproductive performance, and (3) the beetle would not exhibit the mate guarding
behaviour. Interestingly, results revealed that 6.00 ± 1.3 and 6.59 ± 0.93 mounting and mating attempts
are needed to establish successful mating. The results revealed that males improved their percent egg
viability with a mating duration ranging from nearly 30–50 min. While fecundity increased with a mating
duration of above 30 min and up to a duration of 60 min. This result concluded that males of this beetle
display post copulatory mate guarding behaviour after 60 min in which male rides on female’s back with
his aedeagus inserted in the female genital tract.
� 2020 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Reproductive success is the maximum number of offspring
sired by a male from early life till its reproductive senescence
(Hsu et al., 2017). The complex behaviours of mating partners
and processes that occur during pre and post mating leads to huge
variation in reproductive success (Boorman and Parker, 1976). The
pattern of reproductive success in insect species where females
mate multiple times within a single reproductive cycle is often
highly variable (Lewis and Austad, 1990). Insects either show
mixed paternity to varying degrees, or the last male fertilizes most
of the female’s eggs (Simmons and Siva-Jothy, 1998). A last male
advantage can arise by males removing previous ejaculates. How-
ever, the mechanisms by which the last male achieves high pater-
nity are unknown for most species where the males do not remove
sperm.

Recent studies have observed the effects of specific behavioural
or morphological characters on the reproductive success (Hosken
et al., 2008; South and Lewis, 2012). For some species, it has been
shown that male body size in case of Pieris napi and Nephila edulis
(Bissoondath and Wiklund, 1997; Schneider et al., 2000), copula-
tion duration in case of Gerris lateralis and Argioape keyserlingi
(Arnqvist and Danielsson, 1999a,b; Elgar et al., 2000), courtship
behaviour in case of Linyphia litigiosa, Scathophaga stercoraria and
Dryomyza anilis (Watson, 1991b; Otronen, 1997; Otronen
et al.,1997), re-mating interval in case of Pseudoscorpions and Ger-
ris lacustris (Zeh and Zeh, 1994; Danielsson and Askenmo, 1999),
biochemical compatibility in case of Diplosoma listerianum
(Bishop et al., 1996; Zeh and Zeh, 1996), morphology of male gen-
ital organ in case of Gerris lateralis and Gerris lacustris (Arnqvist and
Danielsson, 1999b; Danielsson and Askenmo, 1999) and sperm size
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in case of Rhizoglyphus robini and Caenorhabditis elegans (Radwan,
1996; LaMunyon and Ward, 1998) affects the male fitness.

The body size of male is directly associated with the size of
spermatophore transfer to female genital tract which is one of
the crucial factor significantly affecting the reproductive success
(Sakaluk and Eggert, 1996; Bissoondath and Wiklund, 1997;
Schneider et al., 2000). In some cases, rapid and divergent evolu-
tion in the male genital structure is also one of the important factor
which directly influences the reproductive success (Arnqvist and
Danielsson, 1999b; Danielsson and Askenmo, 1999). Apart from
the male genital morphology, sperm size also plays a vital role in
the paternity success, i.e. large sperm compete more and favour
fertilization than the smaller one (Radwan, 1996; LaMunyon and
Ward, 1998). Moreover, somatic and genetic incompatibility mech-
anisms regulate mating, and this may involve differential phago-
cytic removal in oviduct of sperm. (Bishop et al., 1996; Zeh and
Zeh, 1996).

Among different factors, copulation duration is one of the most
important factor influencing the reproductive success because cop-
ulation duration is directly related to the number of sper-
matophore deposition and degree of sperm displacement
(Simmons and Parker, 1992; Elgar et al., 2000). Copula duration
shows vital effects on overall fitness of both partners
(Edvardsson and Canal, 2006; Perez Staples et al., 2010). Although
sperm transfer requires only a few seconds in some insects (Seth
et al., 2002), still it has been observed that they continue to mate
for several hours. This variability in copula duration is usually cor-
related with one or the other functions or combination of, such as
the transfer of nutrients or other seminal fluid compounds along
with sperm to the female (Riemann et al., 1967), the production
and placement of spermatophore in male reproductive organ
(Gregory and Howard, 1994), mating plug formations to prevent
chances of other male’s sperm to reach the ovum (Labine, 1964),
mate guarding from other competitors (Emily et al., 2014) and
the displacement of rival sperm (Parker, 1970c).

Mate guarding is a term for prolonged periods of male and
female association beyond the time span required for fertilization
(Simmons, 2001). This post mating interaction might have other
benefits to engaged partners (Alcock, 1994). Mate guarding beha-
viour is basically to reduce the sperm competition (Vahed et al.,
2011). It can be either reduced by preventing female from mating
with multiple males or by obtaining last male advantages (Adler
and Adler, 1991). It is expected that mate guarding will always
be favoured when the risk of sperm competition is maximum. Male
insects probably assess the risk of sperm competition from other
competing males (Carazo et al., 2007), according to which they
generally adjust their mate guarding duration (Burdfield-Steel
and Shuker, 2014; Shuker and Simmons, 2014). Mate guarding
duration might be affected by different factors which includes
male resistivity to takeover, receptivity of female post copulation,
degree of sperm superiority, male density, re-mating intervals,
oviposition and predation risk, age and body size of mating part-
ners (Alcock, 1994; Elgar and Bathgate, 1996).

Mate guarding has both advantages and disadvantages. Its
advantage is that it avoids or decreases sperm competition and
permits a male to assure its paternity (Parker, 1970; Henar and
Papaj, 1999). The disadvantages, conversely, are more diverse
(Simmons 2001). It includes: (i) greater risks of predation
(Alcock, 1994), (ii) increased energy expenditure (Saeki et al.,
2005), (iii) lower sperm formation (Ward and Simmons, 1991),
(iv) diminished development rate (Robinson and Doyle, 1985), (v)
reduced egg size of guarded females (Jormalainen et al., 2001),
and (vi) lost opportunity for feeding or mating with other mates
(Dodson and Marshall, 1984).

Although there are several studies on mate guarding and its
effects on paternity success in insect species (Hockham and
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Vahed, 1997; Stoks et al., 1997; Chaudhary et al., 2015) however
similar studies are lacking in Zygogramma bicolorata. In addition
to it a few number of trials/attempts have been observed for suc-
cessful mating establishment which might be considered as
mounting and mating attempts in Zygogramma bicolorata (data col-
lected from lab observations). So the present study is an attempt to
examine and establish the post-copulatory mate guarding beha-
viour in Z. Bicolorata Pallister (Coleoptera: Chrysomelidae), if
any? And find out the required number of mounting and mating
attempts for successful mating.

Therefore, it is hypothesized that (1) mounting attempts and
mating attempts do not exist in Z. bicolorata (2) Parthenium beetle
does not exhibit mate guarding (3) if it exists then it would not
show any effect on reproductive success. It is further expected that
the present study would develop the base for research on sexual
selection in this beetle.
2. Materials and methods

2.1. Study species

Zygogramma bicolorata, commonly known as the Mexican bee-
tle or Parthenium beetle, is a potential biocontrol agent of Parthe-
nium hysterophorus. The beetle was first introduced in Australia
from Mexico in 1998 (McFadyen and McClay, 1981). It was intro-
duced in India from Mexico in 1983 by the Indian Institute of Hor-
ticultural Research for the biocontrol of noxious weed, P.
hysterophorus. Both male and females take about 11 ± 01 days to
mature sexually after emergence (Jayanth and Bali, 1993). The
average life cycle of Z. bicolorata ranged from 27 ± 03 days.

2.2. Stock maintenance

The laboratory culture of Zygogramma bicolorata was estab-
lished from adults and larvae collected from the agricultural fields
of Amarkantak (220 400N,810 450E), India and fed on ad libitum sup-
ply of fresh excised leaves of Parthenium hysterophorus in plastic
Petri dishes (14.5 � 1.5 cm2), kept under constant abiotic condi-
tions (25 ± 2 �C, 65 ± 5% R.H and 14L: 10D) in a BOD incubator
(Matrix Scientific Instruments; CAT No.MBI-50; Sr. No. F/11/913).
The wilted leaves were replaced daily with fresh ones. Newly
hatched larvae were reared in Petri dishes till fourth instar stage.
After that fourth instar larvae were transferred to glass beakers
(500 ml) filled with moist sand, for pupation. The 10 day old adults
were taken out from the stock culture for further experimentation.

2.3. Experimental design

For the control treatment 10 day old unmated adults (male and
female) were paired for single mating in new plastic Petri dish (size
as above) and allowed to complete mating, the mating duration
was recorded using a stopwatch. Post mating, the females were
isolated and kept on excised leaves of Parthenium in fresh Petri
dish, replenished daily, the oviposition and egg viability was
recorded every 24 h for the next five days. A total of 10 replicates
were conducted.

For the experimental treatments, 10 day old unmated adults
were paired in fresh plastic Petri dish and mounting attempt
(MoA), mating attempt (MA), time to commencement of mating
(TCM) and latent period (LP) were recorded (Table 1). After the
mounting, mating was disrupted at different mating intervals, (i)
5 min, (ii) 10 min, (iii) 15 min, (iv) 20 min, (v) 30 min, (vi)
40 min, (vii) 50 min, (viii) 60 min, (ix) 120 min, and (x) 180 min.

All treatments were replicated 10 times. Post mating, the
females were isolated and kept on excised leaves of Parthenium



Table 1
Definitions of different mating parameters.

Sr.
No.

Terms Definition References

1. MoA It is defined as the no. of trials accomplished
by the male to mount the back of female

Sales et al.
(2018)

2. MA It is defined as the number of mating position
assume by male after mounting and extrude
his genitalia for mating

Sales et al.
(2018)

3. TCM It is the time in minutes taken by the male to
first mount on the female after its
introduction to the arena

Han and
Jablonski
(2018)

4. LP It is the duration between the mounting and
first stroke after the insertion of the aedeagus

Han and
Jablonski
(2018)
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in fresh Petri dish, replenished daily and fecundity and egg viability
recorded every 24 h for the next five days.
2.4. Statistical analysis

All the collected data on MA, MoA, TCM, LP, mating duration,
fecundity and percent egg viability were checked for normality
with the help of Kolmogorov-Smirnov’s test, which revealed nor-
mal distribution. Heterogeneity of variance of data was checked
by Bartlett’s test, which revealed homogenous variances. Fecundity
and percent egg viability were subjected to one-way ANOVA fol-
lowed by Tukey’s post hoc honest test of significance at 5% level.
Percent data were arcsine transformed prior to being subjected
to ANOVA. All statistical analyses were done using MINITAB-16
as statistical software (Minitab Inc., State College, Pennsylvania,
USA).
3. Results

Our study revealed that for the proper establishment of mating
association by adults, it requires 6.00 ± 1.3 and 6.59 ± 0.93 mount-
ing and mating attempts respectively. After 114.86 ± 12.75 s,
adults established their copulation i.e. TCM. Latent period was
98.60 ± 8.09 s.

Results of one-way ANOVA revealed the significant influence of
copula duration on fecundity (F = 23.87, df = 1.19, P < 0.05; Fig. 1).
Comparison of means revealed insignificant differences in fecun-
dity at mating durations between 5.00 and 20.00 min, 30.00–
50.00 min, and 60.00-complete mating (240.34 ± 8.07 min: Fig. 1).
Fig. 1. Effect of mating duration on the
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A significant effect of copula duration was also observed on per-
cent egg viability (F = 34.29, df = 1,19; P < 0.05; Fig. 2). Percent egg
viability did not vary significantly at mating durations between
5.00 and 20.00 min, 30.00–40.00 min, and 50.00-complete mating
(Fig. 2).
4. Discussion

The results of the present investigation revealed that this beetle
requires few mounting and mating attempts for successful mating
establishment. It may be due to the active courtship behaviour as
observed in the case of Manacus vitellinus (Chiver and Schlinger,
2017), aggressive behaviour as observed in case of Drosophila mel-
anogaster (Bath et al., 2017) and female choice before mating. For
the mating, this beetle requires 114.86 ± 12.75 s of time to com-
mencement of mating and 98.60 ± 8.09 s of Latent period. The
same behaviour has been observed in case of Coleomegilla maculata
which was due to the non-familiarity with mate or with mating
process (Harmon et al., 2008), female resist to mate with male
and activeness or passiveness of the mating partners (Eberhard,
1985).

Our result also revealed that the fecundity was significantly
influenced by the copula duration. The fecundity increased with
increase in copula duration. Similar observations were recorded
earlier in M. Sexmaculatus by Chaudhary et al. (2015). This increase
in copula duration might be for: (1) the sufficient number of sperm
transferred to fertilized more eggs as the amount of sperm transfer
is directly proportional to the copula duration (Simmon and Siva
Jothy, 1998; Simmon, 2001; Engqvist, 2007; Himuro and Fujisaki,
2015), (2) male partner of many insects transfer substances in their
ejaculate during copulation that play important role in induction of
oviposition in female partner (Riemann et al., 1967), (3) during
copulation some seminal fluid proteins are transferred which are
known to accelerate ovarian development and egg production in
some species (Shahid et al., 2016), and provide fitness benefits to
both the mating partners (Savalli and Fox, 1999).

The increase in percent egg viability with increase in copula
duration might be because of the prolonged copula durations pro-
viding maximum sperm quantity to fertilize eggs. The present out-
comes obey many earlier reports in beetles (Omkar et al., 2006;
Chaudhary et al., 2015). The comparative increase in percent egg
viability with copulation duration might be due to the uninter-
rupted sperm deposition and numerous ejaculation during mating
(Riemann et al., 1967). It has been shown in various studies in
insects that protein from seminal fluids (Chen, 1984; Simmons
fecundity of Zygogramma bicolorata.



Fig. 2. Effect of mating duration on the percent egg viability of Zygogramma bicolorata.
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and Beveridge, 2011) transferred during copulation might stimu-
late both fecundity and percent egg viability in Z. bicolorata
females (Avila et al., 2011; Simmons and Beveridge, 2011;
Yamane et al., 2015). In several species of insects, these seminal
fluid proteins are found to be directly proportional to the copula
duration (Omkar et al., 2006; Engqvist, 2007).

Both fecundity and percent egg viability increased with increase
in copula duration and were maximum at 60 min but after that
there was insignificant effect of copula duration on fecundity and
egg viability till natural disengagement. This physical post insem-
ination association may be for increasing paternity success by
increasing seminal fluid and nutrients transfer. Correlation
between copula duration with paternity success has been reported
in many organisms by various mechanism (Schofl and Toborsky,
2002; Linn et al., 2007). This increase in copula duration might
be the mate guarding behaviour in this beetle which is one of
the mechanism to increase paternity success (Linn et al., 2007;
Chaudhary et al., 2015). The male benefited from mate guarding
i.e. physical association of mating partners reduces the probability
that female is physically available to another male (Mazzi et al.,
2009). It also prevents female from removing spermatophore
which again increase the chances of paternity success (Bateman
and Mc Fadyen, 1999). Mate guarding and post insemination asso-
ciation may provide necessary proteins which are associated with
seminal fluid that may continuously transfer during physical asso-
ciation which play vital role to stimulate fecundity and viability
that ultimately increase paternity success (Riemann et al., 1967;
Avila et al., 2011; Simmons and Beveridge, 2011; Yamane et al.,
2015; Shahid et al., 2016). This increase in copula duration and
mate guarding might be for increasing reproductive output in this
beetle.

The reports of present investigation on determinants of pater-
nity success and post insemination association of mating partners
answer the question of benefits of prolonged mate guarding to
increase reproductive success. Thus from the above observations,
it can be concluded that: (1) mounting and mating attempts does
exist in this beetle and number of mounting and mating attempts
are required for establishment of successful mating, (2) the copula
duration significantly affects the fecundity and percent egg viabil-
ity and (3) Zygogramma bicolorata exhibits the mate guarding
behaviour to increase reproductive output. (4) The results of the
present study will elaborate the mating behaviour patterns and
mate guarding behaviour in Z. bicolorata. However, still a lot of
mating behaviour studies needs to be carried out to further
strengthen and divulge the nature of interactions underplay in
Zygogramma bicolorata which can be used as a tool for biocontrol
strategies.
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