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Abstract

Objectives

Using a nationally-representative, cross-sectional cohort, we examined nutritional markers
of undiagnosed type 2 diabetes in adults via machine learning.

Methods

A total of 16429 men and non-pregnant women > 20 years of age were analysed from five
consecutive cycles of the National Health and Nutrition Examination Survey. Cohorts from
years 2013—2016 (n = 6673) was used for external validation. Undiagnosed type 2 diabetes
was determined by a negative response to the question “Have you ever been told by a doc-
tor that you have diabetes?” and a positive glycaemic response to one or more of the three
diagnostic tests (HbA1c > 6.4% or FPG >125 mg/dl or 2-hr post-OGTT glucose > 200mg/
dl). Following comprehensive literature search, 114 potential nutritional markers were mod-
elled with 13 behavioural and 12 socio-economic variables. We tested three machine learn-
ing algorithms on original and resampled training datasets built using three resampling
methods. From this, the derived 12 predictive models were validated on internal- and exter-
nal validation cohorts. Magnitudes of associations were gauged through odds ratios in logis-
tic models and variable importance in others. Models were benchmarked against the ADA
diabetes risk test.

Results

The prevalence of undiagnosed type 2 diabetes was 5.26%. Four best-performing models
(AUROC range: 74.9%-75.7%) classified 39 markers of undiagnosed type 2 diabetes; 28
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via one or more of the three best-performing non-linear/ensemble models and 11 uniquely
by the logistic model. They comprised 14 nutrient-based, 12 anthropometry-based, 9 socio-
behavioural, and 4 diet-associated markers. AUROC of all models were on a par with ADA
diabetes risk test on both internal and external validation cohorts (p>0.05).

Conclusions

Models performed comparably to the chosen benchmark. Novel behavioural markers such
as the number of meals not prepared from home were revealed. This approach may be use-
ful in nutritional epidemiology to unravel new associations with type 2 diabetes.

Introduction

Diabetes is one of the most wide-spread non-communicable diseases in the world, which is
expected to affect 552 million people by year 2030 [1]. Primary prevention of the most preva-
lent form of diabetes i.e. type 2 diabetes [2] is driven by healthy lifestyle-focussed interventions
and policies [3, 4]. However, different principles and policies may underpin prevention and
management of other less prevalent phenotypes such as type 1 diabetes [5], latent autoimmune
diabetes in adults [6], or rare monogenic diabetes [7]. Nutritional aspects including food hab-
its, dietary constituents, and anthropometric measures offer value since these are relatively eas-
ily modifiable at an individual level [8] compared to socio-economic factors such as income,
education, or occupation, the modification of which would often require higher policy-level
and broader societal interventions [9]. However, there is a dearth of nutritional information
for optimising type 2 diabetes prevention [10]. Further studies are needed to deepen our
understanding of dietary factors associated with type 2 diabetes risk and specific physiological
and systemic pathways underlying those associations.

Extraneous factors such as cooking practices and food contaminants as well as individual
metabolic heterogeneity such as variations in genetics, epigenetics, and microbiome may fur-
ther confound diet-type 2 diabetes associations, resulting in even contradictory findings that
are not uncommon in the literature [11]. As such, studies which model these associations
should strive to adjust for these factors to derive meaningful evidence [12]. With increasingly
available multidimensional big data and machine learning (ML) techniques, such precision
nutrition approaches are needed to understand nutritional aetiopathogenesis of disease and to
develop tailored programs [13]. Presently, ML is sparingly used in nutrition research [14],
despite its promise and broadening applications in other areas of research including type 2 dia-
betes [15].

It should be noted that the current screening tools of type 2 diabetes are heavily hinged on
non-modifiable markers such as age and family history, with less emphasis on modifiable,
behavioural aspects including little to no nutritional inputs. The American Diabetes Associa-
tion (ADA) type 2 diabetes risk test comprises age, gender, history of gestational diabetes mel-
litus (in women), family history of diabetes, history of hypertension, body mass index (BMI)
and physical activity [16]. Similarly, the Australian type 2 diabetes risk assessment tool (AUS-
DRISK) incorporates age, gender, ethnicity/country of birth, family history of diabetes, history
of hyperglycaemia and history of hypertension as well as some lifestyle or anthropometric fac-
tors such as smoking, physical activity, and waist circumference, and a single dietary question
(frequency of fruit/vegetables intake) [17]. The Finnish diabetes risk score (FINDRISC) is
derived from age, gender, history of hypertension, history of hyperglycaemia, family history of
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diabetes, immediate relatives with history of diabetes, BMI, waist circumference, physical
activity and the frequency of fruit/vegetable intake [18]. It has been found that the available
screening tools composed of a few known predictors result in the underdiagnosis of early dys-
glycaemia [19]. A study which assessed four type 2 diabetes risk assessment tools based on
these few predictors reported of sub-standard performance and low external validity on new
populations [20].

At present, evidence-based nutritional practices for primary prevention of type 2 diabetes
in adults include lower consumption of dietary fat and energy as well as sufficient intake of die-
tary fibres (14 g fibres/1000 kcal) and whole-grain foods (equivalent to 50% of grain intake).
These dietary practices should be combined with lifestyle interventions focussed on moderate
weight loss (7% body weight) and steady exercises (150 minutes/week). Consumption of low
glycaemic index (GI) foods enriched with fibres and nutrients is encouraged despite lack of
direct evidence that low GI food per se prevents the onset of type 2 diabetes. Alcohol use is not
recommended for individuals at high-risk of type 2 diabetes regardless of the beneficial effects
associated with its moderate use revealed by observational studies [21].

A thorough understanding of the role of nutrition and its complex interplay with other fac-
tors in the natural history of type 2 diabetes is key to developing personalised prevention pro-
grams as well as managing overt diabetes [10]. Therefore, there is a need to explore
opportunities to expand on and improve the existing sparse models to achieve higher predic-
tive ability by incorporating more granular information on modifiable predictors of type 2 dia-
betes such as nutritional aspects. From a translational perspective, cost-effective, scalable
markers derived from self-reports may be preferred over costly nutritional biomarkers (e.g.
blood concentrations) that are not collected or measured in resource-constrained contexts or
faced with implementation challenges [22]. Moreover, the validity of self-reported dietary
assessment methods is well-documented [23, 24].

Classical statistics have developed mathematical models to explain inferential relationships
between variables and outcomes such as type 2 diabetes, which are sometimes used to predict
events although it is often inferential statistics underpinning these algorithms [25, 26]. Inferen-
tial statistics is constrained in the task of predictive modelling due to a number of reasons
including that it struggles incorporating collinear factors and complex interactions. The pure
prediction world is anti-parsimonious [27]; there will be a multitude of potential factors that
combined together in complex non-linear ways can produce more accurate predictions for
particular events. Real prediction is done using ML algorithms that are capable of detecting
complex patterns and handling collinear factors, and are designed with the primary aim to pre-
dict future events [28]. Examining new factors as potential candidate predictors for type 2 dia-
betes or other clinical conditions using ML and large datasets formulate an extensive
knowledge discovery process. Machine learning also has broadened our abilities to detect pat-
terns between predictors and outcomes not previously possible [27]. With the increasing avail-
ability of big data, the scope to investigate a multitude of other possible predictors is now a
reality. Together, large datasets and new analytical approaches with ML, have provided us with
the opportunity to expand the knowledge base on other factors associated with type 2 diabetes.
It is envisioned that identifying the best cohort of these predictors, many of which will have
small effects, may be used to eventually build the best predictive tools with high predictive abil-
ities and give clinicians and their patients the best certainty in risk prediction probabilities.

To date, no study has applied ML to explore nutritional markers of undiagnosed type 2 dia-
betes which could be used to improve its early diagnosis and understand its pathology beyond
routinely-used risk factors. In this context, the present study used prediction models and ML,
coupled with serial cross-sectional data from five consecutive cycles of the National Health
and Nutrition Examination Survey (NHANES) (https://www.cdc.gov/nchs/nhanes/index.
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htm) over the years 2007-2016, with the aim of identifying nutritional markers that could pre-
dict undiagnosed type 2 diabetes together with routinely used non-modifiable, behavioural
and socio-economic predictors. We also benchmarked the performance of these models
against a national risk assessment method (i.e. ADA diabetes risk test) [16].

The rest of the manuscript is structured as follows: We first describe the database and study
cohort followed by an account of the operationalisation of outcome variable. Thereafter, we
detail the statistical analysis including data pre-processing, ML, and benchmarking steps. We
then present results of univariate analyses followed by details of best-performing ML models
derived by each algorithm and the elucidated nutritional markers. Results section is concluded
with information on the findings from benchmarking and algorithmic performance compari-
son steps. Next, we discuss the strengths, limitations, novel aspects, and potential clinical
implications of the study. Finally, conclusions of the study are presented.

Materials and methods

Data source and study sample

The NHANES is a series of biennial cross-sectional surveys conducted by the Centres for Dis-
ease Control and Prevention (CDC) [29]. This is a large database containing voluminous
information from nationally-representative samples of non-institutionalised US civilians,
which can be used for predictive analytic purposes.

For this study, we pooled five consecutive cycles in order to maximise the number of adult
participants with undiagnosed type 2 diabetes and to enable robust adjustment for potential
confounders. Each survey cycle had been approved by the National Centre for Health Statistics
Institutional Ethics Review Board and all adult participants had provided written informed
consent. Additionally, Monash University Human Research Ethics Committee approved this
study (#24888). The approach to participant selection is presented in Fig 1.

The resulting sample (n = 16429) included men and non-pregnant women > 20 years of
age with nutritional, behavioural, socio-economic and non-modifiable demographic data col-
lected using pre-defined and uniform methods, from five consecutive data collection cycles of
the NHANES spanning years 2007-2016. Design and methods of NHANES are well-docu-
mented (https://www.cdc.gov/nchs/nhanes/index.htm). In brief, dietary information was col-
lected via two 24-hour dietary recall interviews; the first was an in-person visit in specially-
designed Mobile Examination Centres (MECs) and the second was by telephone 3-10 days
later. All dietary data were collected using similar methods in each survey cycle, enabling accu-
rate total nutrient intake estimations and comparisons. Other health information was gathered
by home-based interviews and via clinical examination in MECs. Although NHANES also col-
lected serum biomarker data in MECs, these were not included, as we aimed to incorporate
only easily collected, cost-effectively scalable nutritional and other clinical information fre-
quently associated with dysglycaemia.

Outcome variable

Undiagnosed type 2 diabetes among men and non-pregnant women > 20 years of age was
determined using all three diagnostic tests administered in NHANES: fasting plasma glucose
[FPG], oral glucose tolerance test [OGTT], and haemoglobin Alc [HbAlc]. A participant was
classified as having undiagnosed type 2 diabetes if they had a negative response to the question
“Have you ever been told by a doctor that you have diabetes?” and a positive glycaemic
response to the above diagnostic tests [HbAlc > 48 mmol/mol (> 6.5%) or FPG >126 mg/dl
or 2-hr post-OGTT glucose > 200mg/dl] as per ADA criteria [30]. All diagnosed diabetes
cases, defined by a positive response to the question above and a positive glycaemic response
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Processed dataset from NHANES 2007-2016 (N = 16429)

y

NHANES 2007-2012 (N = 9756) for model training and
internal validation

NHANES 2013-2016 (N = 6673) set
aside as external validation set

v v

Training dataset (N = 4879) Internal validation dataset (N = 4877)

Predictive modelling using machine learning models (incl.
logistic regression (linear), neural network (non-linear),
random forests (ensemble); incl. unadjusted models as well
as those adjusted for class imbalance *

y

Determination of optimal models based on
area under the receiver operating |,
characteristic curve (AUC) and exploration of A
their important predictors

\ 4
Performance comparison/benchmarking ADA diabetes screening score

Fig 1. Flowchart depicting the analytic workflow adopted in the study. a-adjusted by resampling methods incl. oversampling, under-sampling,
random oversampling (ROSE) and synthetic minority oversampling technique (SMOTE).

https://doi.org/10.1371/journal.pone.0250832.9001

[HbAlc > 48 mmol/mol (> 6.5%) or FPG >126 mg/dl or 2-hr post-OGTT glucose > 200mg/
dl] were removed. Since the aim was to elucidate markers of overt type 2 diabetes as opposed
to normoglycaemia, individuals with prediabetes according to ADA criteria [HbAlc = 39-47
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mmol/mol (5.7-6.4%) or FPG = 100-125 mg/dl or 2-hr post-OGTT glucose = 140-199 mg/dl]
[31] were also removed. Normoglycaemia was defined as a negative response to the question
above and a negative glycaemic response for all three diagnostic tests [HbAlc <39 mmol/mol
(< 5.7%) and FPG < 100mg and OGTT < 140mg].

Statistical analysis

The analytic workflow of this study was based on our previously published proof-of-study
exploring predictors of prediabetes [32]. However, substantial modifications were made
including analysing nutritional variables (omitted in the previous study) and excluding serum
biomarkers in order to consider only those predictors which are simple, scalable and based on
self-reported or easily measurable parameters. Another advancement was that, to be consistent
with the cross-sectional design of NHANES, only undiagnosed type 2 diabetes was modelled
in the present analysis whereas such a refinement was not applied to define the prediabetes
cohort in the previous proof-of-concept study. We also used different benchmarking instru-
ments in congruence with the two different conditions analysed in respective studies and we
included much larger cohorts for training, testing, external validation and benchmarking.
Finally, to identify all potential nutritional associations, we did not incorporate any statistical
feature selection.

Data pre-processing. All analyses were performed using R statistical software [33]. Vari-
ables with > 30% missing data were excluded, after which 139 variables that are potentially
associated with undiagnosed type 2 diabetes (114 nutritional/dietary/food-intake associated;
13 other modifiable/health behaviour associated; 12 socio-economic/demographic) were
included as independent variables, selected based on comprehensive literature surveys as sum-
marised in S1 Table. The rationale for inclusion of behavioural and socio-economic variables
was to enable robust adjustment of resulting multivariate models for these factors and to eluci-
date nutritional markers jointly with information that are routinely incorporated into type 2
diabetes screening.

Statistical feature selection was omitted as we aimed to identify all potential predictors of
undiagnosed type 2 diabetes from the repertoire of 139 variables. The multiple imputation by
chained equations (MICE) package [34] was used with default functions for imputing missing
values; predictive mean matching, polytomous, and binary logistic regression for numeric,
multi-level (> 2 levels) categorical and dichotomous categorical variables, respectively. Sum-
mary measures and variable distributions in the original and complete datasets were compared
to evaluate goodness of fit.

The distribution of characteristics for individuals with undiagnosed type 2 diabetes and
those with normoglycaemia within the entire cohort is outlined in S2 Table. NHANES 2013-
2016 data were set aside as external validation sample to temporally validate constructed mod-
els. We performed random 50/50 split of the remaining NHANES 2007-2012 data to generate
training samples (n = 4879) and internal validation samples (n = 4877).

Machine learning. We applied three ML algorithms, including logistic regression (LR)
(linear), artificial neural network (ANN) (non-linear), and random forests (RF) (ensemble).
To resolve the effect of class imbalance, resampling algorithms including minority class over-
sampling, Random OverSampling Examples (ROSE) [35], and Synthetic Minority Oversam-
pling TEchnique (SMOTE) [36], were incorporated and trained in conjunction with each ML
algorithm. Thus, a total of four models were built with: 1) original data, 2) oversampling, 3)
ROSE, and 4) SMOTE per each ML algorithm. For ANN, parameter tuning and 5-fold cross-
validation were conducted whereas default R package parameters and 10-fold cross validation
were used for training the other two algorithms [37-39]. In detail, ANN settings were as
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Discrimination ability of internally i logistic models

100
I

AUC: 75.7% (72.9%—78.4%)
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AUC: 74.6% (71.8%—77.5%)
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AUC: 73.5% (70.6%—76.4%)
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T T T T T
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Specificity (%)

Fig 2. Overlapped ROC curves demonstrating predictive performance of logistic regression models on internal
validation data. Using unbalanced, original training data and re-structured with oversampling, ROSE and SMOTE
resampling.

https://doi.org/10.1371/journal.pone.0250832.9002

follows: tuning grid composed of three weight decay parameters (0, 0.1, 0.01) and the size
parameter was set from 1 to a maximum of 139 to be equivalent with the number of features.
Bagging option was set to false and variable standardisation was performed via centering and
scaling. The maximum number of iterations was 500. All other parameters were trained under
default values.

This resulted in 12 ML models which were built on training data and tested on internal and
external validation cohorts (Figs 2-7). Confusion matrix metrics such as sensitivity, specificity,
and negative and positive predictive values as well as area under the receiver operating charac-
teristic curve (AUROC) were used to assess the predictive performance of these models.
Adjusted odds ratios (OR) indicated the relative impact of predictors in LR models with confi-
dence intervals (CI) used to measure variability and significance. Predictors from the other
two algorithms were identified by variable importance values, as calculated by default R soft-
ware functions (Figs 8-10) [37-39].

Four best-performing models which produced highest AUROC per algorithm were identi-
fied: 1 each by LR and RF; 2 by ANN with the same AUROC. These models and the respective
markers identified are summarised in Tables 1 and 2.

Discrimination ability of externally i logistic models

AUC: 74.6% (71.9%—77 4%)
— unbalanced

AUC: 75.3% (72.6%—78.1%)

——  oversampled
AUC: 74.3% (71.5%—77.1%)

AUC: 74.0% (71.2%—76.7%) - ROSE

—— SMOTE

T T T T T
150 100 50 0 -50
Specificity (%)

Fig 3. Overlapped ROC curves demonstrating predictive performance of logistic regression models on external
validation data. Using unbalanced, original training data and re-structured with oversampling, ROSE and SMOTE
resampling.

https://doi.org/10.1371/journal.pone.0250832.g003
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Discrimination ability of internally i random forests models
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Fig 4. Overlapped ROC curves demonstrating predictive performance of random forests models on internal
validation data. Using unbalanced, original training data and re-structured with oversampling, ROSE and SMOTE
resampling.

https://doi.org/10.1371/journal.pone.0250832.9004

Benchmarking. We compared the predictive performance of best-performing models on
internal and external validation data against the performance of an appropriate benchmark
(i.e. ADA diabetes risk test) [16]. As there were discrepancies between ADA risk test criteria
and NHANES variables, the instrument needed to be adapted suitably in order to estimate its
parameter scores. Thus, we modified the ADA diabetes risk test enabling to use it on the
NHANES cohorts as shown in Table 3. The ADA diabetes risk test collects information on 7
risk factors: age, gender, previous gestational diabetes (if female), first degree relative with dia-
betes, hypertension, physical activity and BMI. Total risk score is in the range of 0-10 whereas
the cut-point indicating high risk of diabetes is 5. Therefore, we categorised participants with a
total risk score >5 as at high risk of diabetes and those with < 5, not at high risk. We per-
formed this classification on both internal and external validation cohorts. Next, AUROC
achieved by the ADA risk test on these cohorts were calculated and compared to the corre-
sponding AUROC estimates of best-performing models using DeLong test [40] (Table 4; Fig
11). Finally, algorithmic performances across all models were compared using Hanley and
McNeil test for comparing ROC curves [41] (S3 Table).

Discrimination ability of externally-validated random forests models

AUC: 71.5% (68.7%—74.3%)

— unbalanced
AUC: 74.1% (71.4%—76.7%)

AUC: 74.3% (71.7%-76.9%) oversampled

AUC: 752% (72.7%—T77 6%) — ROSE

—— SMOTE

T T T T T
150 100 50 0 -50
Specificity (%)

Fig 5. Overlapped ROC curves demonstrating predictive performance of random forests models on external
validation data. Using unbalanced, original training data and re-structured with oversampling, ROSE and SMOTE
resampling.

https://doi.org/10.1371/journal.pone.0250832.g005
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Discrimination ability of internally-validated neural network models
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Fig 6. Overlapped ROC curves demonstrating predictive performance of artificial neural network models on
internal validation data. Using unbalanced, original training data and re-structured with oversampling, ROSE and
SMOTE resampling.

https://doi.org/10.1371/journal.pone.0250832.9006

Results

Undiagnosed type 2 diabetes defined by all three diagnostic tests (FPG, OGTT, and HbA1c)
was prevalent in 5.6% (n = 16429) of the sample. The age distribution of the sample ranged
from 20-80 years, with a mean + SD of 47 + 17.24 years.

As per univariate analysis of categorical variables, the normoglycaemic cohort (n = 15564)
included a significantly greater number of Non-Hispanic White, self-reported citizens as well
as participants who: self-reported vigorous or moderate work activity; walking or bicycling;
vigorous or moderate recreational activities; considered themselves underweight or about the
right weight; liked to weigh more or stay about the same; self-reportedly used ordinary salt and
community supply as their tap water source; consumed shellfish during the past 30 days; and
took dietary supplements. Univariate analysis of numeric variables revealed that normoglycae-
mic individuals had significantly higher education, income-poverty ratio, self-rated general
health, self-reported dietary health, household food security category, adult food security cate-
gory, monthly family income, family monthly income-poverty level index, family monthly
income-poverty level category, standing height, upper leg length, upper arm length, current

Discrimination ability of externally-validated neural network models

AUC: 71.8% (68.8%—74.8%)

B AUC: 72.7% (69.8%-75.6%) ———  unbalanced
AUC: 74.3% (71.7%-77.0%) o Gy
& AUC: 73.6% (70.9%-76.3%) — ROSE
—— SMOTE
&t
T T T T T
150 100 50 0 -50

Specificity (%)

Fig 7. Overlapped ROC curves demonstrating predictive performance of artificial neural network models on
external validation data. Using unbalanced, original training data and re-structured with oversampling, ROSE and
SMOTE resampling.

https://doi.org/10.1371/journal.pone.0250832.g007
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Variable Importance using RF and ROSE resampling
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Fig 8. Variable importance plot of the best-performing random forest model produced by ROSE resampling.
BMXWAIST = waist circumference; RIDAGEYR = age; BMXBMI = body mass index; WHQ150 = age when heaviest
weight; BMXLEG = upper leg length; BMXARMC = arm circumference; BMXWT = weight; WHDO050 = self-reported
weight- 1 year ago; WHDO020 = current self-reported weight; WHD140 = self-reported greatest weight;

BMXHT = standing height; carb = carbohydrate; caffeine = caffeine; INDFMPIR = income-poverty ratio; bcar = beta
carotene; acar = alpha carotene; kcal = energy; dodecanoic = SFA 12:0 (Dodecanoic); copper = copper; atoc = vitamin
E alpha tocopherol.

https://doi.org/10.1371/journal.pone.0250832.9008

self-reported height, total plain water drank the previous day and total tap water drank the
previous day. A number of dietary constituents were also significantly higher in the normogly-
caemic group, namely, dietary protein, total monounsaturated fatty acids (MFA), added
alpha-tocopherol (vitamin E), lutein + zeaxanthin, thiamin (vitamin B1), total folate, folic acid,
food folate, folate, dietary folate equivalents (DFE), vitamin B12, vitamin D (D2 + D3), phos-
phorus, sodium, caffeine, dietary water content/moisture and MFA 18:1 (octadecenoic) levels
(S2 Table).

As per univariate analysis of categorical variables, males, those who received household
(HH) emergency food, smoked at least 100 cigarettes in life, considered themselves

Variable Importance using ANN and ROSE sampling
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Fig 9. Variable importance plot of the best-performing artificial neural network model produced by ROSE
resampling. BMXWAIST = waist circumference; BMXBMI = body mass index; RIDAGEYR = age; WHQI150 = age
when heaviest weight; BMXARMC = arm circumference; BMXWT = weight; WHDO050 = self-reported weight- 1 year
ago; WHDO20 = current self-reported weight; BMXLEG = upper leg length; DMDEDUC?2 = education level;
WHD140 = self-reported greatest weight; HSDO010 = self-rated general health; WHQO030 = How do you consider your
weight?; PAQ650 = vigorous recreational activities; WHQO040 = Like to weigh more, less, or same?; DBD895 = number
of meals not home prepared; BMXHT = standing height; PAQ665 = moderate recreational activities;
DBD910 = number of frozen meals/pizzas in past 30 days; carb = carbohydrate.

https://doi.org/10.1371/journal.pone.0250832.g009
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Variable Importance using ANN and SMOTE sampling
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Fig 10. Variable importance plot of the best-performing artificial neural network models produced by SMOTE
resampling. BMXWAIST = waist circumference; BMXBMI = body mass index; RIDAGEYR = age; WHQI150 = age
when heaviest weight; BMXARMC = arm circumference; BMXWT = weight; WHDO050 = self-reported weight- 1 year
ago; WHDO20 = current self-reported weight; BMXLEG = upper leg length; DMDEDUC?2 = education level;
WHD140 = self-reported greatest weight; HSDO010 = self-rated general health; WHQO030 = How do you consider your
weight?; PAQ650 = vigorous recreational activities; WHQO040 = Like to weigh more, less, or same?; DBD895 = number
of meals not home prepared; BMXHT = standing height; PAQ665 = moderate recreational activities;

DBD910 = number of frozen meals/pizzas in past 30 days; carb = carbohydrate.

https://doi.org/10.1371/journal.pone.0250832.9010

overweight, liked to weigh less, did not use/add salt products at the table, and did not drink tap
water were significantly higher in those with undiagnosed type 2 diabetes (n = 865). Univariate
analysis of numeric variables revealed that the undiagnosed type 2 diabetes group were older
in age, had significantly greater BMI, arm- and waist- circumference, weight (including self-
reported current weight, weight 1-year ago, self-reported greatest weight), age when heaviest
weight, and minutes of sedentary activity, reported significantly greater amount of money
spent on eating out, past 30-day milk product consumption, number of meals not home pre-
pared, number of meals from fast food or pizza places, number of ready-to-eat foods in the
past 30 days, and the number of frozen meals/pizzas in the past 30 days. Moreover, among
those with undiagnosed type 2 diabetes, a greater number of individuals self-reported that HH
food did not last or HH could not afford balanced meals while higher dietary intakes of energy,
carbohydrate, total fat, total saturated fatty acids (SFA), SFA 10:0 (decanoic) (gm), SFA 12:0
(dodecanoic), and SFA 16:0 (hexadecanoic) levels were also observed among them (S2 Table).

The best-performing LR model was based on original, un-resampled training data and pro-
duced an AUROC of 75.7% and 74.6% on internal- and external validation data, respectively
(Fig 2). As shown in Table 1, the model identified 16 significant predictors of undiagnosed
type 2 diabetes encompassing nutritional, behavioural, and socio-economical markers. Among
nutritional markers, 2 diet-related (how healthy is the diet, number of meals from fast food or
pizza place), 3 anthropometric (weight, BMI, waist circumference), and 7 nutrient intake-
related (total fat, beta-cryptoxanthin, folic acid, food folate, calcium, caffeine, vitamin B12)
predictors could be identified. Smoking at least 100 cigarettes in life was also a significant
behavioural predictor of undiagnosed type 2 diabetes. The 3 socio-economic/demographic
markers were the age, ethnicity, and the total number of people in the household.

Using non-linear or ensemble ML algorithms, three best-performing models were gener-
ated. Of random forests models, RF with ROSE resampling was the best-performing model
with AUROC of 75.2% on internal validation data. Two best-performing models were pro-
duced by ANN, namely, ANN with ROSE resampling and ANN with SMOTE resampling,
which had approximately the same AUROC of 74.9% on internal validation data (Table 2).
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Table 1. Nutritional and other markers of undiagnosed type 2 diabetes identified by the best-performing logistic
model (AUC =75.7%).
GLM original *
(AUCinternal = 75.7%)
(AUC external = 74.6%) ©
Marker OR (95% CI)
Nutrient-intake/Diet related
Diet related *

How healthy is the diet? 0.85(0.72, 0.99)
Number of meals from fast food or pizza place 1.01 (1.00, 1.02)
Anthropometry related ©
Weight 1.07 (1.01, 1.13)
Body mass index 1.06 (1.03, 1.09)
Waist circumference 1.06 (1.04, 1.09)
Nutrient intake related ©
Total fat 1.14 (1.02, 1.27)
Beta-cryptoxanthin 0.99 (0.98, 1.00)
Folic acid 0.83 (0.69, 0.99)
Food folate 0.84 (0.74, 0.96)
Calcium 0.97 (0.94, 1.00)
Caffeine 0.998 (0.997, 1.000)
Vitamin B12 0.99 (0.98, 1.00)
Other modifiable/behavioural ¢
Smoked at least 100 cigarettes in life? = yes (ref = no) 1.09 (1.00, 1.19)
Socio-economic/Demographic 4
Age 1.05 (1.03, 1.07)
Ethnicity = other (ref = White) 1.04 (1.01, 1.08)
Total number of people in the household 1.23 (1.01, 1.47)

a: logistic regression model on original, un-resampled data

b: area under receiver operating characteristic curve on the internal validation data
c: area under receiver operating characteristic curve on the external validation data
d: self-reported

e: measured via two 24-hour dietary recalls.

AUC = area under receiver operating characteristic curve.

https://doi.org/10.1371/journal.pone.0250832.t001

These two ANN models had following specifications: logistic output functions; feed-forward,
5-fold cross-validated neural networks; automatically standardised input variables with tuned
parameters. Five neural networks were trained and the mean values of resulting predictions
comprised the model output. The best-performing RF model was built using 10-fold cross-val-
idation and also consisted of automatically standardised variables with default R package func-
tions and parameters.

Out of the 39 markers of undiagnosed type 2 diabetes, 30 were nutritional. Moreover, 11 of
the 39 markers were uniquely identified by the LR model, while the remaining 28 markers
emerged from one or more of the three best-performing non-linear/ensemble models. Of
these 28 markers, 12 were common across all three models whilst eight were unique to each of
the RF and ANN models. Notably, of the 16 significant predictors identified by the best-per-
forming LR model, 11 were exclusive. Four markers including age, waist circumference, BMI,
and weight were common to all four models, while one marker, dietary caffeine intake, was
elucidated by both logistic and RF models.
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Table 2. Nutritional and other markers of undiagnosed type 2 diabetes identified by best-performing ANN and RF models.

RF ROSE *

ANN ROSE ®

ANN SMOTE ¢

(AUCinlernal = 75'2%) 4

(AUCipternat = 74.9%) ¢

(AUCipternat = 74.9%) ¢

(AUCexternal = 74-3%) €

(AUCexternal = 74.3%) ¢

(AUCexlerna.l = 73-6%) €

Marker Importance f | Marker Importance & | Marker Importance &
Nutritional Nutritional Nutritional
Anthropometry-related Diet/food-intake related Diet/food-intake related
Waist circumference 53.03 Number of meals not home prepared 0.5755 Number of meals not home prepared 0.5755
Number of frozen meals/pizzas in past 30 | 0.5620 Number of frozen meals/pizzas in past 30 | 0.5620
days days
Body mass index 44.07 Anthropometry-related Anthropometry-related
Age when heaviest weight 43.35 Waist circumference 0.7228 Waist circumference 0.7228
Upper leg length 38.42 Body mass index 0.6967 Body mass index 0.6967
Arm circumference 33.41 Age when heaviest weight 0.6806 Age when heaviest weight 0.6806
Weight 32.70 Arm circumference 0.6386 Arm circumference 0.6386
Self-reported weight—1 year | 32.32 Weight 0.6295 Weight 0.6295
ago
Current self-reported weight | 30.81 Self-reported weight—1 year ago 0.6285 Self-reported weight—1 year ago 0.6285
Self-reported greatest weight | 30.31 Current self-reported weight 0.6272 Current self-reported weight 0.6272
Standing height 26.82 Upper leg length 0.6199 Upper leg length 0.6199
Nutrient intake-related Self-reported greatest weight 0.6130 Self-reported greatest weight 0.6130
Carbohydrate 25.21 How do you consider your weight? 0.5948 How do you consider your weight 0.5948
Caffeine 24.01 Like to weigh more, less or same? 0.5755 Like to weigh more, less or same 0.5755
Standing height 0.5665 Standing height 0.5665
Beta-carotene 23.18 Nutrient intake related Nutrient intake-related
Alpha-carotene 23.09 Carbohydrate 0.5606 Carbohydrate 0.5606
Energy 22.96 Other modifiable/health behaviour Other modifiable/health behaviour
associated associated
SFA 12:0 (Dodecanoic) 22.88 Self-rated general health 0.6043 Self-rated general health 0.6043
Copper 22.82 Vigorous recreational activities 0.5776 Vigorous recreational activities 0.5776
Vitamin E as alpha-tocopherol | 22.70 Moderate recreational activities 0.5662 Moderate recreational activities 0.5662
Socio-economic/Demographic Socio-economic/Demographic Socio-economic/Demographic
Age 49.96 Age 0.6843 Age 0.6843
Income-poverty ratio 23.51 Education level 0.6132 Education level 0.6132

a

random forest model on train data restructured by ROSE sampling

b = artificial neural network model on training data restructured by ROSE sampling algorithm

¢ = artificial neural network model on training data restructured by SMOTE sampling algorithm

d = area under receiver operating characteristic curve on the internal validation data

e = area under receiver operating characteristic curve on the external validation data

f = by default, mean decrease in prediction accuracy after a variable is permuted

g = default method uses combinations of the absolute values of the weights.

ANN = artificial neural network; AUC = area under receiver operating characteristic curve; RF = random forest; ROSE = random oversampling examples;

SFA = saturated fatty acid; SMOTE = synthetic minority oversampling technique.

https://doi.org/10.1371/journal.pone.0250832.t002

Internal (n = 4877) and external (n = 6673) validation data acquired AUROC estimates of
73.7% and 74.0%, respectively, for the ADA diabetes risk test. When ROC curves were com-
pared using the DeLong test, the AUROC estimates from the four best-performing models did
not differ significantly from the corresponding ADA diabetes risk test estimates (p>0.05),
with AUROC differences ranging from 0.2-2.8% and 0.0-2.5% on internal and external valida-
tion data, respectively. Performance of the ADA diabetes risk test using NHANES data,
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Table 3. Creation of variables analogous to those in the American Diabetes Association (ADA) diabetes risk test
using National Health and Nutrition Examination Survey (NHANES) data.

Variable Information used/modified from NHANES Score*

Age Age in years at screening was categorised with
following cut-points to ascribe scores

<40

40-49

50-59

>60

Gender Self-reported gender
Female 0
Male 1
Previous gestational diabetes (if female) Self-reported history of gestational diabetes
No 0
Yes 1

1* degree relative with diabetes NHANES questionnaire collects information on
familial diabetes, but not on 1 degree relatives with
diabetes per se, so the self-reported family history of
diabetes was used as a proxy variable.

W = O

No 0

Yes 1
Hypertension (self-reported history of NHANES provides information on all 3 criteria; self-
hypertension, prescribed antihypertensive reported history of hypertension (“Ever told you had
medication, and/or BP >140/90) high blood pressure?”), prescribed antihypertensive

medication (“Taking prescription for
hypertension?”) and/or BP >140/90 (objectively
measured and averaged over 3 or 4 measurements of
SBP and DBP).

Absence of all 3 criteria 0

Presence of history of self-reported hypertension or |1
prescribed antihypertensive medication, or BP >140/
90

Physically active (self-reported) Derived a binary variable by checking if any of the
following activities were done in 5 or more days of a
typical week: vigorous or moderate work,
recreational work, walk or bicycle

Yes 0
No

BMI, kg/m* Available in NHANES. Objectively measured.
<25 0
25 to <30 1
30 to <40 2
=>40 3

—

* Cumulative scores >5 should be formally screened for diabetes, per ADA guidelines, which was chosen as the cut-
point for classifying individuals.
ADA = American Diabetes Association; BMI = body mass index; BP = blood pressure; NHANES = National Health

and Nutrition Examination Survey.

https://doi.org/10.1371/journal.pone.0250832.t003

compared to performance of the best-performing classifier with the highest AUROC is out-
lined in Table 4.

As depicted in S3 Table, comparison of models derived using each algorithm indicated that
none were significantly different from each other (p>0.05) within both internal- and external-
validation cohorts.
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Table 4. Performance comparison of the ADA diabetes risk test versus the best-performing model on NHANES data.

Benchmarking with the best-performing ML model *

Criterion | ADA diabetes risk test Best-performing ML model *
Performance upon the internal Performance upon the external Performance upon the internal Performance upon the external
validation dataset ® (N = 4877) validation dataset € (N = 6673) validation dataset ® (N = 4877) validation dataset € (N = 6673)

AUROC | 0.737028 0.7401352 0.7566544 0.7464869

Sensitivity | 0.688716 0.7639015 0.6810036 0.7745098

Specificity | 0.690244 0.6109271 0.7105263 0.6148893

Accuracy | 0.690164 0.6319564 0.7088374 0.6222089

PPV 0.147892 0.1092312 0.1249178 0.0881368

NPV 0.912503 0.9219408 0.9734803 0.9826807

a = This was a logistic regression model on original, unbalanced training data without any resampling
b = A randomly partitioned sample from NHANES 2007-2012
¢ = from NHANES 2013-2016.

ADA = American Diabetes Association; AUROC = area under the receiver operating characteristic curve; ML = machine learning; PPV = positive predictive value;

NPV = negative predictive value.

https://doi.org/10.1371/journal.pone.0250832.t1004

Discussion

In summary, this analysis revealed several nutritional markers of undiagnosed type 2 diabetes
comprising diet-related, anthropometric, and nutrient-based variables that can be used in con-
cert with regularly obtainable behavioural and socio-economic information to optimise cur-
rent prediction models. Despite being readily available or easily collected, most of the
nutritional predictors revealed by this analysis, are not presently used in type 2 diabetes risk
assessment instruments and procedures.

As this is the first study to apply ML to ascertain nutritional markers of undiagnosed type 2
diabetes, our findings provide important groundwork for precision nutrition approaches in
diabetes prevention which are currently lacking [42], through identification of a diverse set of
simple, cost-effective nutritional markers. Whilst it has been argued that policy-level manage-
ment of obesogenic environments would be more prudent, precision nutrition approaches are
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Fig 11. Benchmarking with the ADA diabetes risk test. Comparison of predictive performance of ADA diabetes risk
test on internal validation data (AUC = 0.737028) and the best-performing predictive model on internal validation
data (AUC = 0.7566544), as per DeLong test for comparing two ROC curves, was non-significant (p = 0.3201)
indicating performances on a par with each other. Comparison of predictive performance of ADA diabetes risk test on
external validation data (AUC = 0.7401352) and the best-performing predictive model on external validation data
(AUC = 0.7464), as per DeLong test for comparing two ROC curves, was also non-significant (p = 0.0643).

https://doi.org/10.1371/journal.pone.0250832.9011
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critical for understanding the impact of nutrition on individual risk of type 2 diabetes and pro-
viding stratified care [43]. Notably, our emphasis in this analysis was on modifiable markers,
including an array of nutritional markers which stands different to the status quo as the cur-
rent approach to type 2 diabetes risk assessment is leveraged on non-modifiable markers. As
shown by our findings, the broad array of nutritional and behavioural markers of undiagnosed
type 2 diabetes may collectively augment contemporary risk prediction efforts, although most
of their individual impact may be smaller. In addition, these markers may be modified to opti-
mise glycaemic status, following deeper understanding of the aetiological pathways by which
they are associated with type 2 diabetes.

A recent meta-analysis of ML models for type 2 diabetes prediction in community settings
revealed that external validation was conducted by none suggesting poor generalisability [44].
However, we conducted temporal external validation in the present study thereby achieving
higher generalisability to the US population. Applicability beyond the US is likely to be limited
by the contextual nature of certain predictors as well as geographic, ethnic, and other varia-
tions among target populations. Moreover, nutrients like beta-cryptoxanthin as markers pose
challenges to translation and implementation strategies, whereas food-based prediction may
facilitate seamless translation. Since food-based dietary guidelines are easier to upscale than
traditional nutrient-based guidelines [45, 46], food-based predictive modelling is a necessary
consideration for future research and could yield directly translatable findings in terms of type
2 diabetes management and dietary recommendations. A recent study revealed that food-
based dietary guidelines (FBDG) currently set up in 90 countries, contained universal as well
as variable recommendations. It also underscored that socio-cultural aspects should be consid-
ered in the development of country-specific FBDG [47]. While these FBDG are non-specific
and targeted to the general population, findings from food-based predictive modelling studies
on specific cohorts such as people with type 2 diabetes might offer opportunities to implement
disease-specific FBDG. Such advancements would create pathways to provide more tailored,
disease-specific nutritional care. Although residual confounding cannot be ruled out, it should
be noted that we adjusted our models for multiple variables to minimise the impact of con-
founding while only undiagnosed type 2 diabetes was modelled to acquiesce with the cross-
sectional design of NHANES. Also, ML algorithms are tolerant of complexities inherent in
multidimensional data, allowing for multivariate modelling with large datasets and numerous
variables to gain meaningful insights [48].

Although all three algorithms performed in a comparable manner, disparities in the nutri-
tional markers identified by them are notable. This underscores the importance of applying an
array of algorithms instead of a single learner to get comprehensive insights. Only 5 predictors
were identified by both linear and non-linear/ensemble algorithms, which can be explained by
differences in underlying prediction dynamics. LR models reveal linear associations whereas
ensembles and non-linear learners unearth more complex, non-linear associations [49]. Neu-
ral networks modelled after the architecture of the human nervous system, are non-linear
organisations consisting of input-, hidden-, and output- layers capable of handling large quan-
tities of data and yielding novel patterns, interactions, and features [50]. Random forests algo-
rithm is structured as an ensemble of trees in which each tree represents a vector of random
variables. It offers high computational efficiency and interpretable outputs via variable impor-
tance estimates [51, 52]. Therefore, structural and functional differences of the applied algo-
rithms would have contributed to the variations in the predictors identified by each. Most of
our findings are supported by contemporary studies. Anthropometric markers were identified
by all algorithms, offering solid support for their high predictive value in type 2 diabetes pre-
diction. Findings indicate that a much broader set of anthropometric markers beyond BMI
may be useful for improving the existing type 2 diabetes prediction paradigm.
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Noteworthily, ultra-processed food consumption has been found an emerging risk factor of
type 1- [53], type 2- [54] as well as gestational [55] diabetes by recent studies which is sup-
ported by findings in the present study as well. Similarly, caffeine intake has been associated
with reduced risk of type 2 diabetes in previous studies as well [56, 57]. Overall, it seems that
all models are equivalent to the ADA diabetes risk test, which is possibly because of the dispro-
portionately high importance of age and BMI. In addition, the mediating effects of BMI and
other anthropometric variables may have contributed to the lack of importance of some nutri-
tional factors. Since the primary goal in the current analysis was prediction rather than aetiol-
ogy, studies are needed to further explore the aetiological pathways. As a whole, the markers of
undiagnosed type 2 diabetes found in the present study are simple and scalable including a
number of self-reported predictors. Higher evidence on these associations should therefore be
gathered via designs such as longitudinal, follow-up studies or pragmatic trials to be incorpo-
rated into future nutritional guidelines for prevention of type 2 diabetes.

A limitation in NHANES data is that there is no direct information on type 1- or type 2- or
other diabetes phenotypes and previous studies used different strategies for defining diabetes
phenotypes [58-61]. Consequently, there may have been a negligible number of adults with
undiagnosed type 1 diabetes in our samples. Moreover, the prevalence of undiagnosed type 2
diabetes in this study may have increased with the use of all 3 glycaemic tests for its definition
whereas only 1 or 2 glycaemic tests were used in previous studies and with comparative differ-
ences in other criteria adopted in its operationalisation [58-61].

This study demonstrated that the proof-of-concept ML workflow previously proposed by us
[32] is viable, when applied to different research contexts with appropriate modifications, indi-
cating a high degree of generalisability and adaptability. As the obstacles to implementing ML
interventions in healthcare are widespread and systemic [62], those requiring only customarily
compiled health information would offer more realistic solutions. Therefore, deliberate exclu-
sion of serum biomarkers from the present analysis has produced prototypical models contain-
ing information that can be broadly and easily integrated into the nutritional management of
people with type 2 diabetes. While predictors such as serum biomarkers and -omics data form
an important and sought-after part of precision nutrition [63], the current analysis showed that
the exhaustive usage of regularly available information may help identify novel nutritional
markers of type 2 diabetes and enhance prediction hence should not be overlooked.

Conclusion

In conclusion, we report a smorgasbord of novel and classic nutritional markers that could be
used concomitantly with known behavioural and non-modifiable markers to optimise the pre-
diction of undetected type 2 diabetes in adults. Our findings may have practical implications
as a step towards personalised clinical nutrition, such as risk-stratified nutritional recommen-
dations and early preventive strategies aimed at high risk individuals as well as in the nutri-
tional management of people with type 2 diabetes.
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