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Prudent antimicrobial use requires knowledge of pharmacokinetics (PK) in a specific fish

species which in turn depends on water temperature and salinity. Although the influence

of each individual factor is known, the combined effect is less clear. The objective of the

current study was to investigate the effect of temperature and salinity concurrently on

the PK of florfenicol (FF) in Nile tilapia reared in brackish water. Twenty-eight fish were

divided into four groups and kept at one of two temperatures (24 vs. 32◦C) and two

salinity levels (5 vs. 15 ppt). The FF was administered at a single dose of 15 mg/kg body

weight via oral gavage. The serum concentrations were analyzed by HPLC method and

the PK parameters were analyzed by a 2-compartmental model. The result revealed that

at 32◦C, the elimination half-lives (t1/2β), time to reach the peak concentration (Tmax), area

under the serum concentration-time curve (AUC), and mean residence time (MRT) were

significantly decreased, while the clearance relative to bioavailability (CL/F) significantly

increased compared to those at 24◦C. The extents of these PK changes were similar

at the two salinity levels. On the contrary, increasing the salinity from 5 to 15 ppt at a

given temperature level produced no significant change in the PK behavior. Our finding

indicated that only water temperature, but not salinity, is the major determinant factor

governing the FF fate in the fish body.

Keywords: antimicrobials, aquaculture, environmental factor, fish, pharmacokinetics

INTRODUCTION

Nile tilapia (Oreochromis niloticus) is among the fastest-growing species of tilapias, and has been
popularly cultured worldwide. The global production of Nile tilapia from the aquaculture sector
in 2018 was 4.5 million tons, being the fourth place after grass carp (Ctenopharyngodon idella,
5.7 million tons), Pacific white shrimp (Litopenaeus vannamei, 5.0 million tons), and silver carp
(Hypophthalmichthys molitrix, 4.8 million tons) (1). The desirable characteristics of Nile tilapia for
aquaculture production include fast growth (attaining a marketable size of 500–800 g within 6–
8 months), good adaptability to captive conditions, tolerance to relatively poor water quality and
crowding, relatively disease resistant, and feeding on low trophic levels (2, 3).
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As a tropical freshwater fish, the optimal water temperature
and salinity of Nile tilapia for the growth performance
are between 28–32◦C and 0–8 ppt, respectively (2, 4–7).
Nevertheless, it has been suggested that Nile tilapia is also suitable
for brackish water aquaculture for the salinity level up to 15
ppt (3, 8). The lower and upper lethal temperatures for Nile
tilapia are 11–12◦C and 42◦C, respectively (2, 3), whereas the
upper lethal salinity varies from about 20 ppt to about 40 ppt
depending on the water temperature and the rate of salinity
change (i.e., direct transfer vs. gradual acclimatization) (2, 9–
11). The comparatively high performance in adaptability to a
broad range of environmental conditions render Nile tilapia
farming prosperous across different geographical locations,
ranging from tropical to temperate climates, and from freshwater
to brackish water.

The intensification of aquaculture has made industrial-scale
food production systems possible. However, this benefit is
often compromised by bacterial disease outbreaks, especially in
overcrowded or poor management conditions. Among the most
important bacterial pathogens of Nile tilapia are Aeromonas
hydrophila, Flavobacterium columnare, Streptococcus agalactiae,
S. iniae, and Francisella orientalis (synonym F. asiatica) (12,
13). While A. hydrophila and F. columnare diseases occur
almost exclusively in freshwater-reared tilapia particularly at
high temperature, infection with S. agalactiae, S. iniae, and
F. orientalis can be found in both freshwater and saline water
systems (12). Streptococcosis usually occurs at 32◦C or warmer
(13). Experimental challenge with S. agalactiae caused higher
mortality at 33◦C compared to 25◦C in Nile tilapia (14), whereas
themortality due to F. orientalis experimental infection wasmore
serious at 25◦C than 30◦C in both freshwater and marine water
environments (15).

In the event of the bacterial epizootic, an antimicrobial drug
often becomes the only effective measure to control the massive
fish loss. In fact, the primary benefit of the use of veterinary
medicines in aquaculture is that they support the development
of intensive, industrial-scale aquatic farming, but the drug
application is justifiable only for prudent and responsible use
(16). Pharmacokinetics (PK) data are very crucial for the selection
of the appropriate dose and dosing interval, and the prediction
of the clinical outcome. Florfenicol (FF) is among the most
popular antibacterial drugs approved for aquaculture use in
many countries at the recommended dose of 10–15 mg/kg body
weight (17–19). Despite the fact that many PK data of FF in
fish species are available in the literature, most of these studies
investigated the PK behavior at only one temperature and one
salinity level. Nevertheless, the effect of water temperature on
the PK of FF has been assessed in some fish species including
Nile tilapia (20), common carp (Cyprinus carpio) (21), channel
catfish (Ictalurus punctatus) (22), Japanese eel (Anguilla japonica)
(23), crucian carp (Carassius auratus) (24), Wuchang bream
(Megalobrama amblycephala) (25), and spotted halibut (Verasper
variegates) (26), whereas the influence of salinity has been
studied only in Nile tilapia (27). Unfortunately, to the best
of the author’s knowledge, the combined effect of temperature
and salinity on the PK of FF has yet to be revealed in any
fish species.

Regarding the PK characteristics of FF in Nile tilapia, the most
important finding by our previous studies was that increasing
either temperature (from 24 to 32◦C, at 0 ppt) or salinity (from 0
to 15 ppt, at 28◦C) resulted in faster FF elimination, thereby the
larger dose of FF would be required at the warmer temperature
or high salinity above 8 ppt (20, 27). The potential interaction
between these two environmental factors, either additive or
synergistic, might happen such that the fastest drug elimination
would be seen at the warm saline water as opposed to the
cool freshwater. The current study aimed to investigate the
effect of temperature (24 vs. 32◦C) and salinity (5 vs. 15 ppt)
simultaneously on the PK behavior of FF in brackish water-reared
Nile tilapia. The result would provide helpful information for
antimicrobial chemotherapy with FF at different temperature and
salinity levels.

MATERIALS AND METHODS

Chemicals
FF and florfenicol amine (FFA) reference standard, sodium
dodecyl sulfate, and ammonium hydroxide (NH4OH) were
purchased from Sigma-Aldrich (St. Louis, MO). Acetonitrile
(HPLC grade) and N,N-dimethylformamide were purchased
from Avantor Performance Materials (Center Valley, PA).
Triethylamine was purchased from Alfa Aesar, Thermo Fisher
Scientific (Heysham, Lancashire, UK). Propylene glycol was
purchased from AppliChem GmbH (Darmstadt, Germany).
Sodium di-hydrogen phosphate anhydrous (NaH2PO4) was
purchased from Panreac Química SLU (Barcelona, Spain).
Phosphoric acid (H3PO4, 85% purity) was purchased from
Scharlau (Barcelona, Spain).

Experimental Fish
Nile tilapia (500–700 g), obtained from a commercial farm in
Chiayi County, Taiwan, were acclimatized in a concrete pond
containing freshwater at the College of Veterinary Medicine,
National Chung Hsing University, Taiwan a few weeks before
the experiment began. To study the simultaneous effects of water
temperature (2 levels: 24 or 32◦C) and salinity (2 levels: 5 or 15
ppt) on PK parameters of FF, a 2 × 2 factorial design was used.
Twenty-eight fish were randomly assigned into one of the four
groups (n = 7 for each group), namely, 24◦C with 5 ppt, 24◦C
with 15 ppt, 32◦C with 5 ppt, and 32◦C with 15 ppt. Each fish was
reared individually in a 70-L tank about 1 week before the drug
administration. All fish were in good condition and showed no
sign of stress during the acclimation period. The desired water
temperature degrees were maintained by an aquarium heater
in the air-conditioned room, while the predetermined salinities
were adjusted by adding aquarium sea salt (Blue Treasure-Tropic
Fish Sea Salt, Qingdao Sea-Salt Aquarium Technology, China)
with adjusting rate of no greater than 5 ppt per day. The dissolved
oxygen, pH, and total ammonia nitrogen throughout the study
period were ≥5.0 ppm, 7.5–8.0, and <1.0 ppm, respectively. The
animal study was approved by the Institutional Animal Care and
Use Committee of National Chung Hsing University (IACUC
approval No.: 108-134).
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Drug Administration and Blood Collection
The FF solution for oral gavage was prepared by dissolving
the FF reference standard powder with 200 µL of N,N-
dimethylformamide and adjusting the volume with
1,2-propylene glycol to attain the final concentration of 15
mg/mL. Each fish was administered the FF solution at a dose of
15 mg/kg body weight using a 1-mL syringe 8.4-cm stainless steel
oral gavage tube. Approximately 0.4–0.5mL of the blood sample
was drawn from the caudal vessel without using anticoagulant at
the predetermined time points, namely at 0.25, 0.5, 1, 2, 4, 8, 12,
24, 36, 48, 60, and 72 h post-administration. The fish were not
fed after drug administration to avoid increased metabolic rate
associated with food digestion and waste excretion, potentially
helpful in minimizing stress during serial blood collection. The
blood samples were allowed to clot at room temperature, and
then centrifuged at 2000 × g for 10min. The supernatants
(serums) were collected and kept at−20◦C until analysis.

Sample Preparation and HPLC Analysis
The sample preparation and HPLC analysis of FF and FFA in the
serum were modified from Xia et al. (28) and Wang et al. (29).
The serum samples (200 µL) were extracted twice with 600 µL
acetonitrile:ammonium hydroxide (98:2, v/v) and centrifuged at
2000 × g for 10min. The supernatants were combined into a
50-mL tube and evaporated in the fume hood until completely
dry. The residue was reconstituted with 200 µL mobile phase,
and then filtered through 0.2-µm nylon syringe filter prior to the
HPLC analysis.

The concentrations of FF and FFA in serum were analyzed by
the HPLC method. The mobile phase consisted of acetonitrile
and phosphate buffer (a mixture of 10mM NaH2PO4, 5mM
sodium dodecyl sulfate, 0.01% triethylamine, and adjusted
pH to 4.8 by 85% H3PO4) at 35:65 v/v. The HPLC system
consisted of a pump (1260 Infinity II, Agilent Technologies,
Santa Clara, CA), fluorescence detector (G7121A, Agilent
Technologies, Waldbronn, Germany), vialsampler (G7129A,
Agilent Technologies, Waldbronn, Germany), and C-18 column
with 5-µm particle size, 150 × 4.6mm (Apollo, Hichrom, UK).
The flow rate was 1 mL/min, and the excitation and emission
wavelengths were 233 and 284 nm, respectively. The injection
volume was 50 µL. The retention times of the FF and FFA peaks
were about 3 and 7min, respectively. The HPLC chromatograms
of FF and FFA are presented in Figure 1.

To establish the matrix-matched calibration curves for
quantification of FF and FFA concentration in the serum, the
FF and FFA reference standards were spiked into the blank
tilapia serum (collected from the same batch of unmedicated
fish) to attain the final concentrations of 50, 100, 500 ng/mL, 1,
5, 10, and 20µg/mL, then extracted and analyzed by the HPLC
method described above (n = 5). The weighting factor of 1/x2

was applied.

Pharmacokinetic Analysis
PK characteristics of FF were determined by the 2-
compartmental model with a weighting scheme of 1/C. PKSolver
2.0 software (China Pharmaceutical University, Nanjing, China)
(30) was used to analyze PK parameters including absorption

rate constant (Ka), absorption half-life (t1/2Ka), distribution
rate constant (α), distribution half-life (t1/2α), elimination rate
constant (β), elimination half-life (t1/2β), transfer rate constant
from the central (1) to the peripheral (2) compartment (k12),
transfer rate constant from the peripheral (2) to the central (1)
compartment (k21), elimination rate constant from the central
compartment (k10), maximum serum concentration (Cmax),
time to reach Cmax (Tmax), area under the serum concentration-
time curve (AUC), volume of distribution (Vd) of the central
compartment relative to bioavailability (Vc/F), Vd during
the elimination phase relative to bioavailability (Vz/F), Vd at
steady-state relative to bioavailability (Vss/F), clearance relative
to bioavailability (CL/F), and mean residence time (MRT).

Statistical Analysis
The effects of temperature and salinity on PK parameters
were simultaneously analyzed by two-way ANOVA (2 × 2
factorial design) using IBM SPSS Statistics version 27 software
(IBM Corporation, Armonk, NY). When the assumption for a
parametric statistical test was violated, the effects of temperature
and salinity on a given PK parameter were separately compared
by a nonparametric Mann-Whitney U test. In all cases, the
p-value <0.05 was considered statistically significant.

RESULTS

HPLC Method Validations for Analysis of
Florfenicol
The matrix calibration curves were linear over the range of
50 ng/mL to 20µg/mL with a weighted r2 of 0.9982 (FF) and
0.9920 (FFA), the limits of detection (LOD) were 6 ng/mL (FF)
and 12 ng/mL (FFA), the limits of quantification (LOQ) were
19 ng/mL (FF) and 35 ng/mL (FFA). The LOD and LOQ were
calculated by 3.3∗σ/S and 10∗σ/S, respectively (σ = standard
deviation of the y-intercept of the regression line; S = slope
of the calibration curve). The percent extraction recovery was
approximately 80–100% (FF) and 50–60% (FFA) at working
ranges. The intra-day precision was <3% (for 0.1–20µg/mL FF),
5.2% (for 50 ng/mL FF),<7% (for 0.1–20µg/mL FFA), and 10.7%
(for 50 ng/mL FFA). The inter-day precision was 7.4–10.5% (for
0.1–10µg/mL FF) and 6.5–9.6% (for 0.1–10µg/mL FFA). The
accuracy was 91–99 % (FF) and 92–100 % (FFA).

Pharmacokinetic Study
Although an attempt has been made to quantitate both FF and
its major metabolite FFA simultaneously in the fish serum by the
HPLCmethod, in general, the FFAwas irregularly detected at low
concentrations, often near or below the LOQ. Therefore, the FFA
was excluded from the subsequent pharmacokinetic analysis.

The current study revealed that increasing the water
temperature from 24 to 32◦C caused significant changes in some
key PK parameters of FF regardless of salinity levels (Table 1).
Specifically, the t1/2β were shortening from about 15 to 8 h, the
Tmax were shortening from about 1 to 0.6 h, the AUCwere almost
halved from about 400–200 h·µg/mL, the CL/F were increased
from 0.04 to 0.06 L/kg/h, and the MRT were decreased from
about 20 to 11 h. The t1/2Ka and t1/2α were also decreased as
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FIGURE 1 | The representative HPLC chromatograms of 2µg/mL reference standards of florfenicol (FF) and florfenicol amine (FFA) in the mobile phase and

tilapia serum.

the temperature rose even though the results were statistically
significant at only one salinity level (i.e., at 15 ppt for t1/2Ka
and at 5 ppt for t1/2α). In contrast, water temperature alteration
produced no change in the Cmax and all three Vd/F values (i.e.,
Vc/F, Vz/F, and Vss/F).

As opposed to the effect of the temperature, enhancing water
salinity from 5 to 15 ppt exerted no significant impact on the
PK parameters of FF in the current experimental setting. At a
given water temperature degree, the serum concentration-time
profiles of FF at the two salinities were almost superimposed on
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TABLE 1 | Pharmacokinetic parameters (mean ± SD) of florfenicol following oral

administration (15 mg/kg) at two temperatures and two salinities (n = 4 for the

32◦C with 15 ppt group; n = 7 for the other three groups).

24◦C 32◦C

Ka (1/h): Absorption rate constant

5 ppt 1.78 ± 0.69a,A 2.42 ± 0.16a,A

15 ppt 1.51 ± 0.56a,A 3.39 ± 2.20a,B

t1/2Ka (h): Absorption half-life

5 ppt 0.39 ± 0.14a,A 0.29 ± 0.02a,A

15 ppt 0.46 ± 0.20a,A 0.20 ± 0.11a,B

α (1/h): Distribution rate constant

5 ppt 1.25 ± 0.15a,A 2.13 ± 0.14a,B

15 ppt 1.20 ± 0.31a,A 1.73 ± 0.76a,A

t1/2α (h): Distribution half-life

5 ppt 0.56 ± 0.07a,A 0.32 ± 0.02a,B

15 ppt 0.58 ± 0.19a,A 0.40 ± 0.34a,A

β (1/h): Elimination rate constant

5 ppt 0.048 ± 0.007a,A 0.083 ± 0.011a,B

15 ppt 0.045 ± 0.003a,A 0.086 ± 0.009a,B

t1/2β (h): Elimination half-life

5 ppt 14.52 ± 1.95a,A 8.35 ± 0.09a,B

15 ppt 15.51 ± 1.16a,A 8.06 ± 0.82a,B

k12 (1/h): Transfer rate constant from the central (1) to peripheral (2)

compartment

5 ppt 0.72 ± 0.13a,A 1.25 ± 0.14a,B

15 ppt 0.63 ± 0.32a,A 0.94 ± 0.54a,B

k21 (1/h): Transfer rate constant from the peripheral (2) to central (1)

compartment

5 ppt 0.44 ± 0.09a,A 0.71 ± 0.06a,B

15 ppt 0.35 ± 0.11a,A 0.65 ± 0.16a,B

k10 (1/h): Elimination rate constant from the central compartment

5 ppt 0.14 ± 0.01a,A 0.25 ± 0.04a,B

15 ppt 0.13 ± 0.04a,A 0.22 ± 0.08a,B

Cmax (µg/mL): Maximum serum concentration

5 ppt 29.59 ± 4.63a,A 27.75 ± 2.96a,A

15 ppt 25.66 ± 2.36a,A 27.97 ± 2.59a,A

Tmax (h): Time to reach Cmax

5 ppt 0.95 ± 0.20a,A 0.60 ± 0.04a,B

15 ppt 1.15 ± 0.33a,A 0.61 ± 0.14a,B

AUC (h): Area under the serum concentration-time curve

5 ppt 423.28 ± 99.13a,A 233.00 ± 33.63a,B

15 ppt 393.40 ± 41.65a,A 235.66 ± 25.02a,B

Vc/F (L/kg): Volume of distribution of the central compartment

relative to bioavailability

5 ppt 0.27 ± 0.06a,A 0.27 ± 0.04a,A

15 ppt 0.32 ± 0.11a,A 0.32 ± 0.12a,A

Vz/F (L/kg): Volume of distribution during the elimination phase

relative to bioavailability

5 ppt 0.77 ± 0.11a,A 0.79 ± 0.11a,A

15 ppt 0.86 ± 0.09a,A 0.75 ± 0.03a,A

Vss/F (L/kg): Volume of distribution at steady-state relative to

bioavailability

5 ppt 0.71 ± 0.09a,A 0.73 ± 0.10a,A

15 ppt 0.79 ± 0.08a,A 0.69 ± 0.03a,A

(Continued)

TABLE 1 | Continued

24◦C 32◦C

CL/F (L/kg/h): Clearance relative to bioavailability

5 ppt 0.037 ± 0.007a,A 0.066 ± 0.010a,B

15 ppt 0.039 ± 0.005a,A 0.064 ± 0.007a,B

MRT (h): Mean residence time

5 ppt 20.34 ± 2.61a,A 11.70 ± 1.53a,B

15 ppt 21.35 ± 1.66a,A 11.19 ± 1.19a,B

The means of half-lives are harmonic means whereas the means of the other PK

parameters are arithmetic means. For each PK parameter, means with different small

superscripts in each column and means with different capital superscripts in each row

are significantly different from each other (p < 0.05).

each other (Figures 2, 3). Throughout the study period, all fish
survived the experiment except three fish in the 32◦C with 15 ppt
group, rendering the sample size of that group with four fish.

DISCUSSION

Even though the water temperature of 28–32◦C and salinity of
0-8 ppt are generally considered optimal for Nile tilapia culture
(2, 4–7), the fish is also well recognized for its adaptability to
wide environmental conditions. In a relatively stress-free rearing
environment, at least some strains of Nile tilapia can tolerate
a wide range of water temperature (16–37◦C) and salinity (0–
22 ppt) with 98–100% survival rates (5, 31), while the other
strains suffered certain degrees of mortality when the salinity
was increased above 8 ppt, irrespective of the water temperature
(4). In the current experimental conditions, all individual fish
in the 24◦C with 5 ppt, 24◦C with 15 ppt, and 32◦C with
5 ppt groups were successfully raised toward the end of the
predetermined sampling time point. For the Nile tilapia in the
32◦C with 15 ppt group, however, 3 out of the 7 fish died before
the experiment finished which indicated that the combination
of high temperature and high salinity was stressful and deemed
unsuitable for Nile tilapia culture in some circumstances (such
as high stocking density) even if it has been suggested that Nile
tilapia can be successfully reared at 32◦C and salinity up to 15
ppt (2, 3, 8). In addition, Nile tilapia cultured at a very low
temperature (14◦C) also was less tolerant to high salinity water
compared to those reared within the optimal temperature (30◦C)
(10). Thus, at the extreme ends of their optimal temperature
and salinity ranges, Nile tilapia is more susceptible to stress-
induced mortality. This finding might imply the existence of
interplay between the water temperature and salinity on certain
physiological aspects. Nevertheless, this interaction did not affect
the PK results of FF in the current experimental setting (as
discussed below). Fish farmers who raise Nile tilapia in brackish
water above 8–10 ppt in a tropical climate should pay attention to
avoid any potential stressors and monitor the fish health closely
particularly during the hot summer.

In the current experimental setting, certain PK parameters
including t1/2Ka, t1/2β, Tmax, AUC, CL/F, and MRT of FF were
significantly changed when the temperature was increased from
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FIGURE 2 | Linear (above) and semi-logarithmic plots (below) of the complete serum concentration-time profile from 0 to 72 h (mean ± SD) of 15 mg/kg florfenicol

following oral (PO) administration at two temperatures and two salinities (n = 4 for the 32◦C with 15 ppt group; n = 7 for the other three groups).
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FIGURE 3 | Linear (above) and semi-logarithmic plots (below) of serum concentration-time profile during the first 8 h (mean ± SD) of 15 mg/kg florfenicol following oral

(PO) administration at two temperatures and two salinities (n = 4 for the 32◦C with 15 ppt group; n = 7 for the other three groups).
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24 to 32◦C, whereas increasing the salinity from 5 to 15 ppt
produced no significant effect in any PK parameters investigated.
The result suggested that the temperature has a greater impact
on the absorption, distribution, and elimination processes of
FF compared to the salinity. It is well recognized that water
temperature has a strong influence on fish metabolic rate (32,
33) and other physiological functions such as cardiac output
(34, 35). Likewise, the activities of xenobiotic-metabolizing
enzymes are usually higher at the warmer temperature (36–
40). The changes in enzyme activities were attributed to the
different isozymes produced at different temperature levels
rather than the alteration of the enzyme content per se (36–
38). Therefore, the more rapid FF elimination at 32◦C in
the present study was probably attributed to the temperature-
induced enhancement of FF-metabolizing enzyme activity. Even
though the identity of the enzyme has not been revealed yet,
based on literature reviews it likely belongs to a member of
the CYP3A subfamily (41–43). On the contrary, the faster FF
absorption at higher temperature was likely a result from the
increased gut blood flow mainly due to the increased cardiac
output (44, 45).

The findings that increasing water temperature leads to a
decrease in AUC, t1/2Ka, t1/2β, Tmax, and MRT, and an increase
in CL/F of FF in Nile tilapia reared in 5 and 15 ppt salinities were
generally in agreement with our previous study with freshwater-
reared Nile tilapia using a similar experimental design (20),
indicating that the salinity has little, if any, effect on the PK
of FF in Nile tilapia. Nevertheless, some minor disagreements
between the two studies were noticed. For instance, while
the Cmax and Vd/F of the brackish water-reared Nile tilapia
in the current study were not significantly affected by the
temperature changes, the opposite was true for the Nile tilapia
cultured in 0 ppt water (20). Other than the possible effect
of salinity difference, batch-to-batch variation of Nile tilapia
strains between the two experiments may be another possible
explanation since different tilapia strains could have different
growth performance and adaptability in saline water (46–48). It
is worth mentioning that the directions of change for the AUC,
t1/2β, Tmax, and MRT (which decrease at a higher temperature)
and CL/F (which increase at a higher temperature) of FF were
almost consistently observed across various fish species and
experimental conditions (20–26). In contrast, the effects of water
temperature on Cmax and Vd/F were more elusive. For example,
increasing temperature resulted in decreased Cmax and increased
Vd/F in Nile tilapia (20), increased Cmax and decreased Vd/F
in crucian carp (24) and Japanese eel (23), or no change in
both parameters in channel catfish (22). Other than FF, the
variability in the change direction of Cmax and Vd/F following
temperature change was seen in other antibacterial drugs
as well (49–52).

The potential interaction between the temperature and
salinity factors on PK was not evident in the current study. When
the water temperature was raised from 24 to 32◦C, the extents
of the changes in the AUC, t1/2β, CL/F, and MRT were similar,
being about 1.7–1.9-fold differences, at both salinity levels. The
apparent lack of salinity effect was somewhat unexpected since
our previous work demonstrated significant faster FF elimination

in Nile tilapia reared at higher salinity (>8 ppt) at 28◦C (27),
and other studies with oxytetracycline in tilapia (Oreochromis sp.)
(53), oxolinic acid in rainbow trout (54, 55), and flumequine in
Atlantic salmon (56, 57) also supported this finding. Nonetheless,
the differences in salinity levels in these previous studies were
large, namely from 0 ppt to about 30 ppt in the cases of
oxytetracycline in tilapia and quinolones in salmonids (54–57)
or from 0 to 15 ppt in the case of FF in Nile tilapia (27). On
the other hand, the 10 ppt-salinity difference (from 5 to 15 ppt)
in the present study might not be big enough to significantly
affect the fish physiological functions and reveal statistically
significant differences.

The stronger influence of the water temperature over
the salinity on the FF elimination was foreseeable. While the
salinity is more important than temperature in influencing the
plasma/serum osmolality and gill Na+/K+-ATPase activity, the
effect of water temperature is stronger in affecting the growth
rate and feed efficiency of Nile tilapia (5, 31). As our previous
work found that Nile tilapia can maintain the serum osmolality
at a relatively constant level, around 322–347 mOsm/kg over the
salinity range of 0–15 ppt, such that the osmolality is unlikely to
play any significant role in a drug elimination mechanism (27).
However, other salinity-induced physiological changes such as
salt excretion or water retention cannot be ruled out and are
worth further investigation, even though the salinity effect on
FF PK may not be discernable in our study. In contrast, a higher
metabolic rate at a warmer temperature not only directly affects
the growth, feed utilization, and digestive enzyme activities (5,
31, 58), but also drug-metabolizing enzyme activities (39, 40).
For that reason, water temperature is considered the principal
environmental factor determining the rate of drug elimination
from the fish body.

The results from the present study expanded our previous
knowledge and provided a more complete picture of the effects
of temperature and salinity on the PK behavior of FF in Nile
tilapia. Temperature significantly affects certain PK parameters
of FF, especially those in association with the drug elimination
in both freshwater (20) and brackish water-reared Nile tilapia.
Little interaction between the temperature and salinity was
observed in the current setting. In addition, a previous finding
that salinity effect is less important than temperature holds
true not only at 28◦C (27) but is also applicable over the
entire range of the preferred temperature for Nile tilapia
aquaculture (24–32◦C).

CONCLUSION

Temperature, but not salinity, dictated the pharmacokinetic
behavior of FF in brackish water-reared Nile tilapia. Following
the increment of water temperature from 24 to 32◦C at both
salinities (5 and 15 ppt), the t1/2β, Tmax, AUC, and MRT were
decreased almost twofold while the CL/F increased at a similar
extent. The current finding suggested that the PK parameters
determined at a low salinity level can practically be applied to the
medium salinity level as well and vice versa.
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