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Localisation of weakly interacting 
bosons in two dimensions: disorder 
vs lattice geometry effects
Luis A. González-García1, Santiago F. Caballero-Benítez1,2,3 & Rosario Paredes1

We investigate the effects of disorder and lattice geometry against localisation phenomena in a weakly 
interacting ultracold bosonic gas confined in a 2D optical lattice. The behaviour of the quantum fluid 
is studied at the mean-field level performing computational experiments, as a function of disorder 
strength for lattices of sizes similar to current experiments. Quantification of localisation, away from 
the Bose glass phase, was obtained directly from the stationary density profiles through a robust 
statistical analysis of the condensate component, as a function of the disorder amplitude. Our results 
show a smooth transition, or crossover, to localisation induced by disorder in square and triangular 
lattices. In contrast, associated to its larger tunneling amplitude, honeycomb lattices show absence of 
localisation for the same range of disorder strengths and same lattice amplitude, while also exhibiting 
partial localisation for large disorder amplitudes. We also conclude that the coordination number z have 
a partial influence on how fast this smooth transition occurs as the system size increases. Signatures of 
disorder are also found in the ground state energy spectrum, where a continuous distribution emerges 
instead of a distribution of sharp peaks proper to the system in the absence of disorder.

Absence of transport in solids is intimately related with either, interparticle interactions or structural disorder. 
Here, we focus our attention in localization phenomenon induced by disorder in lattices in two dimensions. The 
typical model for a real electronic material that predicts localisation for finite disorder strength (Anderson tran-
sition)1, states that at zero temperature ( =T 0) this occurs for dimensions ≤d 22. In other words, a metallic sys-
tem has always localised states for any disorder strength in ≤d 2. Several refinements to those predictions have 
been formulated for isotropic media3–8 having a random distribution of scatterers. However, since Anderson 
localization is indeed a universal phenomenon, it than can be found also in anisotropic media, and in different 
situations than those belonging to the context of electronic transport. For instance, propagation of light in sol-
ids9,10 in either anisotropic or orientationally ordered scatterers have been explored. In the condensed matter 
scenario, it is difficult to isolate the effects of the underlaying lattice structure against those associated to interpar-
ticle interactions. In contrast, ultracold neutral gases are perhaps the most versatile and simple setting to explore 
new possibilities in the study of transport properties, as compared to the analogous real materials with electrically 
charged particles11–14. Neutral ultracold gases confined in an optical lattice allow to have each aspect related to 
either dynamical or stationary properties, to be externally controlled with high precision15. Mott insulating tran-
sitions addressed theoretically in boson16–18, and fermion17,19,20 cases, have been also experimentally tested in 
both, Fermi21 and Bose22 samples. Even more, Bose glass phases23,24 and Anderson localization and have been 
realized in bosonic25–31 and fermionic systems32,33. More recently, the interplay of disorder and interactions has 
been tested in Bose34,35 and Fermi36 gases confined optical lattices. In particular, in that experiment, the difficulty 
to reach equilibrium configurations caused by disorder and the interplay with strong two body on-site interac-
tions were explored. From the theoretical perspective, there has been an extensive amount of work addressing the 
study of transport in disordered optical lattices15,37–40. Additionally, proposals to investigate fractal structure 
induced by disorder41 and measurement of system replicas simultaneously42 have been put forward. The interplay 
of disorder with spin-orbit coupling43, spin degrees of freedom44,45, supersolidity46, and Dirac fermions47 are being 
explored. New developments to diagnose critical behaviour in the Hubbard model using neural networks have 
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been considered48, as well as, engineering of bound states via disorder49. Some standard schemes used to study the 
referred phenomenology are approximations to the extended and hybrid Bose-Hubbard model using Gützwiller 
ansatz50, Stochastic Mean-Field Theory15,51,52, Self-energy Functional Theory53 and the use of Monte-Carlo simu-
lations54,55. Numerical exact diagonalization simulations in the full quantum limit are difficult to perform since 
the size of Hilbert space grows exponentially with the number of lattice sites. Moreover, Renormalization Group 
schemes are computationally very expensive for systems in dimensions larger than one. Additionally, in the 
weakly interacting regime Monte-Carlo simulations show strong finite size effects56. This makes difficult the char-
acterisation of the states in the simulations and the identification of the corresponding quantum many-body 
phases of matter. Therefore, other alternatives to address the problem in the lattice with many sites are desirable. 
A suitable approximation scheme is given by using the Gross-Pitaevskii (GP) equation to effectively describe the 
ground state of weakly interacting bosonic systems at low temperatures57,58. The limitations of this approach are 
that fluctuations in the number of particles are always poissonian in GP calculations, unable to represent MI states 
or ensembles of them while depletion is neglected. However, this mean field treatment allows to investigate either 
stationary or dynamical transport properties in the superfluid (SF) regime (compressible phases) away from 
insulating states driven by interactions (incompressible phases). The aim of our study is to give an effective picture 
of the role of geometry in the transport properties of the quantum degenerate gas in the limit of weak interactions 
in an optical lattice. To this end, we employ an approximate treatment using a mean-field description, GP picture. 
In this work, we restrict our attention to the characterisation of disorder induced phenomenology and the inter-
play with the lattice topology via numerical experiments.

In order to identify different signatures of localisation, we describe the weakly interacting bosonic gas in the 
limit of low temperatures ( =T 0), where the system is accurately described by a macroscopic wave function 
ψ tx y( , , ) describing the condensate component of the system58,59. The time evolution of the system is governed 
by the GP equation under the confinement of the optical lattice. This equation allows us to model the stationary 
states of the system subject to different lattice geometries, disorder strength δ, and effective weak on-site interac-
tions. The analysis of our simulations allows us to identify localisation features by varying the disorder strength 
(δ) and the system size (Ω). The number of minima induced by the optical lattice where the atoms localise having 
maximum density peaks defines precisely such a system size. In the absence of disorder (δ = 0), the system is a 
quantum fluid with translational invariance. As the disorder amplitude δ is increased, the formation of regions 
where the density is negligible appear, that is, a continuous density of the condensate is replaced by islands across 
the 2D lattice. This generates disconnected islands that lead to the suppression of atomic transport across the 
whole lattice. We arrived to this conclusion after performing a statistical analysis of several quantities, numerically 
determined, for the condensate wavefunction confined in the 2D disordered lattices. In particular, we studied the 
average of peak heights as well as the density across the lattice. Fragmentation of the condensate in islands is 
qualitatively similar to depletion in the sense that a fraction of the condensate extinguishes in certain regions. 
However, since we are only considering the ground-state of the condensate, that is the =T 0 wave function, we 
are unable to consider finite T  effects52,60. As found in the literature, the inhomogeneity introduced by a random 
potential generates excitations of low energy finite momentum modes61–65, or causes that a fraction of the super-
fluid become a normal fluid in the 3D case66. It has been found in experiments with optical lattices that depletion 
affects marginally (10%) the behaviour of the atomic density in low dimensions (1D or 2D) when optical lattice 
depths are lower than those considered in this work67. This supports the use of an effective description given solely 
in terms of the behaviour of the condensate component in the system as a first approximation. In ultracold gases 
with weak interactions, this suggests that disorder leads to the fragmentation of the SF in the system. This is the 
well known scenario that leads to the formation of a Bose-Glass for larger values of disorder strength, which is 
also a fragmented SF state57,68. However, it is important to stress that in our study we considered both, effective 
interactions and disorder strengths for which the system remains in the superfluid phase, away from the Bose 
glass and insulating phases.

This work is organised as follows. In the section model, we describe the system and parameters used in our 
simulations to analyse localisation effects. In section Disorder induced localised states in 2D lattices, we charac-
terise the localisation or density fragmentation, by performing a robust numerical analysis of several observables. 
Then in section Ground state energy spectra of localised states we study the role of disorder in the 2D lattices in 
the momentum space. Finally in the last section, we summarise our findings.

Model: Weakly Interacting Ultracold Atoms in 2D Disordered Lattices
To analyse the influence that disorder and the lattice geometry have in producing localised states in ultracold 
systems, we consider a weakly interacting gas of Bose atoms confined in several two dimensional lattices, sub-
jected to white noise disorder of variable strength. The system is described by the mean field Gross-Pitaevskii 
equation for the amplitude of the wave function ψ,
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in terms of the −s wave scattering length asc, = πg a N
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, and lz being the natural length of the ground state 
harmonic oscillator of a condensate originally confined in 3D and then squeezed along z direction, thus resulting 
into a disk shape condensate confined in the −x y plane]69–74. The potential δV x y( , )Latt  is given by a two dimen-
sional lattice with triangular, square or honeycomb symmetries75,76,
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with a the lattice constant and ′= .a a0 55 , labels  ∆{, , } identify honeycomb ( =z 3), square ( =z 4) and triangu-
lar lattices ( =z 6), with z  being the coordination number (the number of nearest neighbours), 

ε= +δ
δV V x y(1 ( , ))0 0

Latt , being = .V V2 66 /120 0 , =V V /20 0
 , and = .∆V V3 45 /120 0 . The function εδ x y( , ), repre-

senting a non correlated disorder, takes random values varying in the interval δ δ−[ , ] at each point x y( , ) 
being δ scaled in the same energy units as V0. Thus, the total potential depth at each point δV x y( , )Latt  (disordered 
contribution and optical lattice) is the result of adding/subtracting a random number εδ to the amplitude of the 
potential δ=V x y( , )Latt

0  at each point x y( , ). To perform a reliable analysis of the physical quantities and have mean-
ingful predictions, we average over an ensemble of realisations for each value of the disorder amplitude δ. In Fig. 1 
we show a fragment of the energy landscape used in our study, illustrating a particular realisation of disorder in a 
square geometry. Similar to real experiments, multiple realisations will be considered, as one random realisation 
fails to represent the typical behaviour of multiple scattering events due to uncorrelated disorder. The way in 
which the disorder has been simulated, warrants that, although the lattice symmetry is altered, the underlying 
structure is preserved. It is important to note, that this way of setting disorder through the whole continuous 
coordinate space where the lattice is defined, resembles analog real systems in condensed matter where each par-
ticle “feels” a different energy landscape associated to the disorder in the otherwise perfect lattice. Additionally, 
this way of implementing disorder is similar to consider a random energy shift at each lattice site, as originally 
formulated1. The disordered potentials experimentally created are the result of either, the light arising from an 
optical speckle field produced when a laser beam passes through a diffusing plate26,28,29,77, or the combination of 
both, a standing wave with a defined lattice geometry and the light arising from an optical speckle field27,31.

Simulation considerations and experimental parameters.  In our simulations, we consider typical 
parameters of ultracold 87Rb atoms35 confined in an optical lattice potential in 2D, having depths of ∼V E2 R0  and 
a lattice spacing =a 532 nm, where ER is the recoil energy [ =E h ma/(8 )R

2 2 ]78. At these optical lattice depths the 
single band Bose Hubbard model15,18,78 is an accurate description. Other natural scales for the energy are the 
hopping amplitude between nearest neighbours t0, and the on-site interaction strength in the optical lattice U2D. 
[This onsite effective interaction maintains a proportionality relationship with the coupling interaction g2D, given 
by ∫= | |U g d r w x y( , )2D 2D

2 4, being w x y( , ) the Wannier functions]. For the lattices here analyzed, the tunneling 
amplitude t0 can be estimated analytically in the case of the square lattice78, and numerically in the cases of trian-
gular and honeycomb lattices79–82. As it is well known, the appropriate parameter to verify the range of validity of 
the regime away from strong interaction effects, is the quotient between t0 and U2D. As reported in the literature, 
for a filling factor of =n 1, the SF-MI transition occurs for = ≈ .t̃ t U/ 0 06c 0 2D

 , = ≈ .∆t̃ t U/ 0 04c 0 2D  and 
= ≈ .t̃ t U/ 0 08c 0 2D , for square22, triangular and hexagonal83 lattices respectively. Therefore, stronger effective 

on-site interactions than those bounds in each case are needed to be able to represent sub-poissonian on-site 

Figure 1.  Schematic representation of the two dimensional square disordered lattice potential.
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number fluctuations, that the GP model is unable to reproduce. In our calculations we use .~U E/ 0 01R2D . In this 
case, the system is very far away from the interaction driven insulating states. Therefore, in our simulations there 
is no competition with Mott states. Moreover, we neglect quantum depletion effects as we are in the =T 0 
regime67. Therefore, as we are deep in the SF regime in 2D, the GP theory is a pertinent description in the presence 
of disorder.

A quantity that allows us to establish the range where disorder amplitude can be varied before the system 
enters into the phase in which the density of the condensate becomes discontinuous across the lattice, is the cor-
relation function at the nearest neighbor distance, g1. This quantity can be defined in analogy to the so called 
phase coherence χ t( ) that measures the correlation between values of the Bose condensate wave function at points 
separated one lattice constant d. The phase coherence defined as84 ∫χ ψ ψ≡ +⁎t d x r z t r z d t( ) ( , ; ) ( , ; )3 2

, pro-
vides reliable information of the degree of coherence of the condensate inside the optical lattice84. In our case, the 
correlation function between nearest neighbors, is defined as

∫∑ ψ ψ= + +
∈ . .

⁎g
z

dxdy x y x x y y1 ( , ) ( , )
m n n

m m1 2

2

where z is the coordination number and m is a label that identifies the nearest neighbors sites with respect a site located 
in x y( , ) position. For the particular case of the square lattice we have x a y a( / , / ) {(0, 1), (0, 1)m m = − , 

−(1, 0), ( 1, 0)} while being = − − − −x a y a( / , / ) {(1, 0), (1, 3 /2), ( 1/2, 3 /2), ( 1, 0), ( 1/2, 3 /2),m m  
−(1/2, 3 /2)} for the triangular lattice, and = ± − − −x a y a( / , / ) {(1, 0), ( 1/2, 3 /2), ( 1/2, 3 /2)}m m  for 

the honeycomb geometry. The correlation g1 gets lost when the density of the condensate is discontinuous, thus pre-
venting the GP approach. Therefore, besides considering values of effective interaction for which the system is well 
below the MI phase, we shall also consider values of disorder strength that guaranty that the interacting Bose gas 
remains sufficiently smooth, in order to ensure that our description of the condensate in terms of solutions of a differ-
ential equation still makes sense. We should mention here that the phase coherence is a quantity that allows to distin-
guish when the condensate is not a Bose glass51. In Fig. 2 we show the behaviour of g1 as a function of δ for the analysed 
lattices. The values of the correlation g1 in this plot are normalised with respect to its value at zero disorder. Error bars in 
this figure are associated to the ensemble of realisations for each value of δ (measured in units of recoil energy). As can 
be appreciated from Fig. 2, for values of δ below 1, the system remains distributed across the lattice. Thus we can safely 
consider disorder strengths below one hundred percent of the recoil energy ER to be in the superfluid regime.

In typical ultracold experiments besides disorder in the lattice, the atoms move under the influence of a har-
monic confinement, so that → +V V VT , with ω= +V m x y( )T

1
2

2 2 2 . Although this contribution can also be 
considered in our mean field analysis, and in fact we performed calculations to investigate the modifications that 
the inhomogeneity introduces, we note that real analog systems are not under the presence of a harmonic poten-
tial, but instead each particle is immersed in a very large (infinite) disordered lattice. Also, near the center of the 
trap in a typical ultracold atom experiment it is reasonable to neglect harmonic confinement for sufficiently large 
lattices. Thus, our analysis will focus on lattices without the harmonic confinement for simplicity.

Disorder induced localised states in 2D lattices.  Using the effective model given by Eq. (1), we study 
the emergence of localisation for honeycomb, square and triangular lattices as a function of the disorder ampli-
tude and the system size. In order to describe the ground state of the system, we numerically solve Eq. (1) using 
imaginary time evolution ( τ→t i ), which is equivalent to finding the lowest energy solution or steady-state solu-
tion ψ ψ→ 0. [The size of the grid was chosen to ensure the norm conservation. The Split-Step Crank-Nicholson 
method in imaginary time was used to find the stationary state. To ensure the reliability of the stationary state 
found, we evolved such a state in real time and verified its invariance]. This solution represents the amplitude of 
the macroscopic wave function of the system at =T 0 in the lowest energy state. We simulate the GP equation in 
continuous coordinate space for a given disorder amplitude δ and analyse the obtained density profiles 

Figure 2.  Correlation function between nearest neighbours g1 as a function of δ for the hexagonal (z = 3), 
square (z = 4) and triangular (z = 6) lattices. Error bars in this figure are associated to the ensemble of 50 
realisations for each value of δ.
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ρ ψ= | |x y x y( , ) ( , )0
2. As explained previously, the limitations of our treatment are that it does not account for 

depletion of the condensate, non-poissonian density distributions and it is a zero temperature model. However, it 
allows to study the combined effects of geometry and disorder, which is the main purpose of this work. The iden-
tification of localisation is made from the stationary state by first quantifying the density across the lattice sites, as 
a function of disorder for a given lattice geometry. Then, to further comprehend the emergence of localisation, we 
study the behaviour of the stationary localised states as a function of system size. For our calculations, we consider 
lattices having number of sites used in typical experiments performed in 2D lattices. In order to have meaningful 
quantities as a function of the disorder amplitude, we consider sets of ~50 realisations of random numbers for 
each value δ and a given lattice size Ω. The size Ω, is identified as the number of minima of the potential δV x y( , )Latt  
without disorder. The initial state used in all of our calculations to reach the steady state is a constant distribution 
ψ =x y( , ) constant0  [The size of the grid was chosen to ensure the norm conservation. The Split-Step 
Crank-Nicholson method in imaginary time was used to find the stationary state. To ensure the reliability of the 
stationary state found, we evolved such a state in real time and verified its invariance].

The information obtained directly from our numerical calculations can be summarised as follows. 1. At zero 
disorder strength, gaussian peaks centred at lattice sites fill the entire space, being the amplitude of those peaks 
the same across the lattice, except at the edges where the boundary condition (end of the lattice) give rise to peaks 
with lower amplitudes, 2. When the magnitude of disorder δ is non zero, gaussian peaks are not distributed uni-
formly in the whole lattice, instead of that, several sites in the lattice show a diminished density, thus exhibiting 
peaks with lower amplitudes. We fixed an arbitrary criterium to count the non negligible peaks contributing to 
the superfluid density (for a given disorder strength, only peaks having amplitudes larger than 5 percent of the 
highest amplitude are considered for the statistics), 3. As expected, different realisations of disorder associated to 
a given value of the disorder amplitude, produce different distributions of peaks across the lattice. What it is 
important to stress is that different realisations of disorder have, on average, the same distribution of heights and 
density peaks, 4. As the size of the disorder amplitude increases, the spatially distributed random peaks become 
sparse, and therefore, in accordance with the condition of constant density, the heights of the peaks become taller, 
and 5. As the magnitude of disorder is increased, the zero disorder scenario is replaced by a fragmented density 
across the lattice. For illustration purposes in Fig. 3, we show the stationary density profiles for one of the realisa-
tions and different lattice geometries ( =z 3,4,6). These profiles correspond to disorder amplitudes of 20%, 40% 
and 80% of the value of V x y( , )lattice at each point x y( , ). The analysis of many realisations of these density distri-
butions is the core of our work.

In the typical model of localisation induced by disorder without interactions, the envelope of the wave func-
tion (ϕ) gets localised exponentially1. In 1D, in an isotropic medium with randomly distributed scatterers 
ϕ ξ∼ −| − |x exp x x( ) ( /( )0 Loc  where x0 is some arbitrary point in the space, ξLoc is a localisation length7. Within 
the self consistent theory8, the localisation length depends on disorder as ξ ∼ l klexp( )Loc  in 2D and ξ ∼ lLoc  in 
1D, where l is the scattering mean free path and k the wave momentum. In low dimensions (1D and 2D) in the 
absence of interactions, the localisation length diverges for weak disorder strength, which means that there is no 
finite value of disorder for which the system can be an ideal conductor. Almost ten years ago, experiments per-
formed in atoms of 87Rb confined in one dimension, in a quasi-periodic lattice25, and in a weak disordered optical 
potential26, showed the typical exponentially localised density profile behaviour. In our problem, instead of stud-
ying such a long tail exponential behaviour, we focus our attention on the short distance density variations to 
characterise the localisation phenomenon. The effects of disorder are captured by performing a robust study of 
the density profiles. In particular, taking into account the information obtained from our numerical calculations, 
the quantification of disorder effects in our system will be established in terms of two observables, the peaks 
heights distribution δh( ) and the peak fraction pf , as a function of disorder amplitude δ. Here we stress that the 
observables to be studied can be experimentally accessed in actual ultracold atom experiments.

To investigate the dependence of h and pf  on δ we proceed as follows. For fixed disorder strength δ and lattice 
size Ω ∼ 103, we performed ~50 realisations of random numbers. From each density profile of the condensate, we 
analyse the amplitude of the peaks at each lattice site by selecting the non-negligible peaks, using the criteria 
described above. With this knowledge we determine both, the relative heights and the peak fraction for each 
realisation. Then, we take the average of h over the ensemble. In Fig. 4, we summarise the results obtained for 
honeycomb, square and triangular lattices. There, we plot the average of the peaks heights 〈 〉h  (top) and the peak 
fraction pf  (bottom) as a function of disorder δ in units of the recoil energy ER. 〈 〉h  is referenced with respect to 
the average heigh value without disorder. Blue, purple and black symbols correspond to honeycomb ( =z 3), 
square ( =z 4) and triangular ( =z 6) lattices respectively. As can be appreciated from Fig. 4, square and triangu-
lar lattices suggest a smooth transition to localisation for δ .0 3 where both, 〈 〉h  and pf  start to change. In other 
words, the density collapses into a single density peak randomly located across the lattice. In contrast, localisation 
is not observed for the honeycomb lattice for the same range of disorder strength. Interestingly, the continuous 
lines in Fig. 4, fitting the data of each geometry, allow to conclude that there is not sensitivity of the localisation 
appearance on the lattices having coordinations =z 4 and =z 6. Blue dashed lines in the top and bottom figures 
of Fig. 4 correspond to the honeycomb lattice, but with a different value of the potential depth with respect to that 
considered for the continuous lines. While continuous lines correspond to ∼V E/ 12R0 , dashed lines label 

∼V E/ 24R0 . Therefore, from this figure one can conclude that the stronger tunneling energy of the honeycomb 
lattice against the lower for square and triangular lattices, for the same lattice amplitude, plays a determinant role 
in the occurrence of localisation.

We also investigate finite size effects considering lattices of size  × Ω ×5 10 5 102 3. In particular, we 
study how the density fragmentation of the condensate component occurs as disorder amplitude is increased and 

https://doi.org/10.1038/s41598-019-47279-1


6Scientific Reports |         (2019) 9:11049  | https://doi.org/10.1038/s41598-019-47279-1

www.nature.com/scientificreportswww.nature.com/scientificreports/

the system size is varied. In Fig. 5, we plot the fraction of peaks as a function of Ω for several values of δ, blue, 
purple and black points correspond to δ = 20%, 60% and 80% respectively, panels from top to down correspond 
to honeycomb, square and triangular lattices respectively. Several remarks can be extracted from this figure. First, 
in our simulations we observe that for disorder amplitudes of ∼40% the peak fraction never reaches a constant 
behaviour for triangular and square geometries. In the region  δ30% 50% we observe that large fluctuations 
in pf  occur preventing stabilisation. Although this behaviour is similar that observed in typical phase transitions 
in which critical slowing down and enhanced fluctuations occurs85, we should stress that the treatment used for 
our study is unable of describing phase transitions. For δ 50%, (in Fig. 5 we just illustrate δ = 60% and 80%) the 
peak fraction saturates to a small but constant value for these geometries. That is, we see that the fraction of peaks 
becomes independent of the lattice size for Ω> ×3 103 for δ 50%. This result confirms that lattices with coor-
dinations =z 4 and =z 6 suffer a noticeable density fragmentation for disorder strengths above δ 30%. 
Although, we observe that the system does not reach the limit where →p 0f , as in the standard notion of a single 
localised peak, this result for our lattices in 2D is analogous to the 1D case in which, for non-trapped gases and 
finite repulsive interactions, the Bose gas populates a finite number of localised single-particle Lifshitz states68. In 
agreement with the results found for lattices of size Ω ∼ 103, honeycomb lattices do not exhibit such fragmenta-
tion for the same disorder strengths and the same lattice amplitude. It is important to stress that this density 
fragmentation observed for the analysed lattices is away of the Bose-Glass phase57,68,86,87 since, as described in the 
previous section, the correlation function at the nearest neighbour distance is well above of zero, thus indicating 
that the system is not an insulator.

Ground state energy spectra of localised states.  Complementing our analysis, we investigate the 
energy spectrum of the stationary states from our simulations. To proceed, we consider the energy associated to 
the stationary GP equation as a function of the disorder strength δ and a fixed value of the mean field interaction 
U. The energy functional is given in terms of the stationary state ψ ψ ψ= =→∞ →lim limt t0 0  by,

Figure 3.  Fragments of the density profiles for honeycomb, square and triangular lattices with a disorder 
amplitude δ = 0.2, 0.4, 0.8 with lattice sizes Ω ~ 103. Parameters are: V0 = 12ER, U = 0.01ER, spacing is in units of 
the lattice constant a. The bright regions correspond to density maxima while dark regions absence of SF.
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Figure 4.  Average of the peaks heights 〈h〉 (top) and the peak fraction pf (bottom) as a function of disorder δ in 
units of ER. 〈h〉 is normalised to the largest height amplitude. Blue, purple and black symbols correspond to 
honeycomb (z = 3), square (z = 4) and triangular (z = 6) lattices respectively. Parameters are: Ω ~ 103, V0 = 12ER 
(solid lines) and V0 = 24ER (dashed line for honeycomb), U = 0.01ER, with ~50 disorder realisations at each data 
point, the bars denote the standard deviation for each ensemble of disorder amplitude δ. The honeycomb lattice 
with V0 = 24ER (dashed blue) and the square lattice with V0 = 12ER (solid purple) have equivalent tunneling 
amplitudes in the tight binding limit, see the main text for details. The continuous lines for 〈h〉 are given for 
triangular and square by: 1 + exp (b0 + b1δ + b2δ2), with parameters (triangular, square): b0,Latt = (−12.53, 
−7.84), b1,Latt = (31.42, 19.98), and b2,Latt = (−15.58, −8.61). For the honeycomb lattice, 〈h〉 ≈ 1 for δ 1 with 
V0 = 12ER; for V0 = 24ER, b0, = −26.04, b1, = 54.58, and b2, = −25.68. The solid lines for pf are given by: 1 − αδ2 
for δ δc and A exp (β1δ + β2δ2 + β3δ3 + β4δ4) for δ > δc. The fitting parameters are for V0 = 12ER (triangular, 
square, honeycomb): αLatt = (0.29, 0.022, 0.00051), δc,Latt ≈ (0.3, 0.3, 0.6), ALatt = (1.023, 0.98, 0.99), β1,Latt = (1.26, 
0.0, 0.21), β2,Latt = (−4.17, 3.59, −0.34), β3,Latt = (−1.93, −11.52, 0.005), β4,Latt = 0.0. For the honeycomb lattice 
with V0 = 24ER, α = 0.006, δc, ≈ 0.4, A = 0.98, β1, = 0, β2, = 0.69, β3, = 0, β4, = −3.64.

Figure 5.  Normalized fraction of peaks as a function of the lattice size Ω. The values of the disorder amplitude 
are δ = 20% (blue), 60% (purple), 80% (black) of the potential depth V0 = 12ER. From top to bottom panels 
correspond to honeycomb, square and triangular lattices respectively. Interestingly, the honeycomb lattice 
(z = 3) is resilient towards disorder induced localisation, as compared to other geometries with more nearest 
neighbours (z = 4, 6). The fitted lines different from pf ~ 1 are given by: pf ~ B exp (−cΩ) + D. For honeycomb: 
δ = 0.8, (B, D, c) = (0.42, 0.8, 0.0017). For square: δ = 0.6, (0.51, 0.03, 0.00073); δ = 0.8, (0.16, 0.0072, 0.00097). 
For triangular: δ = 0.8, (0.72, 0.15, 0.0023); δ = 0.8, (0.26, 0.06, 0.0037).
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To find the ground state energy density in the reciprocal space, namely the ground state energy spectra, we first 
rewrite the kinetic term in a quadratic form,
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Then, it follows from the use Parseval’s theorem88, the expression in momentum space,
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with = +⊥ ˆ ˆxe yer x y, = +⊥ ˆ ˆk e k ek x x y y and êx y/  unit vectors in 2D. As it turns out from Eq. (4), the ground state 
energy spectrum associated to a particular realisation of disorder encodes the structure of the ground state energy 
in momentum space.

Analogously to the previous analysis for characterisation of density profiles, the ground state spectra analysis 
was done considering a significant number of realisations for a given disorder amplitude. Specifically, the results 
presented here correspond to the average over ~50 realisations. For all of our numerical calculations, we use 
Ω ∼ 103 and work within the first Brillouin zone (FBZ). For square lattices, this region is bounded by 
− ≤ ≤π πk k,

a x y a
, while for honeycomb and triangular lattices the FBZ is the area of the primitive cell in the 

reciprocal lattice space generated by vectors = −π ( )b ,
a1
4

3
3

2
1
2

 and = πb (0, 1)
a2
4

3
. In Fig. 6, we show the 

energy spectra of the lattices considered in our study for δ = 0,80% (left and right columns respectively) of the 
potential depth δ=V x y( , )Latt

0 , in the first quadrant of the FBZ. From top to down, we plot ε k( )r  vs. = +k k kr x y
2 2  

for honeycomb, square and triangular lattices respectively. The inset of each panel contains a density plot of 
ground state spectra in the full FBZ, associated to both, δ = 0 (left column) and δ = 80% (right column), we 
should emphasize that left column corresponds to the averaged ground state spectra. We observe that the system 
with disorder presents a ground state spectra which is no longer composed of sharp energy peaks, originated from 
the lattice symmetry. Disorder broadens the peaks in the distribution. In other words, instead of the sharp ground 
state spectra at zero disorder, we have a dense continuous behaviour when the disorder amplitude is different 
from zero. Interestingly, even though disorder is spanned across the entire lattice, and that this corresponds to the 
average over many realisations, we do not observe any cancellation effect due to randomness. Regarding the influ-
ence of the disorder strength, we found that as the disorder amplitude is increased the magnitude of the back-
ground increases until it becomes comparable to the amplitude of the signal due to the lattice symmetry. At this 
point, it is when the disorder effectively destroys the lattice symmetry, rendering the geometry effects indistin-
guishable. Summarising, the influence of disorder on the ground state spectra is manifested in replacing well 
defined peaks as a function of momenta with a super-imposed dense distribution due to incommensurability of 
spatial frequencies.

Summary of findings and outlook.  We have studied the stationary states of ultracold weakly interacting 
bosonic atoms confined in two dimensional disordered optical lattices having different lattice geometries. In 
particular, we investigated the influence of energetic disorder in lattices with honeycomb (graphene like), square 
and triangular geometries, in producing localised states. The characterisation of localised states was performed by 
means of a systematic analysis through numerical simulations at mean-field level, using the Gross-Pitaevskii 
equation. The quantities analysed in our study, as a function of the disorder amplitude, were the average of the 
heights amplitudes and the fraction of peaks obtained directly from the density profiles, and the ground state 
spectra determined by Fourier transforming the energy associated to the ground state. For our numerical analy-
sis, we considered lattices of size Ω ∼ 103 sites, constant effective on-site interaction strength = .U E0 01 R, and 
variable disorder amplitude in the interval δ ∈ E[0, 1] R, being these two quantities such that the Bose gas is well 
inside in the superfluid region. We also performed a finite size analysis considering the effects of the system size 
in the range  × Ω ×5 10 5 102 3.

We found that localisation in two dimensional lattices occurs as a smooth crossover for square and triangular 
lattices. On the contrary, honeycomb lattices do not exhibit such localisation for the same disorder amplitudes 
and the same lattice amplitude V E/ R0 . This behaviour can be attributed to the characteristic larger tunneling 
energy of the honeycomb lattice with respect to that for square and triangular geometries. From the analysis of 
large lattice sizes, we found that starting from a certain disorder amplitude, the system exhibits partial localisation 
manifested as disconnected islands of density. We arrived at this conclusion from the analysis of the density since 
it saturates to a constant value as a function of the disorder strength. The original prediction made by Anderson 
is not completely restored for our weakly interacting disordered lattices in the sense that arbitrary disorder values 
do not produce localisation effects. Being this result analogous to that occurring in 1D, in which a weakly inter-
acting Bose gas populates a finite number of localised single-particle Lifshitz states68. However, localisation in few 
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sites is found for large disorder strengths. Therefore, although localisation or density fragmentation occurs as a 
smooth crossover, we can identify regions with marginal localisation for δ .0 3, weak localisation for 

 δ. .0 3 0 6 and strong localisation for δ .0 6. We recognised such strong localisation as the collapse of the 
condensate density into a single density peak randomly located across the lattice, the limit when →p 0f . Thus, 
transport is strongly suppressed for any lattice geometry for sufficiently large disorder strength. Our analysis also 
allowed to conclude that the coordination number determines how fast the smooth transition occurs as the sys-
tem size increases, being the triangular lattice the first in which transport in inhibited against square and honey-
comb lattices. It is interesting to note that although the honeycomb lattice do not constitute a bonafide Bravais 
lattice in 2D since it is composed by the superposition of two sub-lattices, our results are in good agreement with 
the fact that this lattice is an intrinsic good conductor.

From the analysis of the ground state spectra, we conclude that the influence of disorder is to replace a sharply 
peaked distribution for a continuous one. The disordered system ground state spectra is composed by continuous 
energy levels originated from disorder and the sharp energy level contribution originated from the underlaying 
symmetry of the lattice. In essence, the spatial random inhomogeneous distribution translates into broadening of 
the characteristic peaks of perfect lattices in the ground state energy distribution in momentum space.

Summarising, in our work we have been able to quantify the crossover to localisation as a function of the 
disorder amplitude for three different geometries. A general statement arising from our investigation is that dis-
ordered honeycomb lattices are robust against disorder as compared to triangular and square geometries for the 
same parameter ranges. As mentioned above, associated to the larger tunneling energy of the honeycomb lattices 
against their respective in square and triangular lattices, the honeycomb structure would have better conductivity 
in the presence of disorder in 2D.

The present work provides some insight to understand localisation phenomena induced by disorder in two 
dimensional weakly interacting systems for lattices of different geometries having coordination =z 3,4 and 6. It 
is interesting to note although Gross-Pitaevskii equation has an intrinsic mean-field nature, the quantities ana-
lysed to investigate localisation phenomena, namely the density distribution across the lattice and the ground 

Figure 6.  Energy spectrum in reciprocal space for honeycomb (top row), square (middle row) and triangular 
(bottom row) lattices in arbitrary units. Left and right columns correspond to disorder amplitudes of δ = 0 and 
δ = 80% of the potential depth V0 = 12ER respectively. Each of the energy spectra on the right column is the 
average over ~50 realizations for a given disorder amplitude. The inset in each panel shows the corresponding 
density plot of the energy spectrum in the Brillouin zone.
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state spectra, indeed exhibit signatures associated to the lattice geometry. Additionally, the information displayed 
in the ground state spectra in the reciprocal space can be compared with direct experimental measurements in 
ultracold systems via time of flight measurements89. Further investigations of transport phenomena can be 
addressed with the approach followed in the present work. For instance, it is possible to consider in a square lat-
tice, different disorder amplitudes in êx and êy, that is, setting δ δ≠x y. In view of the results obtained here, this 
could trigger the formation of stripes where transport could be manipulated via disorder induced localisation. 
Moreover, dynamical effects in adiabatic and non-adiabatic transfer protocols for the engineering of quantum 
states could be analysed90,91. Beyond ultracold atoms, systems of ions92, superconducting devices (Circuit-QED)93, 
polariton systems94,95 and the addition of high-Q cavities96 offer opportunities to test our findings analogously via 
quantum simulation97,98. Moreover, the interplay of these effects in lattices with dissipation offer another venue of 
exploration99,100 or measurement induced dynamics101. The findings of our work can aid in the development and 
characterise of transport properties in two dimensional systems for the development of new analog quantum 
technologies102,103.
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