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Mathematical Models of Within-Host and Transmission Dynamics to Determine

Effects of Malaria Interventions in a Variety of Transmission Settings

Philip Eckhoff*
Intellectual Ventures Laboratory, Bellevue, Washington

Abstract. A model for Anopheles population dynamics and malaria transmission is combined with a within-host
dynamics microsolver to study baseline transmission, the effects of seasonality, and the impact of interventions. The
Garki Project is recreated in simulation of the pre-intervention baseline and the different combinations of interventions
deployed. Modifications are introduced, and longer project duration, extension of dry-season spraying, and transmission-
blocking vaccines together achieve local elimination in some conditions. A variety of interventions are simulated in
transmission settings that vary in transmission intensity and underlying seasonality. Adding vaccines to existing vector
control efforts extends the ability to achieve elimination to higher baseline transmission and less favorable vector
behavior. If one species of the Anopheles gambiae species complex feeds disproportionately outdoors for a given
complex average behavior, vector control impacts are less than for a single species. Non-zero dry-season transmission
limits seasonal oscillation in parasite dynamics and impact of wet-season interventions.

INTRODUCTION

In October 2007, a renewed effort towards the global erad-
ication of malaria was announced to reduce the high burden
of malaria1,2 permanently to zero. Malaria exhibits a diverse
set of epidemiologic settings, with varied baseline transmis-
sion intensities,3 strength of seasonality, diverse local combi-
nations of vector species,4 and human heterogeneities, such
as housing conditions and disorders of the erythrocyte. As a
result of these geographic and demographic heterogeneities,
different locations will require different strategies to interrupt
transmission. A variety of vector control tools ranging from
insecticide-treated nets (ITNs)5,6 to indoor residual spraying
(IRS)7,8 to larval habitat modification or larvicides9–11 are
available to public health programs. The response of the local
malaria transmission patterns to deployed interventions
depends on the mixture of vector species and their individual
ecologies and behaviors, and the mixture can change in
response to deployed interventions.5,12–14 Insecticide-treated
nets and IRS are powerful tools against indoor feeding and
resting mosquitoes, but nets do not stop feeds that occur
outdoors or earlier in the evening, and spraying does not kill
mosquitoes that do not rest indoors. Drug distribution
through mass drug administration (MDA) or mass screen-
and-treat campaigns can have strong impacts on parasite
levels at least temporarily,15–19 but many modes of drug dis-
tribution are limited by difficulties of achieving high coverage
frequently. Finally, vaccines under development are only par-
tially efficacious and will most likely require high coverage as
a result.20,21 Vaccines also require close study of the cost and
time course of efficacy. The extent and durability of gains
achieved through drug distribution or vaccine deployment
will depend critically on the baseline intensity of transmission,
with highest impact on transmission seen primarily at low
baseline transmission or low transmission levels achieved
through vector control. Thus, higher-transmission settings will
most likely require layers of interventions limiting the para-
site at many different points in the transmission cycle. New

interventions targeting other portions of the vector or parasite
life cycles may also be required.22–25

Design of such combined strategies will benefit from
computer-based modeling to explore the many possible dimen-
sions of coverage, frequency of distribution, and portfolio of
tools. Mathematical models helped inform the use of vector
control in the first global eradication program.26–29 These
models were an important step forward in the application of
mathematical formulations to public health, but the impact of
assumptions and sensitivities to vector behavior and ecology
was not recognized at the outset and led to overly optimistic
projections.29 A new mathematical model was built to analyze
the results and implementation of the Garki Project,7 and this
model provided the basis of an entire new generation of
malaria models. These models recognized more of the com-
plexities of malaria transmission including multiple local
vector species with different ecology and behavior. As a
result, interpretations of model outputs were more measured
and cautious. Recent models for strategy evaluation have
focused on local vector dynamics30,31 and integrated vector
control,9,24,25 anti-malarial drugs,15,32–34 MDA,mass screen-
and-treat, and new modes of drug distribution such as inter-
mittent preventative treatment,35 potential vaccines,20,36–38

and integrated intervention strategies that use tools from
multiple categories.23,24,39,40 Mathematical models can also
help explore the potential impact of new tools proposed or
under development. Such expansion and use of modeling is a
vital component of theMalERA research agenda.41,42 Apply-
ing multiple models to the same question appears to be a
powerful path forward and is enabled by ensemblemodeling.43

This report presents a new model combining detailed vec-
tor population dynamics and interactions with the human
population44 with a microsimulation for human immunity
and within-host parasite dynamics.45 The present model
builds on the work of Macdonald,27 the Garki model,7 and
modern malaria modeling efforts23,39,40,46 to model multiple
vector species simultaneously interacting with a human popu-
lation. Each species can respond separately to interventions,
and the model can thus track the changing ratio of burden of
transmission by species. This work builds on the earlier vector
model and now includes a detailed parasite dynamics
microsolver to enable tracking of detected parasite levels
and simulation of the impact of drug programs. Models for
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available interventions such as ITNs and IRS are presented
and then deployed within simulations for a variety of trans-
mission settings with different transmission intensities, vector
behaviors, and seasonality-driven ecologies.
The baseline and intervention coverage dynamics of the

Garki Project7 are replicated in simulation as a validation.
The Garki Project interval is then extended and implemented
with different intervention implementations and potential
new tools. The potential profiles of new tools such as pre-
erythrocytic vaccines, which act to prevent blood-stage infec-
tion through action at the sporozoite or liver stage, and
gametocyte-blocking or transmission-blocking vaccines, which
limit transmission from humans to mosquitoes, are evaluated
for impact in different transmission settings with and without
concurrent vector control through IRS. The relationships
among transmission setting, baseline transmission intensity,
vector ecology and behavior, and intervention characteristics
are explored.

MATERIALS AND METHODS

Model structure overview. The model for vector popula-
tion dynamics with a human agent-based framework pre-
sented in the report by the author44 is simulated with simple
and detailed microsolvers for infections in the simulated
human agents. For the simple human infection model,
infections are represented by an exponentially-distributed
duration of constant infectiousness. Most simulations pre-
sented implement a detailed microsolver for the immune
and parasite dynamics for each person45 unless it is explicitly
stated that a simulation uses the simple infection model.
Intervention-free vector dynamics are fit to baseline
entomologic inoculation rate (EIR) data for multiple set-
tings including Namawala, Tanzania47 and multiple sites for
the Garki Project.7 Once these baseline vector population
dynamics are constructed as described in a parallel paper,48

various combinations of intervention distributions are intro-
duced in simulations, and these combinations are referred
to as campaigns in the model and the report. Each campaign
is composed of at least one intervention distribution event,
although most realistic campaigns will be composed of mul-
tiple intervention components repeated at intervals. Each
intervention distribution event has a schedule that specifies
the start timing and the duration of each distribution, and
the number and frequency of repetition. Each event also
specifies the target demographic (infants, children, mothers,
general population) and coverage. Each component of the
model is described below, including the vector transmission
dynamics, within-host parasite dynamics, and interventions.
Summaries of the parameterization and calibration pro-
cesses are also provided.
Vector transmission model. The mosquito feeding cycle

detailed in the report by the author44 is responsible for tracking
intervention-imposed mosquito mortality, as well as all trans-
mission from mosquitoes to humans and back. The model
must support multiple simultaneous interventions for each
person, such as ITNs and IRS, or house screening and IRS.
To accomplish this feature, the calculation of feeding cycle
outcomes is constructed as a series of binary choices, so that
the effect on overall outcomes is conditional on arriving at
that choice. For example, a mosquito attempting a blood feed
will first select the type of host, whether human or animal.

Because the probability of this choice will depend on the
behavior of the given species, the remaining outcomes are
thus conditional on mosquito host selection behavior. For
human feeds, the next choice is indoor or outdoor, again
depending on species preferences and propensities. The
indoor feeding rate, or endophagy, parameter used in simula-
tions describes the proportion of human feeds that occur
indoors as a proportion of all human feeds.49,50 The effects
of interventions are included in the order that they would be
experienced by a mosquito: for example, screening reduces
the probability of finding a human host indoors, which
reduces the overall probability of feeding on that specific
host, which reduces the probability of dying from IRS post-
feeding inside that house. The outcomes for each human are
gathered into a discrete probability measure across the entire
human population of outcomes such as successful feed, dying
post-feed, inability to find a host, and dying pre-feed, option-
ally weighting by the heterogeneous biting for each human.
All feeding mosquitoes can thus be sorted into outcomes
depending on the choice of host and location of feed, along
with all the interventions associated with a given host. The
detailed probability equations for each collected and catego-
rized outcome are provided in the report of the author.44 Indi-
vidual humans can own vector control interventions, receive
drug treatments and regimens, or be administered vaccines
with defined modes of action such as pre-erythrocytic (acting
to stop an infection before the blood-stage) or gametocyte-
blocking/transmission-blocking (acting to stop the infected
human from transmitting infection to the mosquito), specified
efficacies, and customizable durations of effect.
The sequential nature of intervention actions within the

binary choice structure enables a single intervention to have
multiple effects such as deterrence and toxicity and enables
multiple interventions to be combined in protection of a
single person. In the modified cohort version of the model
described by previously,44 those mosquitoes that are deterred
from feeding remain in the cohort and have a chance to feed
in the following time step. The more deterred feeds, the fewer
completed feeds will occur per mosquito during the incuba-
tion period, and the average resulting oviposition interval
is lengthened. In addition, as the mosquitoes feeding in the
following time step are again distributed across the human
population at random, successful feeds will be concentrated
on those humans who are not protected by deterring interven-
tions. However, because the cohort model has a certain frac-
tion of all mosquitoes in each cohort attempting to feed at
each time step, both these effects of deterred feeds may be
underestimated in magnitude. This same vector model can be
run with each mosquito represented by an individual agent for
additional computational cost. In this version, an oviposition
timer is added as a variable to each mosquito agent and is set
to the oviposition interval upon a successful feed. Once the
time runs out, the mosquito lays eggs and resumes host seek-
ing. If a feed is deterred, the mosquito automatically attempts
to feed in the following time step, rather than just a fractional
probability in the cohort model. The individual mosquito ver-
sion of the model can thus capture both of these effects of
deterrence at a level closer to reality.
Within-host parasite dynamics. Once a person receives a

new infection, the within-host parasite dynamics are governed
by the microsolver with detailed parasite and immune inter-
actions.45 This microsolver uses a combination of discrete

818 ECKHOFF



events and continuous processes to represent the parasite
development and immune response. The infection begins with
a fixed seven-day latency in the liver, and after the infection-
specific timer expires, the liver schizonts rupture to release
merozoites and start the blood stage of the infection. The
counts of parasites by expressed surface antigen are tracked
for each infection, and each infection has a repertoire of 50
Plasmodium falciparum erythrocyte membrane protein-1
(PFEMP-1) variants. Each infection also has a set of minor
antigenic epitopes51 and a specific merozoite antigen.52 The
within-host dynamics are simulated with a one-hour time step,
and a 48-hour timer governs each asexual cycle. During a
cycle, innate immune responses are stimulated and specific
antibody responses build to each antigen present, and the
innate and specific immune responses clear parasites. When
the asexual timer expires, the infected erythrocyte schizonts
rupture and release merozoites to create the next generation
of infected erythrocytes. Antigenic switching occurs as new
variants are introduced from the available repertoire. As spe-
cific adapted immune responses develop, the original variants
are cleared, and once an infection fails to introduce a new
variant, the infection will soon be cleared. Superinfection is
supported, and each infection draws its set of 50 PfEMP-1
variants, its set of 5 minor epitopes, and its merozoite antigen
from the overall simulation parasite population of available
variants. Results are shown for a variety of parasite antigenic
diversity levels. Full detailed equations for the microsolver
are available,45 as well as the effects of varying parasite anti-
genic diversity levels in each location.48

Intervention effects. Each intervention distributed can have
multiple effects and durability constants. Within the model,
an ITN has an input efficacy parameter associated with suc-
cessfully blocking an attempted feed, and another input effi-
cacy parameter for killing the mosquito conditional on
blocking the feed. The model does not capture any impact of
delayed killing by an ITN without blocking the feed. Because
each of these efficacies can also have a defined durability, the
user can specify the duration of the insecticide killing effect
and the duration of the feed-blocking effect. Blocked feeds
result in the vector attempting to feed again the next time step
instead of experiencing a gonotrophic latency and laying eggs
as after a successful feed. Thus, blocking without toxicity
could actually increase the biting rates experienced by non-
protected persons in certain regimens. Different possible
temporal profiles for intervention efficacy are simulated to
observe the impact of this structural assumption. These
profiles include constant efficacy for a specified duration
followed by a decrease to zero efficacy (fixed-box), exponen-
tial decay from an initial specified efficacy to zero with a
specified decay time constant (exponential decay), or a fixed
interval of constant efficacy at the initial value followed by an
exponential decay to zero with a second time constant (box-
decay). The box-decay pattern would represent a decaying
insecticide concentration or antibody titer that retained its
maximum effect above a given threshold. The two effects of
IRS consist of repellency pre-feed or mortality post-feed, and
separate time constants can be placed on the temporal profile
of each of these. Efficacies for ITNs and IRS in the context of
the present vector-feeding model are tuned to approximate
the consensus impact at the population level.53,54 Physical
durability of distributed ITNs is an uncertain parameter, and
the effects of these uncertainties are explored in the Results.

Potential vaccines modeled include pre-erythrocytic vac-
cines (PEVs), which reduce the actual force of infection from
the mosquito bites experience by a vaccinated person, and
gametocyte-blocking or sexual-stage transmission-blocking
vaccines (TBVs), which reduce the probability of an infec-
tious person infecting a mosquito. Potential therapeutic
blood-stage vaccines have not yet been incorporated into the
model. Efficacy for a PEV in the context of this simulation is
defined as the reduction in inoculations with potential to cre-
ate infections experienced by an individual in a given time
step; a 50% effective vaccine in the simulation means that a
protected person will have their liver challenged by half as
many effective inoculations. Because the model includes a
saturation of the number of simultaneous infections for an
individual, this feature creates a saturating, non-linear rela-
tionship between EIR and force of infection.55 As such, this
does not necessarily correspond to a 50% reduction in num-
ber of experienced infections. The reduction in new infections
will more closely track the reduction in effective inoculations
at lower transmission levels. At high transmission levels, there
may not be much difference in the human epidemiology as
a result. Efficacy for a TBV is defined in the model as the
reduction in probability that a mosquito feeding on an
infected human will become infected itself. Vaccine efficacy
starts at the specified efficacy and can evolve over time in
either the exponential decay, constant effect for fixed dura-
tion, or box-decay patterns. Vaccines in this paper are hypo-
thetical in efficacy and durability and are intended to map out
the impacts as a function of parameter space.
Local simulation construction. The basic vector model that

was parameterized for Namawala44,47 is retained, but new
locations such as Garki require fitting to be properly parame-
terized. Local vector bionomic and behavioral data are used
where available, and if not available, best known values
for the species in general are used. Weather for the site is an
input to the model, and the synthetic population is con-
structed with appropriate population sizes by age. The overall
larval carrying capacity scalar for each species is then adjusted
iteratively in simulation runs to match local human biting rate
data. Construction of baseline simulations for Namawala and
Garki is described in another report,48 which also explores the
effects of available antigenic variants in the overall parasite
population and the corresponding effect on age prevalence.
Once a local setting is parameterized, the transmission level
can be adjusted up and down while maintaining species
abundance ratios by scaling all larval habitat values equally.
The impact of routine case management on transmission
is ignored in constructing baselines at present, and these
effects will be incorporated into future modeling studies. Sim-
ulations described as Namawala have an annual EIR by spe-
cies corresponding to Namawala and approximately matched
temporal profiles. Simulations described as Namawala + 0.1
have the same ratio of species and temporal profile as
Namawala, but vector populations will be a factor of 10 lower
for each species. This feature enables an investigation of the
impact of transmission intensity, holding species ratios, and
seasonality constant. As described in another report,45 the
within-host parasite model uses known values for some
parameters such as merozoites per schizont. Other parame-
ters are constrained so that simulated infections match cumu-
lative outcomes in the malariatherapy data56 for measured
durations of infections, peak parasite densities, the decrease
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in parasite densities over time, and the interval between
peaks. The antigenic switching rate57 is more difficult to con-
strain, and evolutionary arguments were used in its parame-
terization. The number of antigenic variants in the overall
parasite population is set to match the age-prevalence curves
from Namawala58 and Garki.7

Many simulations are run for each scenario and set of
parameters, and mean and variance are presented for the
trajectories of interest. Generation of this stochastic ensemble
for a single condition enables presentation of intrinsic sto-
chastic variability. Variation of intervention coverage and
efficacy across scenarios demonstrates the translation of
uncertainty in these parameters to output measures of impact.
Sensitivity of results to input data such as vector population
sizes and behavior are also calculated. In addition, multi-
dimensional parameters sweeps can be used to construct plots
showing the change in the probability of local elimination (or
some other defined event) as an empirical function of the
parameters of interest.

RESULTS

Garki Project reconstruction and extension. The Garki
District baseline vector and parasite dynamics and the
impact of interventions as implemented are first recreated
in simulation as a validation. The Garki Project7 used IRS
and MDA to study the impact of large-scale campaigns in
high-transmission settings. The project was well-instrumented,
collecting weather, human demographic, entomologic, and par-
asitologic data longitudinally leading up to, during, and after
the project. Some villages did not receive any interventions as
a control, others repeated applications of propoxur during the
rainy season, and a third set received MDA every ten weeks.
The interventions lasted for two rainy seasons and the interven-
ing dry season, and distribution of interventions was ceased
after 18 months without definitively clearing the human parasite
reservoir, although some villages experienced weeks without
human detected parasites. A mathematical model was built to
explore and understand the results of the project,7 and many
essential features, such as the mixture of local vector species,
were captured. The Garki Project, its impacts, and possible
variations on its implementation can be studied with the present
vector transmission model,44 with vector population dynamics
driven by historical Garki weather and with local vector popu-
lation characteristics.
The vector model is coupled to the detailed model of

within-host parasite dynamics with full antigenic variation,
and lower parasite population diversity (4 available merozoite
antigenic variants, 4 available sets of 5 minor epitopes, and
300 available PfEMP-1 variants), and a corresponding level
for immunologic memory of 0.225 on the non-dimensional
antibody scale.45,48 This parameter combination matches
population averages of detected parasitemia and is computa-
tionally faster than other parameterizations for this micro-
solver. Reconstruction of the Garki Project outcomes for
baseline, IRS only, IRS and MDA, and then IRS and MDA
combined with a 50% effective TBV are shown in Figure 1.
The IRS campaigns in this simulation cover 90% of the popu-
lation for six months starting just before the beginning of
each rainy season. Each feed on a person in a treated house
is modeled to have a 60% chance of post-feeding mortality.
Model implementation of MDA gives a full course of treat-

ment to a random 80% of the population at eight-week inter-
vals. A full course of drugs results in approximately five
weeks of increased parasite mortality in the detailed parasite
microsolver because drugs are modeled as increased asexual
stage mortality rather than absolute prophylaxis. The distrib-
uted TBV is mass-distributed to 90% of all persons, with a
50% initial efficacy exponentially decaying with a four-year
time constant. These traces can be compared with data from
the Garki Project for each category of village7,59 plotted as
smoothed point data.
Because the Garki Project was unable to interrupt trans-

mission and clear the human parasite reservoir, it is of interest
to investigate possible perturbations and modifications of
the original campaign and to understand the system effects
that maintained transmission as the project was conducted.
Simulations can explore the potential impact of new tools,
longer campaign durations, and different deployment timings
and coverages. The final trace (black dashes) in Figure 1
shows the impact of a 50% effective TBV with a decay time
constant of four years distributed to 90% of the population
in the IRS and MDA villages. Parasitemia and transmission
are even further reduced, but elimination remains elusive.
The same traces with two additional modifications are
shown in Figure 2: the post-indoor-feed killing efficacy caused
by IRS spraying rounds now begins one month before the
start of the rainy season and is extended one month further
into the dry season for a total of eight months per year. A
more pronounced decrease in detected prevalence is observed
by limiting the tail of transmission into the dry season. Finally,
the intervention period of the project is extended to 36 months
instead of the original 18 months. The MDA distributions
occur periodically for 36 months instead of 18 months, IRS
occurs around 3 rainy seasons instead of only 2 rainy seasons,
and an additional mass distribution of TBV is added at
18 months. With the spraying in the dry season, an extended-
duration program, and new tools such as a TBV, elimination
is achieved in the IRS plus MDA plus TBV trace (black
dashes) in Figure 2.

Figure 1. Reconstruction of the Garki Project outcomes with the
detailed mechanistic within-host model and vector dynamics modeled
after Garki. Light gray is baseline, then indoor residual spraying
(IRS) in dark gray, then IRS plus mass drug administration in black.
The dotted black line shows the potential impact of overlaying the
IRS plus mass drug administration campaign with mass distribution of
a sexual-stage transmission-blocking vaccine with 50% efficacy at
reducing transmission from humans to mosquitoes.
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Effect of vector-feeding behavior. It is important to under-
stand how the baseline transmission intensity and vector-
feeding behavior and ecology will impact intervention
outcomes. To investigate these effects, the well-parameterized
vector population dynamics for Namawala are used as
the basis for simulations. Baseline dynamics and the effects
of simulated IRS campaigns are shown for Namawala in
Figure 3A and B, and a 0.1 scaling of Namawala vector
populations is shown in Figure 3C and D. Parasite popula-
tion diversity is now increased to 100 merozoite, 100 minor
epitopes, and 1,000 PfEMP-1 variants, and the immunologic
memory is set to 0.3. Each new infection will draw one
merozoite antigen from the set of 100, 5 minor epitopes
from the set of 100, and 50 PfEMP-1 variants from the set
of 1000. This combination is most accurate in not only
matching population average parasitemia but also recreating
measured age prevalence patterns. That additional capabil-
ity compensates for the substantial increase in computa-
tional cost over the previous parameterization. The IRS
campaign is run with 70% and 90% coverage and for An.

arabiensis indoor feeding propensities of 0.47, corresponding
to the proportion of An. gambiae sensu lato observed to rest
indoors during the Garki Project7 and close to the value for
An. arabiensis observed in Dar es Salaam,60 and 0.7, closer
to values observed in other parts of Tanzania.61 For a 70%
coverage condition, 70% of houses are treated and feeds
occurring inside these houses result in an 80% post-feeding
mortality. Baseline dynamics for Namawala exhibit low sea-
sonality in detected prevalence despite a strongly seasonal
EIR, as observed in the field.47 This finding is due to the
fact that even in the low transmission season, most months
in Namawala experience a cumulative monthly EIR of > 6
infectious bites. Decreasing the vector populations by a fac-
tor of 10 reduces this dry season transmission and introduces
a stronger seasonal oscillation in detected prevalence. The
impact of non-zero dry season transmission and hotspots

have been studied, measured, and modeled,40,62,63 and such
spatial and temporal heterogeneities strongly affect the
response to campaigns such as seasonal vector control and
MDA.40 These non-zero dry-season dynamics are especially
relevant for Namawala, for which specific dry season refugia
have been identified.64 For Namawala, 70% IRS coverage
for 0.47 and 0.7 arabiensis endophagy and 90% coverage for
0.47 arabiensis endophagy produce similar traces in preva-
lence, although higher indoor feeding and higher coverage
drive substantial relative decreases in EIR. The 90% cover-
age campaign with 70% indoor feeding decreases EIR
enough to drive a further decrease in prevalence, illustrating
a nonlinear effect on EIR.
Effect of An. gambiae species complex partition. When

building baseline simulations, it is essential to understand
the impacts of model assumptions and parameter sensitivi-
ties. It is also important to understand uncertainties in
available data and the impact of assumptions required to
interpret available field data. The entomologic data for
the Garki Project does not separate An. gambiae sensu lato
into members of the complex, but it does report that mem-
bers of the complex rested indoors after 47% of feeds. The
existence of the An. gambiae complex was known, and later
studies investigated the partition of the complex.65 The
existence of a component with preferentially outdoor feed-
ing behavior was identified as a reason for the results of
spray campaigns.66 Simulation with individual species
requires making a series of assumptions on how to partition
the species complex and the indoor feeds because the pro-
portions were not known when planning the Garki Project

Figure 2. Modification of the Garki Project campaign, extending
the overall campaign duration to 36 months and with spray cam-
paigns scheduled to maintain indoor residual spraying (IRS) efficacy
over a window from one month before the rainy season until one
month into the dry season. For the propoxur campaign used in Garki,
this would require an additional spray round in the dry season leading
into the rainy season. Light gray is baseline, then IRS in dark gray,
then IRS plus mass drug administration in black. The dotted black
line shows the potential impact of adding mass distribution of a sexual-
stage vaccine with 50% efficacy to the IRS plus mass drug administra-
tion campaign.

Figure 3. Effect of indoor residual spraying (IRS) campaigns on
detected prevalence (A and C) and daily entomologic inoculation
rate (EIR) (B and D). Simulations use Namawala, Tanzania weather
and mixture of vector species, with (A and B) based on actual
Namawala EIR and with the vector populations in (C andD) reduced
to 0.1 of original values. Results are shown for two separate values of
Anopheles arabiensis endophagy. Disease persists for all simulations
in (A and B), but disease fades out in (C and D) with the exception
of the 70% IRS coverage for An. arabiensis feeding indoors only 47%
of the time.
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and remain unknown in many other areas of interest. Unfor-
tunately, this choice of partition can impact entomologic
and parasitologic outcomes, as shown in Figure 4. A skewed
partition in which An. arabiensis makes up approximately
90% of the local complex and is responsible for all outdoor
feeds and in which An. gambiae sensu stricto feeding exclu-
sively indoors is shown in Figure 4. An alternative is to split
the complex equally between An. gambiae sensu stricto and
An. arabiensis. To properly account for measured outdoor
feeding, An. gambiae sensu stricto is set to rest indoors 80%
of feeds and An. arabiensis 20% of feeds (Figure 4: solid
black line is the intervention-free scenario). The impact of
a 70% coverage IRS campaign on measured prevalence and
daily EIR is shown in Figure 4A and B, and the impact of
repeat simulations with 90% IRS coverage are shown in
Figure 4C and D. For the 70% IRS coverage condition
(Figure 4A and B), substantial deviations appear in daily
EIR, although discrepancies do not yet appear in prevalence.
As IRS coverage increases to 90%, the difference in preva-
lence becomes dramatic. These deviations produce signifi-
cant differences in disease fade out propensity at lower
transmission intensities. Such an impact of partition makes
sense because the probability of surviving four feeds with
50% mortality is 6.3%, and surviving four feeds with 25%
mortality is 31.6%, which is much more than twice as high,
and more than compensates for the other half of the popula-
tion experiencing 75%mortality.
Impact of vaccines. The present model can be used to

explore the potential impact of new vaccines (PEV and TBV),
as has been performed in other modeling frameworks.20,23,36,40

Returning to the Namawala simulation in Figure 3, several

different vaccines are introduced with different modes of
action and efficacy levels. The scenario for mass vaccination
is first simulated without concurrent vector control. This sce-
nario would not be a standard rollout, but is intended to illus-
trate the necessity for either low transmission or combination
with vector control efforts. The simulated effects in Namawala
of a PEVwith efficacy exponentially decaying with a four-year
time constant mass distributed every two years is shown in
Figure 5A and B. Baseline transmission is high enough that
only minor perturbations are seen in prevalence, slightly
increasing the seasonal oscillation as expected, and no discern-
ible change occurs in EIR. For Namawala seasonality with
baseline transmission scaled down by a factor of 10 (Figure 5C
and D), the 90% effective PEV does produce decreases in
prevalence with, in turn, reduces EIR, which can further reduce
prevalence. A sexual-stage TBV with the same efficacy and
duration values as the PEV above is introduced in baseline
Namawala (Figure 5E and F). Minimal perturbation is observed
in prevalence, but there is a clear reduction in EIR.
Because a high-efficacy vaccine had limited simulated

impact at high transmission in the absence of vector control,
the next simulations study the impact of rolling out vaccines
on top of existing vector control activities. As described
above, vectors exhibit a variety of feeding behaviors,4,67 which
modify the impact of interventions such as bed nets, which
target indoor feeding. Baseline transmission intensity varies
geographically by multiple orders of magnitude.3 Parameter
studies in the present model can systematically map the

Figure 5. Effects on detected prevalence and daily entomologic
inoculation rate induced by pre-erythrocytic (A–D) and sexual-stage
transmission-blocking (E and F) vaccines introduced in Namawala,
Tanzania (A, B, E, and F) and 0.1 Namawala intensity (C and D).
PEV = pre-erythrocytic vaccine; TBV = transmission-blocking vaccine.

Figure 4. Effect of partitioning Anopheles gambiae sensu lato
into An. gambiae sensu stricto and An. arabiensis. A and B, Effect of
70% coverage of indoor residual spraying (IRS) on detected preva-
lence and daily entomolgic inoculation rate (EIR) for even partition
of the complex into its components (solid line) and 90% dominance
by An. arabiensis (dashed line). C andD, Simulation of campaign and
the impact of An. gambiae complex partition are repeated for IRS
with 90% coverage.
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regions of parameter space in which existing tools can achieve
desired impacts and new tools may be required. The effects of
baseline transmission and the indoor feeding propensities of
An. arabiensis are explored for two campaign designs, one
with IRS only and a second with IRS and a hypothetical
sexual-stage vaccine. The simulation setting, vector ratios,
and seasonality are based on Namawala47 as constructed pre-
viously44 with a simple infection model of a 180-day exponen-
tially distributed duration. The IRS component of the
campaign consists of 70% of houses receiving IRS with a
killing efficacy of 0.8 for indoor feeds. This coverage is
repeated at one-year intervals, and the efficacy lasts one-year
with box-shape durability for simplicity. The TBV component
of the campaign performs mass vaccination every two years
with 80% coverage and an initial efficacy of 0.9, decaying
exponentially with a four-year time constant. The campaign
is continued for ten years, and simulations are sorted based
on whether they exhibit local elimination before campaign
termination. The probability of elimination for the IRS cam-
paign, mapping the probability of parasite persistence after
ten years, is shown in Figure 6A. The horizontal axis scales
the baseline vector population, which in turn approximately
scales the EIR, except at low transmission levels, when the
EIR decreases nonlinearly. A vector population scaling of 1.0
corresponds to actual baseline with an EIR of approximately
350 per year, with most caused by An. arabiensis. The vertical
axis scales the propensity of An. arabiensis to feed indoors
from 0 to 1. With the IRS only campaign, reliable elimination
is only achieved in the upper left hand corner, corresponding
to lower vector populations and higher indoor feeding, as
expected. Even with all vectors feeding indoors, no simula-
tions with a vector population scaling over 0.4 achieved elim-
ination, although transmission was greatly reduced. With the
TBV component added on (Figure 6B), the region of elimi-
nation expands, and campaigns that had limited transmission
but could not fully interrupt it are assisted the most. Notably,
the condition corresponding to baseline transmission with
An. arabiensis resting outdoors after at least half of its feeds
remains far from the region of elimination.
It seems clear that deployment of a vaccine is thus best

accomplished in combination with a vector control interven-
tion. Returning to the Namawala simulation with the full
parasite microsolver, the results of studies shown in Figure 5

are repeated but now combined with vector control. Results
for a 90% effective PEV (Figure 7A and B) and a 90% effec-
tive TBV (Figure 7C and D) deployed to Namawala as a
standalone intervention, with a 70% coverage IRS campaign
for An. arabiensis indoor feeding of 0.47, and with a 70%
coverage IRS campaign for An. arabiensis indoor feeding of
0.7 are shown in Figure 7. For high indoor feeding, the IRS
plus vaccine campaigns produce reductions in prevalence
to < 10%, although transmission is not interrupted.
Effect of intervention durability.An important set of topics

for modeling to address are the interrelationships among
intervention efficacy, intervention durability, and the effects
on parasite and vector dynamics. Sensitivity of the results of

Figure 6. Plots of the probability of disease persistence for (A) indoor residual spraying (IRS) and (B) IRS plus a sexual-stage transmission-
blocking vaccine (TBV), as a function of the indoor feeding propensity of Anopheles arabiensis and the scaling of the vector population.
Simulations based on Namawala, Tanzania seasonality and vector composition with a simple infection model.

Figure 7. Effects of combining mass vaccination with vector con-
trol for pre-erythrocytic vaccine (PEV) (A and B) and sexual-stage
transmission-blocking vaccine (TBV) (C and D) in Namawala,
Tanzania. Baseline dynamics are presented with the vaccine by itself
and the vaccine combined with 70% coverage with indoor residual
spraying (IRS) for Anopheles arabiensis indoor feeding values of
0.47 and 0.7. EIR = entomologic inoculation rate.
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a proposed campaign to intervention durability must be
understood when planning repeated rounds of distributions
and cost-effectiveness. Eleven years of dynamics for Namawala,
Tanzania with the full vectormodel and the simple exponential-
durations model for human infections are shown in Figure 8,
with the ITN campaign starting after one year at time 0.
Dynamics with no ITNs is shown in Figure 8A, and the year-
to-year variability caused by rainfall patterns during 1990–
199968 is clearly visible. Identical ITN campaigns, in which
70% of the population receives a new ITN every 5 years, are
shown in Figure 8B–D. The ITNs are modeled to start with
100% efficacy at blocking attempted indoor feeds, and a 70%
killing rate for blocked feeds. These efficacies are constant
for four years, and then blocking and killing efficacies decrease
to zero (Figure 8B). This feature results in a spike in the EIR
in the fifth year before new ITNs are distributed the follow-
ing year. The observed EIR for blocking and killing effica-
cies with both decaying exponentially with a time constant of
four years is shown in Figure 8C. The decay in blocking
efficacy further compounds the decay in killing efficacy, as
would be expected when an ITN develops holes. These also
resemble the dynamics one would expect if use of ITNs
became increasingly sporadic over time. If the ITNs remain
physically intact and able to block feeds indefinitely, then an
exponential decay of the insecticide-killing effect is still

observed, but the controlled EIR does not increase as fast
as shown in Figure 8C. An efficacy profile that maintains
original efficacy for two years, followed by an exponential
decay with a four-year time constant is shown in Figure 8D.
Varying the intervention durability profile has dramatic
effects on the system, illustrating that such sensitive input
parameters must be well understood to achieve accurate
model results.

DISCUSSION

The EIR can vary significantly from year to year, even
without changes in control, which complicates the essential
task of monitoring for signs of slippage in control programs.
The temporal dynamics of intervention efficacy are essen-
tial to consider when designing a campaign, and modeling
can be used to specify the necessary frequencies of distribu-
tion, as well as to predict when one could expect to see
increases in transmission caused by decay of interventions.
The multiple efficacies of interventions are important to
track because they may exhibit distinct temporal scales,
with the physical integrity and insecticide concentrations
of ITNs a classical example.
The reconstruction of the Garki Project demonstrates the

ability of models to aid in the understanding of previous
campaigns and in separating out hypotheses for the historical
inability to interrupt transmission despite intense pressure.
The level of transmission in the low-transmission season is a
clear driver for the lack of seasonality in Namawala preva-
lence, in that the low-season transmission is not that low.
However, in Garki, the low-transmission season had a much
lower in EIR than that in Namawala, but extending spraying
to a month before and a month after the rainy season has
substantial impact in simulation, especially on the minimum
prevalence experienced, which is important for fadeout. Care-
ful modeling also illustrates the impact of assumptions on
partition of the An. gambiae species complex. For a given
level of indoor resting among the complex, it is more difficult
to interrupt transmission with interventions that target indoor
feeds if the component species are similar in baseline preva-
lence, which enable one component species to have minimal
indoor resting and the other component species to balance the
measured statistics in feeding location. This partition phe-
nomenon has been noted and measured,66 and the present
results emphasize the importance for control programs of
understanding and measuring these populations. In some
studies, differences in insecticide-driven mortality has been
observed across members of a species complex, even on a
per-indoor-feed basis.69 As interventions are introduced with
different impacts on the local heterogeneous mix of vector
species, the new proportions of transmission by species will
change in simulation. This finding matches observations of
changing epidemiology as ITN rollouts and other vector con-
trol campaigns have been conducted,5,6,12–14,62,63,70 including
such observations near Namawala.61 The simulated impact of
existing tools and new target product profiles for vector con-
trol will thus depend on the mixture of vector species, their
ecologies, and their behaviors.
The Garki hypothetical extended campaign also demon-

strates the potential role for new tools, such as vaccines when
introduced to a campaign that has achieved dramatic reduc-
tions, but has run out of additional tools to introduce. The

Figure 8. Efficacy decay profiles for insecticide-treated nets (ITNs)
and effect on dynamics for Namawala, Tanzania dynamics and simple
infection model. A, Baseline, no bed nets. B, ITNs distributed every
five years with a four-year box efficacy. C, ITNs distributed every five
years with an exponentially decaying efficacy with a four-year time
constant. D, ITNs distributed every five years, with efficacy constant
for two years, followed by exponential decay with a four-year time
constant. EIR = entomologic inoculation rate.
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Namawala simulations demonstrate how the impact of a
vaccine depends on its efficacy, its duration of protection,
and its mode and scale of distribution among the population.
In addition, the strongest impacts are observed either at lower
transmission levels, in which the linear effects of a vaccine can
drive nonlinear decreases in transmission, or when combined
with vector control that reduces baseline transmission. Thus,
the local transmission intensity will affect vaccine rollout,
as will the local vector behavior and ecology if combining with
vector control. Simulations and analyses such as those in
Figure 6 and Figure 7 can be used to define what a useful
vaccine target profile will be in terms of efficacy, duration of
protection, andeaseofdistribution. Simulations canalsobeused
to prioritize rollout to where a vaccine will make the most rele-
vant impacts. Various uncertainties around the potential impact
of vaccines include the potential for immunotolerance driven
by skin stages,71 duration of protection, and strain specificity.
Mechanistic modeling can identify host and parasite factors

that may impact the efficaciousness of control. Such factors
identified in the detailed mechanistic model for parasite
dynamics include gametocyte production and transmission,72

antigenic variation,73 and immune memory.74 The local
mixture of vector species and their ecologies and behaviors
has a tremendous impact on the effect of introduced combi-
nations of interventions, and current efforts to map these
species ratios and measure these values are essential to inform
planning.4,10,75,76 Next steps for the current effort involve
extending the model to mortality and severe disease and then
estimating the effects of interventions on disease burden.
Uncertain parameters to which the outcomes of simulated
campaigns are sensitive can refine important research ques-
tions for field and laboratory studies, making modeling an
essential tool in the research and planning of the global erad-
ication campaign.41,77–79
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