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Abstract: The establishment and maintenance of genome packaging into chromatin contribute
to define specific cellular identity and function. Dynamic regulation of chromatin organization
and nucleosome positioning are critical to all DNA transactions—in particular, the regulation of
gene expression—and involve the cooperative action of sequence-specific DNA-binding factors,
histone modifying enzymes, and remodelers. Remodelers are molecular machines that generate
various chromatin landscapes, adjust nucleosome positioning, and alter DNA accessibility by using
ATP binding and hydrolysis to perform DNA translocation, which is highly regulated through
sophisticated structural and functional conversations with nucleosomes. In this review, I first present
the functional and structural diversity of remodelers, while emphasizing the basic mechanism of
DNA translocation, the common regulatory aspects, and the hand-in-hand progressive increase in
complexity of the regulatory conversations between remodelers and nucleosomes that accompanies
the increase in challenges of remodeling processes. Next, I examine how, through nucleosome
positioning, remodelers guide the regulation of gene expression. Finally, I explore various aspects
of how alterations/mutations in remodelers introduce dissonance into the conversations between
remodelers and nucleosomes, modify chromatin organization, and contribute to oncogenesis.

Keywords: chromatin remodeling; ISWI; CHD; SWI/SNF; INO80; BAF; nucleosome positioning;
transcription regulation; promoter; cancer

1. The Nucleosome, Substrate of the Remodelers
1.1. Composition and Stability of the Nucleosome

The canonical nucleosome, the fundamental repeating unit of chromatin, consists
of a histone octamer, associating two H3/H4 dimers forming a central tetramer capped
on each side by an H2A/H2B dimer, around which 147 bp of DNA wrapped in ~1.7
tight left-handed superhelical turns [1]. Within a nucleosome, there are fourteen histone–
DNA contacts established between positively charged amino acids from the histones
and negatively charged phosphate backbones of the DNA, three per histone dimer, and
two weaker contacts at the entry/exit to the nucleosome provided by extensions from
each histone H3. While each contact is relatively weak (~1 kcal/mole), requiring ~1 pN
of force to be disrupted, all fourteen contacts together (~12–14 kcal) confer significant
positional stability. By convention, DNA locations within the nucleosome are described as
superhelical locations (SHL) followed by a digit (from the DNA entry to exit sides: +7 to
+1, 0, −1 to −7) corresponding to each successive major groove facing the histones with
respect to SHL0 or dyad which is the location of the central base pair of the DNA where
the histone octamer pseudo-symmetry axis intersects DNA. Thus, locations of remodeler
components that interact with the nucleosome are commonly described by using SHL
numbering (applied below).

Despite being the fundamental repeating units of chromatin, nucleosomes contribute
very modestly to the physical organization and packaging of the genome in the nucleus
(introducing only 7-fold compaction to the DNA). Instead, nucleosomes confer major
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functional organization to the genome by altering DNA accessibility and excellent support
to regulatory information [2]. Indeed, conceptually, nucleosomes compete with DNA-
binding proteins to occupy sites in the genome and provide selective access to DNA, as
a majority of DNA-binding factors are prevented from binding to their cognate sites if
wrapped into nucleosomes. To manipulate this obstacle and provide plasticity to chromatin,
remodelers have to overcome at least part of the positional stability of the nucleosome.

While the structure of the nucleosome is largely unaffected by the DNA sequence, the
positional stability of the histone octamer depends on the underlying sequence of the DNA.
Indeed, the DNA sequence affects DNA stiffness and curvature, thus its bending tolerance
and its susceptibility to accommodate the curvature imposed by the wrapping around
the octamer. For example, the increased stiffness of the AT-rich DNA sequences renders
nucleosomes positioned over those sequences less stable [3,4]. Of note, DNA methylation
also reduces DNA flexibility, altering nucleosome positioning and stability [5,6]. Thus,
the DNA sequence influences the organization of chromatin in general, and at enhancers
and promoters in particular. Intuitively, promoter DNA sequences that increase nucle-
osome stability result in decreased transcription [7], and the action of remodelers can
either be supported or limited by this variability in nucleosome stability and positioning
(see Section 1.2).

Finally, the positioning and stability of a nucleosome are also modified by the presence
of histone variants, histone post-translational modifications (PTMs), high-mobility-group
(HMG) proteins, or linker histones in specialized chromatin regions, adding to the features
susceptible to affect remodelers’ activities (reviewed in Reference [8]; see Section 4.5.6).

1.2. Nucleosome Positioning, Spacing, and Phasing, and the Roles of Remodelers

Remodelers can be classified into categories specialized in nucleosome editing, chro-
matin assembly, or chromatin opening (Figure 1A); thus, they can participate differently in
nucleosome organization. The position of a nucleosome is established randomly during
the histone deposition process, which occurs mainly during replication, and the positional
stability of a nucleosome depends on the features described above. Thus, in a population
of genomes (right after replication), DNA-binding sites are randomly exposed between
nucleosomes or hidden within a nucleosome (Figure 1B(1)). By moving octamers in cis
(Sliding) or in trans (Ejection), remodelers actively contribute to nucleosome positioning
and play a critical role in regulating accessibility for DNA-binding factors. In addition,
nucleosomes are distributed in arrays along the DNA, and the distance separating them de-
fines nucleosome spacing. In a population of genomes, from the initial randomly deposited
octamer, assembly remodelers can achieve regular spacing of the nucleosomes at a given
locus. Independently, they however cannot achieve phasing, the uniform nucleosome posi-
tioning relative to the underlying DNA sequence in a population of genomes, because the
position of the reference nucleosome may differ between genomes (Figure 1B(2)). Phasing
can result from uniform nucleosome positioning being dictated by obstacles such as the
presence of a barrier factor (e.g., transcription factor and boundary element), constraining
an assembly remodeler to uniformly space nucleosomes with respect to the obstacle, result-
ing in regular spacing with phasing across genomes (Figure 1B(3)). Furthermore, from a
regularly spaced and phased population, opening remodelers can remove nucleosomes,
leading to a population of phased but not evenly spaced nucleosomes, a situation common
at promoters in order to homogeneously grant activators access to their cognate sites
(Figure 1B(4)). Consequently, uniform exposure of DNA-binding sites results from arrays
that are spaced and phased. These aspects are critical to appreciate the organization of
chromatin, particularly at promoters and enhancers, and the contribution of remodelers to
transcription regulation (see Section 5).
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Figure 1. Chromatin processes, nucleosome spacing and phasing, and remodelers’ contribution. (A) Contribution of
remodelers to various chromatin processes. Using their ATPase subunit, remodelers can contribute to (i) chromatin opening
(light green background) by ejecting nucleosomes, irregularly spacing nucleosomes through sliding, evicting dimers, or
altering DNA wrapping; (ii) chromatin assembly (light pink background) by maturating deposition or regularly spacing
nucleosome; and (iii) nucleosome editing (light purple background) by modifying octamer composition through installation
or removal of histone variants (blue partial cylinder). (B) Contribution of remodelers to nucleosome spacing and phasing.
(1) Within a genome population, the deposition of histone octamers results in random nucleosome positioning with a mix
of blockage (red) and exposure (green) of specific cognate sites for DNA-binding proteins. (2) Upon remodeling by an
assembly remodeler, without an obstacle, nucleosomes are regularly distributed along the DNA, resulting in regular spacing,
but without phasing, as access to particular cognate sites remains heterogeneous across the population. (3) Alternatively,
upon remodeling by an assembly remodeler, in the presence of an obstacle, e.g., a DNA sequence or a bound barrier
factor, nucleosomes are regularly distributed along the DNA, resulting in regular spacing and phasing with homogeneous
access to particular cognate sites across the population. (4) From a population of regularly spaced and phased nucleosome
arrays, upon remodeling by an opening remodeler, nucleosomes can remain phased but lack regular spacing, leading to a
homogeneity in the exposure of binding sites across the genome population.

Rather than being intrinsically DNA-encoded or transcription-related, in vivo nucleo-
some positioning and the highly regularly spaced and phased nucleosomal distribution
near the 5′ends of most eukaryotic genes relies instead on ATP-dependent remodelers
stacking nucleosomes against a barrier such as CTCF [9,10]. Remarkably, in yeast, an
elegant study measuring the intrinsic cyclizability of DNA fragments demonstrated that
the nucleosome-depleted regions (NDRs) upstream to the transcription start sites (TSS)
possess unusually low bendability that inhibits INO80-mediated nucleosome sliding into
the NDR, likely defining a mechanical barrier [11].
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2. Functional Classification and Specialization of Remodelers
2.1. Chromatin Remodeling Outcomes and Classification of Remodelers

To manipulate the nucleosomal barrier and assist selective access to the DNA, chro-
matin remodelers use the binding and hydrolysis of ATP molecules to break DNA–histone
contacts in the nucleosome, leading to a variety of outcomes that can be classified into three
categories (Figure 1A): (1) nucleosome editing in which the composition of the nucleosome
is modified by the installation or removal of histone variants, (2) chromatin assembly in
which nucleosomal DNA is tightly wrapped (by maturation of initially deposited histone–
DNA complexes into canonical nucleosomes) and cis displacement of the histone octamer
(sliding) results in regularly spaced arrays, and (3) chromatin opening in which either
irregularly spaced arrays are generated by sliding or nucleosome wrapped DNA becomes
more accessible due to ejection of the entire histone octamer, partial disassembly of the
nucleosome with an H2A/H2B dimer eviction, or altered DNA wrapping.

In parallel, chromatin remodelers are traditionally classified into four major subfam-
ilies named after their core ATPases, namely ISWI, CHD, SWI/SNF, and INO80, which
are separated based on similarities and differences between domains harbored within
their ATPase subunits (Figure 2A). The vast majority of eukaryotes contains at least one
remodeler from each of the four subfamilies, supporting the notion that their functions
are largely non-redundant. Moreover, higher eukaryotes have evolved a broader set of
remodelers within each subfamily by increasing compositional diversity through a modular
and combinatorial architecture involving subunit paralogs, leading to functionally tailored
remodelers, such as cell-type specific or developmentally specific remodelers (reviewed in
Reference [12]).

2.2. Specialization of the Remodelers
2.2.1. ISWI and CHD Subfamilies

ISWI-subfamily remodelers generally facilitate chromatin assembly. Notably, with his-
tone chaperones, they assist the maturation of histone–DNA complexes (prenucleosomes)
into canonical nucleosome and proper density and spacing during replication, defining
the initial chromatin landscape [16–18]. Their central function is to generate evenly spaced
nucleosomes of various compositions in different chromatin contexts, optimizing the pack-
aging of subsections of the genome (Figure 1B(2)). When coordinated with obstacles such
as barrier factors (boundary elements or transcription factors), some assembly remodelers
generate spaced and phased arrays, leading to a homogeneous site blockage or exposure to
site-specific DNA-binding factors (Figure 1B(3)). In order to evenly space nucleosomes, the
ISWI and CHD subfamilies’ motor subunits harbor a DNA-binding domain (DBD) or a
HAND–SANT–SLIDE (HSS) domain, which is used as a molecular ruler, and display inter-
action with and regulation by H4 tails (Figure 3A,B) (see Sections 4.5.2 and 4.5.3) [19–25]. In
contrast, a subset of ISWI-subfamily remodelers, which includes the Nucleosome Remodel-
ing Factor (NURF) complex, is involved in increasing DNA accessibility and promoting
transcription. The diversity of ISWI-subfamily remodelers has been substantially expanded
in evolution, most notably by the incorporation of two alternative motor subunits (SNF2L
and SNF2H) along with many alternative regulatory subunits, revealing an increased
functional complexity and versatility ripe for further investigation [26].

Although Chd1, the flagship of the CHD subfamily of remodelers, facilitates chro-
matin assembly, the CHD ATPases themselves are quite diverse, and, depending on their
associated subunits and the chromatin context, this subfamily of remodelers can contribute
to all outcomes: chromatin assembly [27], chromatin opening [28], and nucleosome edit-
ing [29,30]. A prominent example is the Nucleosome Remodeling Deacetylase (NuRD)
complex, which associates DNA translocation by CHD3/4 to histone deacetylation through
a dynamic and modular architecture [31,32]. Finally, the various CHD-subfamily AT-
Pases themselves can exhibit distinct nucleosome binding and remodeling activities, as
exemplified by CHD6, CHD7, and CHD8 [33].
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Figure 2. ATPase-based classification of remodelers, model for DNA translocation, and mechanistic
and regulatory contacts between a remodeler and a nucleosome. (A) ATPase-based classification
of remodelers. All remodelers contain a SWI2/SNF2-related ATPase subunit characterized by an
ATPase/translocase domain (ATD), which is split into two RecA-like lobes, lobe 1 (yellow) and lobe
2 (orange), and sufficient to perform DNA translocation. Remodelers can be separated into four
subfamilies based on the conserved domains flanking the ATPase domain and the length of the insertions
between the lobes (gray). The INO80 subfamily is the only subfamily bearing a long insertion. Types
and position of domains further define each subfamily. In SWI/SNF, an HSA helix, a post-HSA, an
α2 helix, a SuppH-containing Protrusion 1 helix (P1), and a Brace that together form a structural hub
bridging the lobes; a SnAC domain along with a basic-patch (BP); AT-hooks; and a bromodomain. In
ISWI, an AutoN region, NegC region, APB domain, and HSS (HAND–SANT–SLIDE) module. In CHD,
possible PHD fingers, tandem chromodomains, a region similar to NegC, and a DBD (DNA-binding
domain). In INO80, an HSA helix and a post-HSA. Possible remodeling outcomes from each subfamily
are color-coded in the background of each ATPase as in Figure 1A. (B) Model for DNA translocation. The
lobes of the ATPase domain (depicted as in (A)) undergo an ATP binding- and hydrolysis-dependent
conformational cycle that correlates with alternating high affinity for DNA, driving DNA translocation.
Lobes are colored (yellow for lobe 1; orange for lobe 2) when they have a high affinity for DNA and
depicted in gray when they have a low affinity for DNA. Only the tracking strand of DNA, along which
the lobes move in a 3′–5′ direction, is represented. The movements of the lobes are visualized by colored
arrows, and the DNA translocation is depicted with back arrows. The precise step in which the inorganic
phosphate (Pi) is released is unknown. Model inspired from Reference [13] and modified to incorporate
results and observations from References [14,15], leading to an updated model in which lobe 1 is the
stationary lobe. (C) Mechanistic and regulatory contacts between remodelers and nucleosomes. Beyond
the lobes (here depicted at SHL2 from the dyad), depending on the subfamily, multiple mechanistic and
regulatory contacts can be established between a remodeler (brown shape) and a nucleosome (cylinder
with wrapped DNA in black; dyad axis depicted). The ATPase itself or additional subunits interact
with (1) the second DNA gyre; (2) the extranucleosomal DNA on the entry or exit side; (3) the proximal
and/or distal histone acidic patches (HAP); and (4) the histone tails, for example, H4 tail depicted here
(red). Direction of potential translocation is indicated by blue arrows.
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Figure 3. Cryo-EM structures of nucleosome-bound remodelers. Remodelers from the (A) ISWI
subfamily are yeast Isw1 (6JYL), and human SNF2H (6NE3); (B) CHD subfamily are yeast Chd1
(5O9G) and human CHD4 (6RYR); (C) SWI/SNF subfamily are yeast Snf2 (5X0Y), yeast RSC (6KW3),
and human BAF (6LTJ); and (D) INO80 subfamily are yeast Swr1 (6GEJ) and C. thermophilum Ino80
(6FML) bound to a nucleosome are depicted in the same orientation resulting from a structural
alignment of their respective histone octamers before being separated into panels. Corresponding
features are depicted with the same color codes. The ATPase subunits are depicted in spheres, with
lobe 1 in yellow, lobe 2 in orange (as in Figure 2), and the rest of the subunit in green. The other
subunits, if any, are depicted as colored cartoons. The dyad base-pair of each nucleosome is depicted
in red. A few remarkable features have been named and indicated by arrows. All the remodelers
from the various subfamilies engage the nucleosome in a similar or an inverted manner.

2.2.2. SWI/SNF Subfamily

SWI/SNF-subfamily remodelers enable chromatin opening needed for all DNA trans-
actions, particularly by exposing binding sites to transcriptional activators or repressors.
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A specific feature of the SWI/SNF-subfamily remodelers is their capacity to expose large
regions of DNA by performing nucleosome ejection, guided by transcription factors and
influenced by the strength of the nucleosome positioning due to the underlying DNA se-
quence and histone composition. In yeast, the Remodels the Structure of Chromatin (RSC)
complex, has served as a model for understanding how nucleosome ejection versus sliding
are chosen and conducted. Interestingly, the choice of remodeling outcome relies on the
regulation of the DNA translocation efficiency by the conserved and essential Actin Related
Proteins (ARP), which are bound to the HSA domain of the ATPase, and a regulatory hub
that physically associates the domains flanking and separating the ATPase lobes [14,34,35]
(see Section 4.6). Notably, nucleosome ejection might also occur by spooling DNA off of
the adjacent nucleosome via DNA translocation [36–39]. Here, future work will reveal how
the chromatin context and specific remodeler features drive the choice between sliding and
ejection, or enable spooling.

In contrast to the ISWI and CHD subfamily remodelers, which are more often small
complexes, the SWI/SNF subfamily remodelers are uniformly large multi-protein com-
plexes with conserved modular subunit organization and nucleosome recognition mecha-
nism across complexes and organisms (Figure 3C). The variety of modules is expanded
by the incorporation of paralogs, and further increases with the organism’s cellular and
developmental diversity and complexity of differentiation. This organizational modular-
ity related to functional versatility was first identified and characterized in yeast, flies,
and mammals, and corroborated in all the recently determined structures of SWI/SNF-
subfamily remodelers, including the human BAF remodelers [40]. Here, the field would
benefit from additional functional characterization of the various SWI/SNF accessory sub-
units, and future work will need to precisely associate SWI/SNF remodelers of particular
compositions to specific functional contexts, such as cell self-renewal, maintenance of
cellular identity and highly specialized function, precise transcriptional switching, distinct
cellular commitment during development and differentiation.

2.2.3. INO80 Subfamily

INO80-subfamily remodelers mainly edit nucleosome composition by exchanging
histone variants, increasing the capacity to specialize one or few nucleosomes locally or
temporally, potentially changing the nucleosome stability and/or the recognition by other
chromatin factors.

One prominent feature common to all the INO80 subfamily of remodelers, orches-
trating their common architecture, is the compositional presence of RuvBL1/2 (in human,
Rvb1/2 in yeast) AAA+ ATPases, which assemble into a single ring of hetero-hexamers,
bind to the large insertion present in the ATPase domain, and act as an assembly chaperone
and scaffold [41,42] (Figure 3D). The presence of this complex enzymatic ring structure in
the context of chromatin remodelers remains functionally intriguing.

SWR1 drives the sequential replacement of H2A–H2B dimers with the variant H2A.Z–
H2B dimers [43,44], while performing DNA translocation but not causing sliding [45],
perhaps by constraining the translocated region within the confines of the nucleosome. Of
note, SWR1 is largely, but not completely, unable to slide nucleosomes [46]. In order to
achieve the appropriate dimer replacement, SWR1C specifically recognizes H2A.Z–H2B
over H2A–H2B via dedicated domains and subunits [47,48]. Mirroring SWR1 nucleosome
editing activity, INO80 replaces the variant H2A.Z–H2B dimers with canonical H2A–H2B
dimers [49] by performing DNA translocation with higher efficiency in the presence of
H2A.Z [50]. Notably, INO80 is also competent in repositioning nucleosomes [51]. Moreover,
yeast INO80 can also remove the variant H2A.X [52], and the vertebrate p400 complex can
replace H3.1 by H3.3 [53]. Here, shedding light on the mechanisms leading to the high
selectivity for specific histone variants and the interplay with histone chaperones is of the
utmost interest, with considerable recent progress.

Together, remodelers from all subfamilies contribute to chromatin plasticity by estab-
lishing, maintaining, and dynamically tailoring a broad variety of chromatin landscapes
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necessary for all DNA transactions, including DNA recombination, DNA replication, DNA
repair, and transcription.

3. Characteristics and Mechanism Shared by All Remodelers
3.1. Compositional Characteristics Shared by All Remodelers

Despite their functional diversity, all remodelers share common features (Figure 2C):

(1) Remodelers all contain a single catalytic subunit harboring an ATPase domain split
into two RecA-like lobes, functioning as a DNA translocase, breaking histone–DNA
contacts in nucleosomes.

(2) Remodelers all present domains and/or subunits that regulate the ATPase domain
and the translocation process, displacing DNA relative to the octamer.

(3) Remodelers all exhibit domains that bind histones and specific post-translational
modifications, resulting in a greater affinity for the nucleosome than free DNA, and
imparting the potential for regulation of remodeling by those modifications.

(4) Remodelers all contain domains and/or subunits that can bind free/extranucleosomal
DNA, which can inform the remodeling process.

(5) Remodelers all include domains and/or subunits that interact with other chromatin
factors, e.g., histone chaperones or transcription factors, which can contribute to
targeting.

Together, these shared aspects allow the selective engagement and regulated action of
specific remodelers on distinct nucleosomes within distinct functional contexts.

3.2. DNA Translocation, the Underlying Mechanism Shared by All Remodelers

All remodelers contain a single catalytic subunit belonging to the SF2 superfamily of
helicases and DNA/RNA translocases, characterized by an ATPase domain split into two
domains, termed lobes 1 and 2, with homology to the E. coli RecA DNA-binding protein.
The cleft separating the two lobes can host an ATP molecule and the DNA. Supported by a
plethora of evidence from computer simulation, and structural and functional observations,
the most recent model of DNA translocation, which is suggested to be common to all
remodelers, proposes that, during any nucleosome remodeling event, the motor subunit
undergoes a conformational cycle driven by the binding and hydrolysis of ATP in the
cleft concomitant to an alternating high affinity of the two lobes for the DNA tracking
strand [15,54–56] (Figure 2B). An ATP molecule binds into a binding pocket formed mainly
by the Walker A and Walker B motifs present in lobe 1 when the enzyme is in an open
conformation, and requires for its hydrolysis the closing of the cleft and an arginine finger
present on lobe 2. The binding and hydrolysis of ATP alternatively reduces the affinity of
lobe 1 and lobe 2 for the DNA tracking strand which, combined with the closing–opening
cycle of the cleft, leads to the progression of the lobes along the DNA tracking strand in a
3′ to 5′ direction, using an inchworming mechanism with a 1 bp step per ATP cycle [57–62].
However, in the context of nucleosome remodeling, the lobes are prevented from moving
along the nucleosomal DNA path by being tethered/anchored to the nucleosome through
contacts established between the remodelers’ additional domains/subunits and nucleoso-
mal features (i.e., histone acidic patch, histone H4 tails, post-translational modifications,
opposite DNA gyre, and extranucleosomal DNA; see Section 4.5). Thus, instead of moving
the remodeler along the nucleosomal DNA path, the inchworm mechanism of the lobes
translocates the DNA unidirectionally at the surface of the histone octamer, creating a
ratcheting cycle of small (1 bp/ATP) DNA deformations, creating DNA translocation and
twist defects that pull the DNA toward the octamer dyad while breaking histone–DNA
contacts in the nucleosome [57,63,64]. In support, the different nucleotide-bound states
revealed by the structures support a model of DNA translocation in which a localized DNA
distortion introduced, for example, by the Snf2 remodeler, propagates across the surface
of the octamers in small coordinated movements [65]. A DNA distortion at SHL2 is also
observed when SWR1 interacts with the nucleosome in an ATP-bound closed conforma-
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tion [66]. Notably, the power stroke appears to result from ATP binding, while the resetting
of the remodeler conformation results from ATP hydrolysis [66,67] (Figure 2B).

Notably, during this DNA translocation process, although the histone octamer does
not endure major deformation [56], changes have been reported that might accompany the
propagation of the DNA translocation and twist defects [68–70]. In addition, the histone
core undergoes a distortion resulting from conformational changes at the interface between
H2A–H2B and H3–H4 upon SWR1 interaction that might facilitate histone exchange [66].
Finally, as nucleosomes are slightly flexible regarding the DNA they can accommodate,
nucleosome stability might be partly ensured by a buffering of a few base-pairs within the
nucleosome, with the movement of the entry-side DNA preceding that of exit-side DNA,
for example, during sliding by Chd1 and SNF2H [62].

As a diversity of remodeling outcomes has to arise from a common DNA translocation
mechanism applied to akin nucleosomal substrates, similarities and unique specificities
in the remodeler–nucleosome interaction and precise regulation must be implemented,
governing sophisticated conversations between nucleosomes and remodelers.

4. Shared and Specific Regulatory Principles and Features Governing the
Sophisticated Conversations between Nucleosomes and Remodelers
4.1. Blossoming of Structures with Remodelers Engaging Nucleosomes

Recently, a profusion of structures has been obtained by cryogenic electron microscopy
displaying chromatin remodelers engaged with nucleosomes. This has strengthened and
expanded the conceptual unification in the mechanistic and regulatory principles and
features uncovered previously through genetic, biochemical, and biophysical studies.

To date, the structures of the following nucleosome-bound remodelers have been
released: in the ISWI and CHD subfamilies, yeast Chd1 [15], yeast ISW1 [56], human
SNF2H [71], and human CHD4 [72]; in the SWI/SNF subfamily, yeast RSC [73–76], yeast
SWI/SNF [77], human recombinant, and endogenous BAF [78,79]; and in the INO80
subfamily, yeast SWR1 [66], C. thermophilum, and human INO80 [80,81]. Examples from
each of the four subfamilies of remodelers are presented in Figure 3 and commented
upon below.

4.2. Localization of the Catalytic Core, and Free Versus Restrained Translocation

All remodelers interact with nucleosomes in a multivalent fashion (Figure 3). The main
interaction shared by all remodelers corresponds to the binding of the two ATPase lobes to
the DNA. The structures confirmed previous work demonstrating that a vast majority of the
remodelers’ lobes engage the DNA within the nucleosome at the SHL2 position [57,82,83],
with the notable exception of the INO80 lobes located at SHL-6/-7 [50,80,81] (Figure 3).

With the lobes located at SHL2, it is established that, in the process of sliding, the
ISWI and CHD families’ remodelers perform DNA translocation iteratively, which freely
propagates DNA, breaking a single histone–DNA interaction at a time, whereas, in the
process of ejection, the SWI/SNF-family remodelers have the regulated opportunity to
perform forceful DNA translocation, breaking multiple histone–DNA interactions simulta-
neously. In contrast, in the process of histone exchange by SWR1 and INO80 remodelers,
the DNA translocation is spatially limited and transient, rupturing few histone–DNA
interactions, locally distorting and unwrapping DNA, exposing the histone dimer, and
providing an opportunity for dimer exchange while preventing net sliding and preserv-
ing nucleosome integrity. Importantly, this restrained DNA translocation is achieved by
adding a counter-grip formed by the Arp6/Swc6 module in SWR1 and the Arp5/Ies6
module in INO80 [45,46,66,80,81,84]. Strikingly, SWR1 and INO80 share a common overall
architecture but with an inverted organization. Thus, the interactions with the nucleosome
are inverted: in SWR1, as the motor is bound at SHL2, the counter-grip Arp6/Swc6 locates
at SHL6; meanwhile, in INO80, as the motor is bound at SHL-6, the counter-grip Arp5/Ies6
locates at SHL-2/-3 (Figure 3D). Consequently, in the case of SWR1, as in the ISWI, CHD
and SWI/SNF subfamilies of remodelers, the motor pumps DNA from the entry side, but
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pulls it from the counter-grip; and the ruptured histone–DNA contacts are thus located
upstream of the motor. In contrast, in the case of INO80, while the motor still pumps DNA
from the entry side, it pushes it against the counter-grip; and the ruptured histone–DNA
contacts are thus located downstream of the motor. Of note, in INO80, the stabilization
of the remodeler–nucleosome interactions is reinforced by the interaction of lobe 2 with
the Rvbs, and by the Ies2 subunit, which is characterized as a critical regulator [85–87] and
connects lobe 1 to SHL2.

4.3. Orchestration of Remodeler Architecture by the ATPase Subunit

Beyond the catalytic core, the ATPase subunit proteins also harbor critical specializa-
tion and regulatory domains, such as the HSS/DBD in the ISWI and CHD subfamilies. In
addition, in the large remodelers from the SWI/SNF and INO80 subfamilies, the ATPase
subunit is the major structural organizer of the complexes (Figure 3C,D). Indeed, in the
SWI/SNF-subfamily remodelers, the ATPase subunit itself represents the backbone of the
entire remodeler with its N-terminus extending all the way across the whole structure of
the complex, along which most of the other components are organized in distinct structural
and functional modules, including an HSA-bound ARP module. Toward the N-terminus
of the ATPase, multiple subunits form a large base, a substrate recruitment module, located
mostly on the distal side of the nucleosome with a massive core scaffold bundling four
coiled-coil domains from which three substrate-binding lobes bud: a nucleosome binding
lobe, a DNA-binding lobe, and a histone-tail binding lobe, which, together, are involved
in substrate selection (detailed in Sections 4.4–4.8). The ATPase subunits of the INO80-
subfamily remodelers, as those of the SWI/SNF-subfamily remodelers, are highly extended
proteins establishing direct contacts with all the modules forming the remodeler, spanning
from the catalytic core and an HSA-bound ARP module to various subunits organized in
modules involved in anchoring the motor, sensing the substrate, and contacting the acidic
patches or the extranucleosomal DNA (detailed in Sections 4.4–4.6). Together, this archi-
tecture ensures proper operation and opportunities for fine-tuned and context-dependent
regulation via integration of allosteric activations and inhibitions.

4.4. Positive Correlation Between Functional, Structural, and Regulatory Complexities
Throughout Remodelers

Notably, the complexity of the regulatory conversation between a nucleosome and a
remodeler increases with the challenges faced, and the complexity of the processes neces-
sary to achieve various remodeling outcomes (Figure 4 and detailed in Sections 4.5–4.8).
This is in part reflected in increased compositional and structural complexities of the corre-
sponding remodelers in order to be capable of overcoming challenges they face to fulfill
their function, and in the multiplicity of their contacts with the nucleosome.

Logically, while all remodelers interact with nucleosomes in a multivalent fashion
(Figure 2C), the number, nature, and extent of the interaction increase along with the
complexity of the aimed process (Figure 4): in chromatin assembly (left arrow), nucleosome
sliding requires minimal action, and thus interaction, spacing, and phasing still require
minimal action with slightly more interaction; in chromatin opening (central arrow), nucle-
osome ejection and the alternative sliding require bold and robust action with advanced
regulation guiding the choice of the outcome; in nucleosome editing (right arrow), histone
exchange requires significant but spatially restrained action with subtle substrate identifica-
tion and preservation of the nucleosome integrity. Thus, evidently, the histone exchangers
from the INO80 subfamily are the remodelers that present the most extended interactions
with the nucleosome and the histones in order to generate a situation that favors dimer
exchange while preserving the integrity and stability of the rest of the nucleosome (detailed
in Sections 4.5 and 4.6).
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Figure 4. Hand-in-hand progressive increase in complexity of the regulatory conversations between remodelers and
nucleosomes with the increase in challenges of remodeling processes. On the way (arrows) to successfully achieve their
respective remodeling outcomes (top), remodelers from each subfamily need to overcome challenges (left orange gradient)
associated with the processes they carry out (right blue gradient) by using shared and specific subunits and domains (black
text along the arrows) corresponding to distinct nucleosomal features (blue text along the arrows). There is a positive
correlation: the more complex the process is, the more challenges need to be overcome, and the higher is the need for
complex regulation and multiple contacts with the nucleosome, and thus the more structurally and compositionally complex
the remodelers are. D–H interaction stands for DNA–histone interaction.
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4.5. Regulation of Remodelers by Nucleosomal Features
4.5.1. Autoinhibition in Remodelers

A key regulatory principle that appears common to a growing number of remodelers
is the presence of intrinsic autoinhibitions in their nucleosome unbound state, which are
released to enable catalytic activation upon binding to a nucleosome (Figure 4). Examples
abound and include the following: Chd1 is gated by chromodomains [88], ISWI and SNF2H
are auto inhibited by AutoN and NegC [89,90], ERCC6/CSB is autoinhibited by its N-
terminal region [91], Rhp26 is autoinhibited by a ‘leucine latch’ motif [92], ALC1/CHD1L
is autoinhibited by its macro domain [93,94], and now support from structural studies
have emerged for ISWI [95] and Snf2 [96]. Thus, consistently, the catalytic cores of the
ATPase/DNA translocase subunits are intrinsically active [35,88,89,97], and held in check
via autoinhibition.

4.5.2. Regulation by the Histone H4 Tail

Remarkably, the histone H4 tail (which arises from the octamer close to SHL2 position)
and its basic patch are required for the proper ATPase and remodeling activities of many
ISWI and CHD-subfamily remodelers: the CHRomatin Accessibility Complex (CHRAC)
and ISWI [19,98], NURF [20], ISW2 [99], Chd1 [100], and SNF2H [101]. Of note, chromatin
compaction and the stability of the interaction between nucleosomes involve the histone
H4 tail and depend on its acetylation status [102]. The ISWI remodeler appears to be an
intrinsically active DNA translocase held in check by two autoinhibitory regions, one of
them being the AutoN region, which displays sequence similarities to the H4 tail basic
patch and restrains the ATPase activity of the remodeler [89]. The activation of the ISWI
ATPase activity involves the release of the AutoN inhibition by the histone-H4-tail basic
patch [89], a regulatory mechanism supported by structural studies of ISWI bound to a
nucleosome [56]. Moreover, in the ATP-utilizing Chromatin assembly and remodeling
Factor (ACF) remodelers, the inhibited state is reinforced by the interaction of the H4
tail with the N-terminal portion of the accessory subunit Acf1, which is released by its
preferential binding to extranucleosomal DNA, resulting in allosteric regulation [103].
Beyond ISWI, full remodeling activities of Snf2, Chd1, CHD4, and SNF2H require the
histone H4 tail, which interacts with the conserved acidic cavity located at the surface of
lobe 2 [15,65,71,72] (Figure 4).

4.5.3. Regulation by the Presence and Length of Extranucleosomal DNA

Besides AutoN, the DNA translocase activity of the ISWI remodeler is also held in
check by a second autoinhibitory region, the NegC region, which prevents the coupling
of energy consumption to productive DNA translocation [89]. Remarkably, the establish-
ment of efficient DNA translocation by ISWI involves the release of this NegC inhibition
through the binding of the subfamily signature HAND–SANT–SLIDE (HSS) domain to
the extranucleosomal DNA [89]. The HSS domain acts as a DNA sensor, a molecular ruler,
critical to equally space nucleosomes in arrays, resulting in optimized chromatin assembly
and packaging, the function of most ISWI subfamily remodelers. Notably, the HSS domain
can be complemented by Acf1 in the ACF remodeler (see Section 4.5.2).

Similarly, the CHD motor subunit contains a NegC domain and a DNA-binding do-
main (DBD) associating SANT and SLIDE domains, which can be used as a DNA sensor to
evenly distance nucleosomes [25]. As in ISWI, the engagement of yeast Chd1 with a nucleo-
some requires the reorientation of the DBD, lifting an autoinhibitory state [104]. In addition,
the closure of the yeast Chd1 ATPase domain depends on a swinging movement of the
double chromodomains, a subfamily signature, towards nucleosomal DNA [15], consistent
with the physical gating of the DNA binding by the chromodomains [88] (Figure 4).

Consistently, a minimal length of extranucleosomal DNA is necessary for optimal
remodeling activities by various remodelers, particularly for members of the ISWI and
CHD subfamilies, as they rely on a molecular ruler to space nucleosomes [105,106]. In
contrast to Chd1, in which the reorientation of the DBD contributes to unwrapping of the
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distal DNA, the binding of CHD4 to a nucleosome does not induce DNA unwrapping,
an observation consistent with the role of CHD4 in gene repression and heterochromatin
formation and maintenance [72] (Figure 3B). Furthermore, the engagement of the RNA
Polymerases II (RNAPII) with a nucleosome activates Chd1 by releasing its DBD interaction
with extranucleosomal DNA and its contact with the DNA second gyre, leading to the
progression of RNAPII through the nucleosome [107,108]. Of note, some of the CHD-
subfamily motor subunits harbor additional tandem plant homeodomain (PHD) fingers in
their N-termini while others contain a CHD1 helical C-terminal (CHCT) domain in their
C-termini [109] that might further contribute to DNA binding.

In SWI/SNF remodelers, from its subunit and domain composition (e.g., HMG in
SMARCE1 and Wedge Helix (WH) in SMARCB1), the DNA-binding lobe appears to
be poised to bind extranucleosomal exit DNA and recognize promoter DNA elements,
possibly contributing to the DNA translocation process.

Notably, the regulation of the sliding activity of the INO80 remodeler also involves
sensing the length of the extranucleosomal DNA [110,111]. In SWR1C, the extranucleoso-
mal DNA can be bound by the Arp4–Actin–Arp8–HSA domain, acting as a DNA sensor
and regulating activity and coupling [112]. Remarkably, the contacts made by Arp5/Ies6
in INO80 mirror those made by Arp6/Swc6 in SWR1, in particular the tethering to the
histone octamer and the interaction with the extranucleosomal entry DNA [66,80,81].

Here, it will be highly conceptually relevant to investigate, in future work, the mech-
anistic and regulatory impacts of sensing the length of extranucleosomal DNA, its com-
position/stiffness, and the presence of a barrier factor, particularly at promoters for the
regulation of the +1 nucleosome positioning (see Sections 1 and 5.2).

4.5.4. Regulation by the Histone Acidic Patches

The histone acidic patch is defined by a conserved cluster of eight negatively charged
residues from histones H2A and H2B that form a narrow groove at the surface of the
nucleosome. The acidic patch of a nucleosome is contacted by the histone H4 tail of an-
other nucleosome in the crystal lattice [1] but can also structurally interact with various
chromatin factors: LANA [113], RCC1 [114], Sir3 [115], HMGN2 [116], CENP-C [117],
and Ring1B of PRC1 [118]. Confluently, all chromatin remodelers functionally interact
with the nucleosomal acidic patches. Indeed, the remodeling activity of remodelers from
different subfamilies, ACF, CHD4, and BRG1, is reduced upon neutralization of charges
in the acidic patch [119]. Moreover, crosslinking mass spectrometry revealed a structural
interaction between the two autoinhibitory regions AutoN and NegC of SNF2H and the
acidic patch [90], suggesting a complex regulation and a potential fine-tuning of the release
of the autoinhibition in conjunction with the histone H4 tail and the extranucleosomal
DNA, discussed above. Notably, the ISWI ATPase contacts the nucleosome acidic-patch
via an acidic-patch binding region flanking the HSS domain, a likely anchor that facilitates
DNA translocation [120] (Figure 4). Moreover, the direction of sliding by ISWI is impacted
by an asymmetry between the two acidic patches [121]. Interestingly, the ALC1/CHD1L re-
modeler strongly depends on the binding of its linker segment to the proximal acidic patch
for tethering and efficient coupling of ATP hydrolysis to nucleosome remodeling [122].

Furthermore, recent structures of SWI/SNF-subfamily remodelers, RSC [73,75], SWI/
SNF [77], and BAF [78,79], revealed direct interactions between those remodelers and both
acidic patches of the nucleosome. First, the conserved SnAC (Snf2 ATP-coupling) domain,
and/or a basic patch immediately following the SnAC domain [76], of the ATPase binds
to the histones [123] at the proximal acidic patch, likely to form an anchor contributing to
efficient nucleosome sliding (Figure 4). Of note, this interaction might be influenced by the
nearby H4 tail [75]. In the meantime, the conserved basic residues of the C-terminal tail,
the finger helix, of the essential subunit Sfh1/Snf5/BAF47–SMARCB1 interacts with the
distal acidic patch [124], further anchoring the remodeler to the octamer, and promoting
nucleosome ejection [73]. Here, this additional anchor might be necessary to increase the
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torque applied to the DNA by the remodeler, and to achieve the concomitant rupture of
several histone–DNA contacts and thus nucleosome ejection (Figure 4).

Moreover, SWR1 and INO80 remodelers functionally interact with both acidic patch-
es [66,80,81]. Here, the structure of SWR1 confirmed that Swc6 establishes contacts with
the H2A tail and the proximal acidic patch [45], possibly contributing to the specificity of
SWR1 for H2A-containing nucleosomes [44]. Remarkably, the structure also reveals that the
Swc2 subunit of SWR1 travels all the way across the nucleosome to interact with the acidic
patch of the nucleosome distal face [66]. In INO80, in a stunningly similar situation, the
Arp5 subunit contains a grappling insertion that interacts with the proximal acidic patch
while the Ies2 subunit stretches across the nucleosome to interact with the distal acidic
patch of the nucleosome, as does Swc2 in SWR1, despite no sequence similarities [80,81]
(Figure 4). In support of a critical role for those interactions, acidic patches are required for
nucleosome sliding by INO80 [80]. Notably, INO80, which acts as a dimer in repositioning
nucleosomes [51], might require the Arp5 and Ies2 subunits to compete for the acidic
patches on each side of the histone octamer [80].

It is remarkable that the remodelers from the SWI/SNF and INO80 subfamilies estab-
lish critical contacts with both nucleosomal acidic patches, contrasting with the remodelers
from the ISWI and CHD subfamilies, which interact with only the proximal acidic patch.
This observation aligns well with the need for the INO80 and SWI/SNF subfamilies’ re-
modelers to substantially increase their anchoring contacts with the histones in order to
apply stronger torque to the DNA, and thus simultaneously break several histone–DNA
contacts, necessary for histone exchange and nucleosome ejection, respectively (Figure 4).

4.5.5. Regulation by the Nucleosomal DNA Sequence, and Contacts to the Second
DNA Gyre

Without modifying the remodeling mechanisms per se, nucleosomal DNA sequence-
dependent differences have been observed in remodeling activities with many remodelers,
likely due to the altered intrinsic stability of the nucleosome. One of the prominent
examples is the RSC remodeling activity being stimulated by AT-rich sequences in the nu-
cleosome, helping the formation and maintenance of NDRs at TSS [3]. The DNA sequence
surrounding SHL2, including the presence of poly-AT tracts, can also influence Chd1
activity, with the potential to establish a rate-limiting step by slowing down sliding [125].
Finally, the H2A.Z exchange rate by SWR1-C can be modulated by the nucleosomal DNA
sequence [46].

Notably, the lobes of Chd1 and ISWI establish contacts with the second DNA gyre,
transiently guiding DNA translocation during the conformational cycle [126,127]. Con-
sistently, the lobe 1 of Sth1, the ATPase of the yeast SWI/SNF-subfamily remodeler RSC,
also binds the second gyre, around SHL-6 [75], and the ATP-bound closed conformation of
SWR1 displays increased contacts of lobe 1 with the second DNA gyre [66] (Figure 4).

4.5.6. Impact of Histone Post-Translational Modifications and Variants

All remodelers contain subunits and/or domains that act as ‘readers’ of histone PTMs
with specific affinities, potentially affecting both their targeting and regulation (Figure 4).
Examples of readers include bromodomains (BRD), bromo-adjacent homology (BAH)
domains, chromodomains (CHDs), plant homeodomains (PHD), Pro–Trp–Trp–Pro (PWWP)
domains, and tryptophan-aspartic acid (WD40) domains. Conceptually, the presence of
modifications (or a histone variant) can positively or negatively affect the targeting or
regulation of a remodeler. However, due to their weak affinities, histone modifications are
predicted to work in combination with each other or collaborate with additional factors in
order to affect targeting. In SWI/SNF-subfamily remodelers, the histone-binding lobe of
the substrate recruitment module clusters many BRDs (from Rsc1 or Rsc2 and Rsc4 in RSC;
from BAF180 in PBAF) and appears to be poised to bind histone PTMs [73]. Notably, the
histone-binding lobe does not exist in BAF, and might be specific to RSC/PBAF remodelers.

Examples of PTMs targeting the remodelers abound for all subfamilies of remodelers.
In the ISWI subfamily, a PHD domain in the NURF remodeler and a PWWP domain in



Int. J. Mol. Sci. 2021, 22, 5578 15 of 37

the ISW1b remodeler recognize H3K4me3 and H3K36me3, respectively [128–130]. In the
CHD subfamily, CHDs in human CHD1 and CHD4 bind methylated histones [131,132].
Moreover, H3K9 acetylation and methylation both can independently enhance the associ-
ation of the nucleosome with the PHD fingers of CHD3, the motor subunit of the NuRD
remodeler [133]. In the SWI/SNF subfamily, the BRD in the Snf2 ATPase promotes its
targeting to nucleosomes acetylated on histone H3 [134]. Similarly, the tandem BRDs
located in Rsc4 display specificity for H3K14ac, enhancing binding of the RSC remodeler to
nucleosomes [135,136] and the RSC remodeling activities are regulated in part by histone
PTMs [100]. Remarkably and counter-intuitively, by enhancing the interaction between
RSC and the nucleosome, acetylation of the +1 nucleosome restrains RSC remodeling
activity to one H2A/H2B dimer eviction [137–139]. This explains why, while bound by a
SWI/SNF-subfamily remodeler, the +1 nucleosome persists during the process of transcrip-
tion initiation. Interestingly, the tandem PHD finger of human DPF3b, a component of the
BAF remodeler, specifically recognizes H3K14ac and is deterred by H3K4me [140]. More-
over, the tandem PHD finger of human DPF2, an alternative paralog, selectively recognizes
crotonylation at H3K14 [141], demonstrating extremely high stringency and specificity, and
calling for further investigations. In the INO80 subfamily, the BRD-containing Bdf1 subunit
promotes H2A.Z deposition by SWR1C on H4 or H2A acetylated nucleosomes [142,143].

Examples of PTMs regulating the remodelers abound as well. The stimulation of the
ISWI ATPase and remodeling activities by the histone H4 tail basic patch is attenuated by
H4K12ac or H4K16ac [89,100,102,144], while the latter modification does not affect spacing
of nucleosome arrays [145]. Without altering affinity, site-specific H3 acetylation enhances
remodeling activities of yeast RSC and SWI/SNF [100,146].

Some PTMs affect remodeling activities due to their location near the DNA entry site
of the nucleosome, susceptible to significantly alter DNA affinity and breathing. Indeed,
H3K56ac enhances nucleosome mobilization by SWI/SNF and RSC [147], and H3K64ac
increases nucleosome sliding by Chd1 but not by RSC [148]. Notably, a remodeler can
harbor a paralog that specializes it for remodeling partially unwrapped nucleosomes,
as is the case with Rsc1-containing RSC [149]. Moreover, H3K56ac enhances the editing
activity of INO80C, and remarkably alters the discrimination between H2A- and H2A.Z-
containing nucleosomes by SWR1C [150], a result supported by the Arp5 ‘sensor toe’
binding to H3K56 [80].

Finally, PTMs can alter remodeling by weakening or interfering with the remodeler-
nucleosome interaction. For example, ubiquitination at H2BK123 in yeast (K120 in human)
sterically hinders the binding of the C-terminal tail/finger helix of Sfh1/Snf5/INI1-BAF47-
SMARCB1 to the nucleosome acidic patch, likely reducing or abolishing nucleosome
ejection by SWI/SNF-subfamily remodelers [73,75].

Histone variants can also impact remodeling. For example, H2A.Z-containing nu-
cleosomes stimulate the ATPase and remodeling activities of ISWI, but not those of
the SWI/SNF-subfamily remodelers, except in the context of nucleosome ejection in ar-
rays [151,152]. Here, future work could explore how remodeling activities are influenced
by combinations of specific PTMs and histone variants as observed in nucleosomes in vivo.

4.6. Regulation of Remodelers by Actin-Related Proteins Modules

Modules containing actin and/or actin-related proteins (ARPs) are heterodimers
present in all large remodelers of SWI/SNF and INO80 subfamilies. They are also conserved
from yeast to human and bind directly to the ATPase subunit. Overall, these modules
play major regulatory roles in the alternative remodeling outcomes by regulating DNA
translocation and/or nucleosomal DNA interaction.

One ARP module, present in the SWI/SNF-subfamily and INO80-subfamily remodel-
ers, binds to the conserved HSA domain located upstream of the structural hub and ATPase
domain. In yeast RSC and SWI/SNF remodelers, it associates Arp7 and Arp9 (along with
Rtt102) and is implicated in the critical regulation of coupling, a measurement of DNA
translocation efficiency, which drives the capability to achieve nucleosome ejection instead
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of sliding [34,35]. Moreover, the function of this HSA-bound ARP module is directly related
to the regulatory role of the conserved structural hub, a physical multi-component bridge
between the lobes, formed by the association of domains flanking and separating the lobes
in the SWI/SNF-subfamily remodelers [14]. Here, biochemical and structural observations
strongly support that the efficiency (the optimization of the conversion of the ATP binding
and hydrolysis into DNA translocation), the synchronization of the lobes, and their grip on
DNA are influenced by the position of the regulatory hub—which is guided itself by the
position of the ARP module, and governed by the nucleosomal information collected by all
the lobes of the substrate recognition module. Equivalent ARP modules combine ACTL6A
and ACTB (along with BCL7A) in human BAF/PBAF/GBAF remodelers or incorporate
Arp4 and Actin (along with Arp8) in yeast SWR1 and INO80 remodelers (Figure 4). In
INO80C, in the absence of a nucleosome, this ARP module resides under the RuvBL1/2
ring [153]. In the current structures of the INO80-subfamily remodelers that also contain a
nucleosome, the location of the ARP module is unfortunately not resolved, but is known
via biochemical studies to increase the affinity of the remodeler for nucleosomes [84] and
can act as an extranucleosomal DNA sensor [111,154,155]. Here, the role of the HSA-bound
ARP module in sensing extranucleosomal DNA in the INO80-subfamily remodelers de-
serves further functional investigation, and in particular, the possibility that this module
informs and regulates the lobes through a process similar to the one uncovered within the
SWI/SNF-subfamily remodelers.

A second ARP module, present only in the INO80-subfamily remodelers, binds to the
large insertion domain located between the two lobes of the ATPase domain. It combines
Arp6 with Swc6 in the yeast SWR1 remodeler, and Arp5 with Ies6 in the yeast INO80
remodeler. In SWR1, this module functionally collaborates with Swc2, and the loss of
Swc2 or Arp6 impairs histone exchange [41,47]. This module also tethers the remodeler
to the histones and extends along the extranucleosomal DNA, leading to a substantial
DNA unwrapping at the entry site [66]. In INO80, this module functionally collaborates
with Ies2 to increase the affinity towards nucleosomes and also the ATPase activity while
promoting coupling [84–87,156]. Structurally, this ARP module interacts with the proximal
acidic patch, providing a histone anchor for the INO80-subfamily remodelers (Figure 4).

4.7. Regulation of Remodelers by Internal PTMs and Dimerization

Remodelers themselves can be modified by PTMs, adding another layer of opportunity
for regulation. For example, internal phosphorylation or PARylation (i.e., the addition
of polymers of ADP-ribose) reduces remodeling activities of human BAF and Drosophila
ISWI, respectively [157–159]. Conversely, the CSB remodeler requires ubiquitination of
its C-terminal region for most of its functions [160]. Interestingly, acetylation marks can
play a switching role as they can be deposited on either the remodeler or its substrate.
Indeed, the BRD of the Snf2 ATPase can interact with an acetylated residue internal to
the ATPase, providing an alternative to binding acetylated H3 [161]. A very similar
mechanism occurs for the BRD of Rsc4, which can interact with acetylated H3K14 or an
internally acetylated residue [136]. Regulation by internal PTMs in remodelers are likely
to be currently underappreciated and need further investigation, offering avenues for
future studies.

Finally, functional dimerization might contribute to allosteric regulation of the remod-
elers, as characterized for SNF2H [71,162,163], but is not mechanistically required, per se,
by the remodeler to achieve nucleosome sliding. Of note, the INO80 remodeler can also
perform nucleosome sliding and may function as a dimer [51].

4.8. Regulation of Remodelers by Other Chromatin Components

Remodeling activities can also be regulated by their interaction with chromatin factors,
possibly in cooperation with PTMs. For example, the recruitment of the SWI/SNF remod-
eler to gene promoters can be assisted by the activity of SAGA, a chromatin-modifying
complex. Importantly, beyond targeting, transcription factors can regulate remodelers and
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influence outcomes. For example, the interaction between yeast SWI/SNF and a DNA-
bound activator enhances nucleosome eviction [164–166]. Here, the modular composition
of remodelers with cell-type-specific components might promote specific interactions with
cell-type-specific activators and repressors, allowing distinct and highly tailored regulation.

Moreover, cellular differentiation often involves lineage-specific transcription factors
that recruit specific remodelers, sometimes sequentially. For example, during muscle
differentiation, the Transcription Factor (TF) MyoD first interacts with CHD2 to guide the
deposition of H3.3 histone variant, and then with BAF to open the chromatin for transcrip-
tion initiation [30,167]. In contrast, BCL6, the master regulator of B cell differentiation,
recruits the NuRD remodeler and its repressive activity to prevent terminal differentiation
into plasma cells [168].

Finally, the binding of multiple transcriptional activators to nucleosomal DNA at
cis-regulatory elements (CREs) is inherently cooperative and can be critical to reaching a
threshold response and a pattern in gene expression [169]. Interestingly, recent data from
an in vivo quantitative detection of multiple transcription factors (TFs) at CREs measured
genome-wide at the single-molecule level suggest that increased TF co-occupancy and coop-
erativity are required, but might not be sufficient, to open chromatin at sites of competition
with nucleosomes, and that remodelers might be involved in TF co-occupancy [170]. The in-
terplay between remodelers and TFs is of the utmost interest, and investigating the functions
of accessory subunits of large remodelers in this context would be greatly beneficial.

5. Remodelers and Nucleosome Positioning at Enhancers and Promoters in
Transcription Regulation

While nucleosome presence, composition, and positioning—and, thus, chromatin
remodelers—play important roles in DNA replication, DNA repair, and DNA recombi-
nation, I will only focus on the contributions of remodelers to transcription regulation in
this review. Globally, nucleosome positioning and chromatin organization result from the
coordinated synergistic and antagonistic contributions of several remodelers in conjunction
with many other chromatin factors. From their specialization, while ISWI and CHD subfam-
ilies of remodelers are mainly involved in establishing and maintaining properly spaced
nucleosomes, the SWI/SNF and INO80 subfamilies of remodelers are heavily involved
in the formation and preservation of breaches into regularly spaced nucleosomes, named
nucleosome-depleted regions (NDRs), particularly located at critical DNA regulatory
elements, such as promoters and enhancers. Consistent with their functional specializa-
tion and contribution to specific chromatin landscapes, mammalian ISWI and SWI/SNF
remodelers selectively mediate the binding of distinct transcription factors [10,171].

5.1. Roles of Remodelers at Enhancers

While working closely with promoters in mammalian cells, enhancers are also subject
to the control of their accessibility by remodelers, exemplifying promoter-independent
transcriptional regulatory roles for remodelers. For example, genome-wide, BAF remodel-
ers maintain lineage-specific enhancers, regulate accessibility to distant enhancer sites, and
actively contribute to tissue-specific gene activation [172–174]. BAF remodelers and their
key components are also critical to proper stem cell self-renewal and pluripotency, as well
as proper cell differentiation [175–177].

Thus, evidently, alterations in BAF remodelers perturb adequate accessibility of the
transcription factors to the enhancers, disturbing cellular identity and differentiation
programs [173,174,178–182]. Similarly, loss of CHD1 impacts the binding of androgen
receptors (AR) at lineage-specific enhancers, driving prostate tumorigenesis and resistance
to AR-targeted therapy [183,184].

Overall, it will be interesting to characterize how the action of remodelers at en-
hancers might synchronize with their action at promoters, and also how remodelers help
in the commissioning of new enhancers, and the decommissioning of current enhancers,
during differentiation.
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5.2. Roles of Remodelers in the Regulation of Transcription by RNAPII

Globally, RNAPII promoters contain a combination of features mixed from two con-
trasting types of promoters based on their initial status: open or closed promoters [185,186]
(Figure 5).

Figure 5. Promoter architectures and nucleosome occupancy impact how remodelers are recruited. For adequate regulation,
most genes in yeast blend features from two types of promoter architectures. (A) Open promoters, in their repressed state,
present an NDR without (left) or with (right) a fragile nucleosome (FN) adjacent to the TSS (black arrow), containing
poly-A and G/C-rich motifs, along with activator/GRF-binding sites, and flanked by well-positioned H2A.Z-containing
nucleosomes, leading to regular spacing and phasing in a genome population. Open promoters are common at constitutively
active genes, and their activation necessitates minor (if any) remodeling (+1 nucleosome sliding or FN ejection) through
direct remodeler recruitment by an activator or a GRF. (B) Closed promoters, in their repressed state, contain a continuum
of canonical nucleosomes covering their TSS, leading to a genome population lacking phasing. Closed promoters are
common at highly regulated genes, and their activation necessitates the binding of a pioneer transcription factor (PTF) in
the nucleosomal context, followed by the recruitment of a remodeler, which opens the promoter by ejecting nucleosomes,
rendering the activator-binding site accessible.

Open promoters are highly structured and accompany the most responsive genes.
They are repressed but poised for transcription; in metazoans, they often contain pre-loaded
paused RNAPII [187]. Importantly, they are characterized by clear NDRs, presenting ac-
cessible binding sites for transcription factors, resulting from DNA sequences (as AT-rich
tracts) disfavoring nucleosomes [188] and active nucleosome ejection by SWI/SNF remod-
elers. They also present H2A.Z-containing +1 nucleosomes installed by SWR1 remodelers
at uniform positions relative to the TSS, along with phased and regularly spaced nucle-
osomes [189] (Figure 5A, left). When the NDRs are wide enough (>150 bp), a common
occurrence at open promoters, they might not be truly nucleosome-free, and instead, may
harbor highly dynamic nucleosomes, termed ‘fragile’ nucleosomes [190–193] (Figure 5A,
right). Fragile nucleosomes appear to be conserved as they have been identified in promot-
ers of highly expressed genes in many organisms, for example, C. elegans [194], Drosophila
embryos [195], and mouse Embryonic Stem Cells (ESCs) [196], and their presence and
stability relate to the rate of transcription [197]. Importantly, in yeast, ‘fragile’ nucleo-
somes appear to be partially unwrapped nucleosomes resulting from the action of the
SWI/SNF-subfamily remodeler RSC and subsequent binding of ‘general regulatory factors’
(GRFs) [198]. Here, Rsc1-containing RSC specializes in remodeling partially unwrapped
nucleosomes, a feature common to NDR fragile nucleosomes and to tDNAs (i.e., transfer
RNA-encoding genes) often flanked by highly enriched AT-rich sequences [149]. The
activation of these promoters also relies on corresponding enhancers being open, increased
histone acetylation, and further loss or repositioning of the nucleosomes around the TSS
and beyond in the coding regions.
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Closed promoters are transcriptionally repressed by the presence of nucleosomes
covering the TSS and most TF binding sites. They are characterized by an absence of
constitutive NDRs, AT-rich tracts, and pre-loaded RNAPII and display a low level of
H2A.Z-containing nucleosomes (Figure 5B). Moreover, closed promoters are more likely
to present a TATA box covered by a nucleosome, at least partially. Their activation is
thus significantly dependent on remodelers changing the chromatin landscape locally.
Overall, the degree of activation of these stably architectured promoters relies on the
regulated opening of their chromatin through several concomitant or sequential chromatin
transitions and remodeling events involving a pioneer activator, chromatin modifying
complexes, chromatin remodelers specialized in chromatin opening by nucleosome ejection,
and additional transcription activators. Interestingly, pioneer activators can recognize their
cognate sites wrapped within a nucleosome prior to any nucleosome alteration and even
aid remodeler recruitment. Furthermore, the initiation of transcription requires the action of
remodelers specialized in chromatin opening. These remodelers antagonize the repression
by histones [199], facilitate TBP binding [200], interact with a wide variety of activators
depending on the functional context (e.g., ySwi5 or yGcn4p for ySWI/SNF [201,202];
HSF1 or the glucocorticoid receptor (GR) for hSWI/SNF [203,204]; dGAGA, dHSF, the
ecdysone receptor, dTrf2, and the dKen repressor for dNURF [205–207]; and YY1 for
hINO80 remodeler [208,209]), and render key promoter elements accessible by clearing
promoters from nucleosomes and strengthening the NDRs (as done by ySWI/SNF [210];
yChd1 [28]; INO80 [211].

More acutely, at closed promoters, various remodelers from different families can
act antagonistically, leading to a dynamic variation between opening/disassembly and
closure/assembly, ultimately resulting in gene activation or repression, respectively [212].
This balance is of the utmost importance for tuning gene expression by transiently creating
and maintaining an NDR, as well as determining the positioning, composition, and integrity
of the +1 nucleosome. For example, in yeast, RSC and ISW1a act antagonistically; this is
particularly visible at closed promoters where the loss of RSC leads to a limited fill-in of
nucleosomes in the NDR of many RNAPII genes with a shift of the +1 and subsequent
nucleosomes toward the NDR partially resulting from the ISW1 remodeler activity [213].

In yeast, the presence of specific DNA motifs influences the formation and mainte-
nance of the NDRs [3,214]. Strikingly, binding and activity of the RSC remodeler at the
NDRs depend on a pair of specific DNA motifs: a poly(A) tract, and a CGCG-containing
sequence preferentially bound by the Rsc3 subunit [213,215,216]. Consequently, RSC con-
tributes to the maintenance of promoter accessibility by actively excluding nucleosomes
from NDRs via two approaches: sliding the +1 nucleosomes toward the ORF and ejecting
nucleosomes to form large NDRs [193,198,217,218]. In addition to remodelers, pioneer acti-
vators and the GRFs destabilize nucleosomes in the vicinity of their cognate sites [215,219],
contributing to the generation and maintenance of NDRs at open promoters. Here the RSC
remodeler and the GRFs act independently but coordinate to prevent the occlusion of the
TATA box by sliding the +1 nucleosome [218]. Aside from RSC, ISW1a, ISW2 and INO80
remodelers are also involved in the +1 nucleosome positioning [213,220,221]. Based on a
reconstituted system using purified components, RSC, along with GRFs, performs DNA
sequence-driven directional NDR-widening, and the +1 nucleosome positioning can be set
by the cooperative action of GRFs with ISW1a and ISW2, or INO80 alone [214]. Moreover,
with the +1 nucleosome acting as a reference, ISW2 and INO80 cause the distribution of
nucleosomes in the ORF while proper spacing is tuned by the action of the ISW1a remodeler
along with Chd1 [214,222].

During transcription, the passage of RNAPII through nucleosomes requires the dis-
placement of the H2A/H2B dimer, which protrudes from the surface of the nucleosomal
disc [107,223,224]. The latest structures propose and strengthen an elegant model in which
the Chd1 remodeler assists the progression of the RNAPII by translocating DNA towards
the polymerase while exposing the proximal H2A/H2B dimer for removal by the FACT
chaperone in a processive mechanism [107,108,225]. Of note, TSS-proximal nucleosomes
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also present a higher cyclizability on the promoter-proximal face than the distal face, maybe
favoring RNAPII progression [11].

Aside from their critical roles in promoter regulation during transcription initiation
and assistance to RNAPII progression during elongation, remodelers also maintain and/or
restore chromatin integrity in the gene body [130] and prevent antisense transcription [220]
and initiation from cryptic intragenic promoters [226].

In counter distinction, but following similar principles, the repressed state of chro-
matin is maintained by the constant work of chromatin modifiers and remodelers that
interact with DNA-bound repressors [227], slide nucleosomes over key promoter ele-
ments [228], prevent cryptic antisense transcription from intergenic regions [220], prevent
TBP binding [229,230], and limit the size of the NDRs [231]. Notably, some remodelers
involved in repression, such as NuRD, have embedded in their composition a histone
deacetylase enzyme (HDAC) and methyl-binding proteins (MBDs), which intrinsically
coordinate activities to achieve gene repression specifically at DNA-methylated regions.

5.3. Roles of Remodelers in the Regulation of Transcription by RNAPI and RNAPIII

The transcription of rDNA genes by RNA Polymerases I (RNAPI) is tightly regulated
through nucleosome positioning, which is dynamically established by several remodelers.
Silencing of rDNA genes relies on the relocation of the promoter-bound nucleosome
to a position unfavorable for transcription through the action of the NoRC remodeler
recruited by the TTF-I TF [232–234]. In addition, the histone variant H2A.X deposited
at rDNA promoters in ESCs contributes to the recruitment of NoRC, thereby repressing
rDNA transcription and limiting proliferation [235]. The NuRD remodeler also helps
poise rDNA genes for transcription activation by contributing to a specific chromatin
landscape [236]. Remarkably, NuRD shifts the position of the promoter nucleosome to
the transcriptional off position upon direct interaction of its ATPase CHD4 with the long
noncoding RNA PAPAS, which is upregulated in a stress-dependent manner and forms
a DNA–RNA triplex structure at rDNA enhancers [237,238]. The activation of the rDNA
genes involves counteracting remodelers such as the B-WICH remodeler, which responds
to glucose [239,240], and the CSB remodeler, which resets the promoter-bound nucleosome
position and enables transcription [241]. Of note, the α-thalassemia X-linked mental
retardation (ATRX) remodeler localizes to rDNA during metaphase [242] and the deletion
of CHD7 has been reported to induce aberrant rDNA silencing [243]. Finally, in yeast, the
remodelers Isw2 and Ino80 actively contribute to the transcription of a fraction of the 35S
ribosomal RNA genes and to the positioning of the nucleosomes flanking the ribosomal
origin of replication [244]. Of note, like in the regulation of transcription by RNAPII, GRFs
also contribute to the regulation of ribosome genes [245].

Finally, the transcription of small ncRNAs by RNA Polymerases III (RNAPIII) depends
on the removal of nucleosomes by the SWI/SNF-family remodeler RSC in yeast [217], but
more work is needed in humans to functionally characterize remodelers present at and
assisting expression of ncRNAs.

6. Dissonances in Chromatin Remodeling in Cancer

Conceptually, in the process of oncogenesis, an initial epigenetic misregulation pro-
viding a cellular advantage, or enabling the tolerance to additional genetic mutations, can
be selected and, through iterations, lead to a progressive acquisition of an oncogenic or
metastatic state. Alternatively, epigenetic misregulation can lead to the maintenance of, or
the transition to, a poorly differentiated transit-amplifying cellular state. Here, an initial, or
subsequent, epigenetic misregulation can arise from dissonances in chromatin remodeling;
and chromatin remodeler activities can be altered in various ways in cancer: redistribution
or mistargeting; reduced or excessive subunit expression (potentially leading to rogue
residual complexes); loss-of-function mutations in SWI/SNF-subfamily remodelers poten-
tially leading to abrogation/decrease of remodeling and DNA accessibility at promoters
and enhancers of tumor-suppressor or other genes (and the converse with loss-of-function
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mutations in assembly remodelers); or gain-of-function mutations in SWI/SNF-subfamily
remodelers potentially leading to increases in nucleosome mobility and DNA accessibility
at oncogenes or genome-wide. Notably, while mutations in remodelers from the SWI/SNF
subfamily are present in >20% of human cancers (see Section 6.2), various remodelers from
all subfamilies are increasingly being implicated in cancers.

6.1. Alterations of ISWI-, CHD-, and INO80-Subfamily Remodelers in Cancer

In the ISWI-subfamily remodelers, the ATPase of the human NURF remodeler SNF2L
attenuates Wnt/β-catenin signaling, suppressing cell proliferation and migration. Re-
markably, SNF2L is almost absent in melanoma cells while being robustly expressed in
normal melanocytes [246]. Interestingly, in Drosophila, the dNURF complex regulates larval
blood cell development, and a deficiency of dNURF leads to a neoplastic transformation of
circulating hemocytes, resulting in blood cell overproliferation and melanotic tumors [206].
High levels of SNF2H are necessary for intensive cell proliferation and cell cycle progres-
sion of developing hematopoietic stem cells (HSCs) and for completion of erythropoiesis
in mice [247]. Interestingly, in acute myeloid leukemia (AML) patients, CD34+ hematopoi-
etic progenitors show SNF2H upregulation [248], which can be drug-inhibited to release
terminal-differentiation while sparing normal hematopoiesis [249].

In the CHD-subfamily remodelers, loss of CHD1 impacts the binding of androgen
receptors (AR) at lineage-specific enhancers, driving prostate tumorigenesis and resis-
tance to AR-targeted therapy [183,184]. Deficiency in CHD2, which is essential for proper
hematopoietic stem cell differentiation, leads to lymphoma [250]. Being the major gene-
repressing remodeler, the CHD4-containing NuRD complex is the CHD-subfamily remod-
eler with the most connections to cancer. The MTA1-3 components of NuRD regulate
invasive behavior in several cancers, with unique and often antagonistic activities. For
example, tumor progression in many cancer types is observed when MTA1 expression
is increased, while MTA3 limits breast tumor progression by repressing a master reg-
ulator [251–253]. Via its associated MBD proteins, such as MBD2, NuRD can also be
mistargeted by aberrant DNA methylation commonly occurring in cancer cells, supporting
tumorigenesis by silencing tumor suppressor genes (TSGs) [254,255]. Remarkably, CHD4
can even play an upstream role by initiating abnormal de novo DNA methylation, promot-
ing the maintenance of TSGs silencing and thus colorectal cancer cell proliferation, invasion,
and metastases [256]. In endometrial cancer, CHD4 depletion by specific hot-spot missense
mutations promotes tumorigenesis by increasing cancer stem cell characters through the
TGFβ signaling pathway [257]. An elegant in-depth mechanistic analysis of CHD4, using
cancer-associated missense mutations transposed into the Drosophila homologue Mi-2,
revealed heterogeneous defects (i.e., reduction in protein stability, disruption of DNA
binding, and loss of ATPase activity or coupling), leading mainly to loss-of-function [258],
nicely supported by structural work [72]. However, one CHD4 cancer-associated mutation
located in the Brace-I helix (H1196Y) leads to a gain in remodeling efficiency [258], a result
remarkably consistent with that of a similarly located mutation (K938A) introduced in
BRG1/Sth1, a SWI/SNF-subfamily remodeler ATPase [14], strongly suggesting a conserved
regulatory function for this region across remodelers from different subfamilies. Of note,
the dedifferentiation of triple-negative breast cancer cells is driven in part by the activation
of the NuRD remodeler via a MUC1-C (oncogenic mucin 1 C-terminal subunit)-MYC path-
way [259]. CHD5, a paralog of CHD4 that is preferentially expressed in neural tissue and
testis, and forms a NuRD-type remodeler [260], is a tumor suppressor involved in the regu-
lation of genes related to neuroblastoma [261] and gliomas [262]; and the interaction of the
PHD finger of CHD5 with an unmodified histone H3 tail is essential to restrain tumorous
growth of neuroblastoma cells in vivo [263]. Moreover, in a variety of other malignancies,
CHD5 emerged as a TSG with decreased expression, often resulting from one allele being
deleted and the promoter of the other allele being silenced by hyper-methylation. Finally,
CHD5 can be silenced in neuroblastomas by MYCN-driven miRNAs [264]. Remarkably,
the CHD8 remodeler is linked to the transcriptional coactivator BRD4 via a short isoform
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of NSD3, likely to facilitate chromatin remodeling and transcription activation in AML
cells [265].

In the INO80-subfamily remodelers, despite their extensive involvement in DNA
repair and recombination, mutations appear to be uncommon in human cancers. However,
INO80 plays an essential role in superenhancer-mediated oncogenic transcription and
tumor growth, in both melanoma and non-small-cell lung cancer [266,267]. Interestingly,
INO80 counteracts R-loops, promoting DNA replication in the presence of transcription,
enabling proliferation in cancers [268].

6.2. Alterations of SWI/SNF-Subfamily Remodelers in Cancer

Mutations in subunits of SWI/SNF-subfamily remodelers are present in >20% of
human cancers and are observed at high frequencies in malignant rhabdoid tumors (MRTs)
(>95%), ovarian clear cell carcinoma (75%), clear cell renal carcinoma (57%), hepatocel-
lular carcinoma (40%), gastric cancer (36%), melanoma (34%), and pancreatic cancer
(26%) [269,270]. Importantly, in many cancers involving mutations in SWI/SNF com-
ponents, few, if any, co-occurring genetic mutations are found, indicating that SWI/SNF
mutations have the potential to be driver mutations by providing an advantage for tumor
initiation or progression.

Mammalian cells contain three major SWI/SNF-subfamily remodelers: BAF (or cBAF,
canonical BAF) [271], PBAF (polybromo-associated BAF) [272], and GBAF (or ncBAF, non-
canonical BAF) [273,274]. All harbor an ATPase subunit, BRG1 or BRM (the latter not
present in PBAF), along with core subunits BAF155, BAF53A/B, BAF60A/B/C, and actin.
In addition to the core subunits, BAF uniquely contains ARID1A/B, BAF45B/C/D, DPF2,
BCL7A/B/C, and BCL11A/B; PBAF uniquely contains ARID2, PBRM1, BAF45A, and
BRD7; and GBAF uniquely contains GLTSCR1/GLTSCR1L paralogs and BRD9 [273,274].
Additionally, BAF170, BAF47, and BAF57 subunits are shared by BAF and PBAF, and the
SS18/CREST subunit is shared by BAF and GBAF. Paralogous subunits can be expressed
simultaneously, mixing unique and redundant functions in the same cell [275,276], but
they can also be exchanged to accompany cellular differentiation and the establishment
of a cell-type-specific transcriptional program [277,278]. Overall, beyond being located
in functional hotspots affecting the catalytic activity and efficiency, many BAF cancer-
associated mutations cluster at key structural interfaces between subunits or between the
remodeler and the nucleosome, and attenuate remodeling activity [79], highlighting the
relevance to further functionally characterize the composition of each remodeler and the
conversations between remodelers and chromatin.

6.2.1. Alterations of the ATPase Subunits

Alterations can affect the ATPase subunits, BRG1 and BRM, in the human BAF/PBAF/
GBAF remodelers, with the BRG1 subunit containing the majority of cancer-associated
missense mutations. Among them, the most common mutations affect residues located
on the surface of the lobes and are involved in DNA binding or the formation of the ATP-
binding pocket. They are functionally characterized as missense loss-of-function mutations
as they lead to reduced or abrogated ATPase and remodeling activities, and decreased
DNA accessibility [79,279–281]. In contrast, rare cancer mutations, located in a specific
region of the conserved structural hub that bridges the two ATPase lobes, act as missense
gain-of-function mutations as they increase DNA translocation efficiency, remodeling
activities, and DNA accessibility [14].

Loss or reduced expression of BRG1 can drive tumorigenesis [279]. In contrast, over-
expression of BRG1 has been observed in most human breast cancer tumors, and BRG1
knockdown has been shown to sensitize triple negative breast cancer cells to chemotherapy
drugs [282]. The alternative ATPase subunit BRM leads to different transcription speci-
ficities, with a possible antagonistic function in differentiation [283,284]. Although Brm
homozygous knockout mice present androgen-independent growth and cellular prolifera-
tion [285], there are fewer links of BRM, than BRG1, with cancer.



Int. J. Mol. Sci. 2021, 22, 5578 23 of 37

Importantly, synthetic lethality, the loss of cell fitness upon combining two genetic
events, has been demonstrated, with the loss of BRG1 and the simultaneous inhibition
of BRM [286–288]. Thus, there is an increased dependency upon a particular subunit
paralog, which can be therapeutically targeted. However, 2% of the MRTs and specific
tumors, such as small cell carcinoma of the ovary, hypercalcemic type (SCCOHT), and
SMARCA4-deficient thoracic sarcomas (SMARCA4-DTS), present dual deficiencies of BRG1
and BRM via a genetic loss of BRG1 combined with the silencing of BRM [289,290]. Notably,
although appealing, designing drugs to discriminate specifically between BRG1 and BRM is
challenging, as targeting their bromodomains did not reveal a decisive vulnerability [291],
and their ATPase domains are extremely similar.

6.2.2. Alterations of Other Core or Accessory Subunits

Alterations can affect other core or accessory subunits of the BAF/PBAF/GBAF remodelers.
The vast majority of the MRTs (~98%) exhibits a biallelic loss of the BAF47 subunit (also

named SMARCB1, INI1, and hSNF5) [292,293], and a loss of EZH2 subunit of the PRC2
complex prevents the formation of tumors in Snf5−/− mice [294]. Moreover, specific EZH2
inhibition impacts BAF47-deficient tumors favorably [295,296]. While being dependent on
BRG1, BAF47-mutated MRTs are sensitive to BRD9 chemical and biological depletion and
inhibition [274,297–299]. As BRD9 is a GBAF-specific subunit, GBAF appears critical for the
maintenance and proliferation of MRT cells, and its subunits can thus be synthetic lethal
targets in MRTs. Similarly, AML can be dependent on SWI/SNF subunits, BRG1, BRD4,
and BRD9, all components of GBAF, and exhibit sensitivity to BRD9 inhibition [300–302].
Remarkably, the C-terminal domain (CTD) of BAF47 interacts with the distal acidic patch
of the nucleosome; and this interaction can be disrupted by mutations, rendering BAF
unable to increase DNA accessibility [124]. This inability to increase DNA accessibility is
consistent with that observed upon deletion of the yeast Sfh1 CTT domain (equivalent to
the CTD of BAF47), which is required for nucleosome ejection but not ATPase activity or
nucleosome sliding [73].

In parallel, synovial sarcoma is defined by the hallmark SS18–SSX fusion oncoprotein,
which leads to a rare gain-of-function by mistargeting BAF and activates bivalent genes
located at broad polycomb domains [303,304]. Remarkably, SSX in the SS18–SSX fusion pro-
tein binds to the acidic patch of H2AK119Ub-containing nucleosomes, recruiting mutated
BAF to erroneous locations, and activating cancer-specific transcription programs [305].
Thus, alongside structural relevance of BAF47 discussed above, the lack of interaction (due
to the lack of BAF47 in the context of MRTs) or the hijacking of the interaction with the
distal nucleosomal acidic patch (due to the SS18–SSX fusion in the context of synovial
sarcoma) can dramatically alter the regulation or the targeting of BAF, respectively.

Mutations in the BAF-specific ARID1A/B paralogs are frequent in melanoma, ovar-
ian [306], gastric, and pancreatic cancers. Indeed, ARID1A is the most commonly mutated
SWI/SNF subunit in cancer, altering transcriptional regulation that cannot be covered by
the ARID1B paralog [178,179]. Nevertheless, due to functional redundancy at enhancers,
ARID1B is remarkably essential in ARID1A-deleted cancers [178,307]. Evidently, these
results demonstrate a synthetic lethality relationship between ARID1A and ARID1B, with
a partial functional redundancy of paralogous subunits, signaling potential therapeutic
targets. Of note, additional synthetic lethal targets have been identified outside BAF, within
signaling pathways and other complexes, such as PI3K/AKT-pathway [308], EZH2 [309],
PARP [310], and ATR [311], revealing vulnerabilities and therapeutic opportunities to
explore. Additional synthetic lethalities between BAF subunits have been discovered in a
systematic screen and can be explored for therapeutic approaches [312].

Notably, the functional specificity of the PBAF remodeler arises from its specific
ARID2, PBRM1, and BRD7 subunits. PBRM1 is characterized by six bromodomains in
tandem, two BAH domains, and an HMG domain [272,313], and mutations affecting this
subunit have been identified in >40% of renal cell carcinoma [314]. Recently, synthetic
lethality and apoptosis in PBRM1-deficient cancer cells have been induced by a specific
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EZH2 inhibitor [315]. Of note, BRD7, which also contains a bromodomain, is a tumor
suppressor identified in a subset of breast cancers lacking p53 mutations [316,317]. Thus,
the functional characterization of the multiple bromodomain containing PBAF-specific
module is of great importance to aid the understanding of its alterations in the context of
specific cancers.

Overall, the identification of potential vulnerabilities in cancer cells harboring mu-
tations in remodeler genes has led to the intense ongoing exploration of a broad variety
of therapeutic approaches targeting various remodeler subunits, chromatin regulatory
complexes, and signaling pathways, all involved in the crafting of the chromatin landscape
and the resulting cellular identity.

7. Final Remarks and Future Directions

Chromatin remodeling is the cornerstone of the dynamics occurring in the chromatin
landscape during any DNA transaction. All remodelers harbor a conserved catalytic
ATPase domain that converts ATP binding and hydrolysis into DNA translocation, the
underlying mechanism for all nucleosome remodeling outcomes. Even the ways by which
remodelers engage the nucleosome are highly conserved and coherent with their respective
functions, displaying a necessary increase in complexity to judiciously overcome challenges
specific to each remodeling process and outcome.

The recent bloom of multiple spectacular structures of remodelers bound to nucleo-
somes nicely substantiates the profusion of genetic, biochemical, and biophysical discov-
eries. Those structures also represent a leap forward with the detailed visualization of
many subunits and the striking architecture of the large remodelers based on a backbone
ATPase subunit spanning the entire remodeler from which critical modules arise to interact
with specific nucleosomal features. Mechanistically, however, they only represent snap-
shots of a complex mechanism requiring significant conformational changes for sampling
nucleosomes, validating the appropriate one as a substrate, engaging it, remodeling it
adequately, and ultimately releasing it. It will be fascinating and highly informative to
obtain structures from the different successive steps of the remodeling cycle. Addition-
ally, for large remodelers from the INO80and SWI/SNF subfamilies, entire or substantial
parts of subunits known to play critical roles in regulation and substrate recognition are
currently missing. Among them, the PBAF-specific module containing multiple BRDs
is structurally and functionally of great interest. Finally, it is appealing to structurally
visualize and understand dysfunctional remodelers harboring detrimental mutations, for
example, cancer-associated mutations, to potentially guide the development of highly
specific therapeutics.

Moreover, nucleosomes are not isolated entities in vivo; thus, assessing further chro-
matin remodeling and the interactions between the remodeler and the nucleosome in its
chromatin ecosystem with neighboring nucleosomes will be enlightening. Furthermore,
remodelers work cooperatively with other key chromatin components, for example, histone
chaperones, in all chromatin processes, and additional functional and structural work will
help shed more light on these interplays.

Finally, the structural and functional collaborations between remodelers and their
targeting and regulatory factors, such as pioneer transcription factors, activators, and
repressors, are worth further investigation, particularly in the perspective of transcription
regulation. Since all remodelers establish contacts with extranucleosomal DNA, it is
valuable to investigate how specific DNA sequences, in the presence or absence of DNA-
binding factor(s), inform and regulate the remodeler. Similarly, remodelers contain several
PTM reader domains, and a closer investigation of their targeting and regulation resulting
from collaborative bindings would be highly relevant. Thus, understanding the flow
and integration of complementary information received by distinct functional modules of
the remodelers from various components of the chromatin landscape, and the resulting
adjustments in DNA translocation to achieve different outcomes, remains wide open for
further investigations.
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Overall, a deeper mechanistic, regulatory, and functional characterization of the
conversations between specific chromatin landscapes and specialized remodelers will also
contribute to the understanding of the dissonances occurring in cancer and the uncovering
of innovative therapeutic strategies to explore.
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