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Abstract: Proteinopathy and excessive production of reactive oxygen species (ROS), which are the
principal features observed in the Alzheimer’s disease (AD) brain, contribute to neuronal toxicity.
β-amyloid and tau are the primary proteins responsible for the proteinopathy (amyloidopathy
and tauopathy, respectively) in AD, which depends on ROS production; these aggregates can also
generate ROS. These mechanisms work in concert and reinforce each other to drive the pathology
observed in the aging brain, which primarily involves oxidative stress (OS). This, in turn, triggers
neurodegeneration due to the subsequent loss of synapses and neurons. Understanding these
interactions may thus aid in the identification of potential neuroprotective therapies that could be
clinically useful. Here, we review the role of β-amyloid and tau in the activation of ROS production.
We then further discuss how free radicals can influence structural changes in key toxic intermediates
and describe the putative mechanisms by which OS and oligomers cause neuronal death.

Keywords: proteinopathy; reactive oxygen species; Alzheimer’s disease; amyloidopathy; tauopathy;
oxidative stress

1. Introduction

Reactive oxygen species (ROS) result from normal daily cellular metabolism. Research
conducted in the last two decades has clarified the role of ROS as secondary signaling
molecules that regulate various biological and physiological processes, including prolif-
eration, host defense, and gene expression [1,2]. Furthermore, earlier reports have also
indicated the role of ROS as a signal transduction mechanism. This allows adaptation to
changes in environmental nutrients and the oxidative environment [3]. In this respect,
Kiley and Storz [4] have well defined, in the prokaryotes, mechanisms whereby ROS di-
rectly activates transcription factors (TFs) for stress adaptation. On the contrary, oxidative
stress (OS) refers to elevated levels of intracellular ROS, such as superoxide anion (O2

•−),
hydroxyl radical (OH•), and non-radical molecules, such as hydrogen peroxide (H2O2)
and singlet oxygen (1O2), which further damage lipids, proteins, and DNA (Figure 1A).
A high-energy exposure or electron transfer reaction leads to the production of highly
reactive ROS, which is a stepwise reduction of molecular oxygen (O2) as represented in
equation (1). Moreover, ROS generation occurs at elevated rates in normal aging. It is
an inevitable process in both acute and chronic pathophysiological conditions [5]. Thus,
OS is usually the result of excessive ROS production, mitochondrial dysfunction, and an
impaired antioxidant system, or a combination of these factors.

O2 → O2
•− → H2O2 → OH• → H2O (1)
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Figure 1. Excessive reactive oxygen species (ROS) are likely involved in the initiation and/or
amplification of oxidative stress during the onset and progression of Alzheimer’s disease (AD).
(A) ROS can be produced from both endogenous and exogenous sources. The endogenous sources of
ROS include different cellular organelles, such as mitochondria, peroxisomes, and the endoplasmic
reticulum, where oxygen consumption is high. (B) Under physiological conditions, a cellular balance
is established between ROS generation and clearance, and is maintained by several antioxidative
defense mechanisms.

ROS are predominantly produced in mitochondria via mitochondrial enzymes. The
electron transport chain (ETC) of mitochondria produces superoxide radicals at respiratory
complexes I and III of the oxidative phosphorylation (OXPHOS) pathway through the
single-electron leak [2,6]. Nevertheless, the rate of production of ROS in complex I is
much less than the Flavin-dependent enzymes in the mitochondrial matrix [7]. Amongst
various intracellular antioxidant enzymes, five have been mainly discussed in physiological
conditions, i.e., (i) Cu/Zn-superoxide dismutase (Cu/Zn-SOD, SOD1) in the cytosol, (ii)
manganese superoxide dismutase (Mn-SOD, SOD2) in the mitochondrial matrix, (iii) cata-
lase (CAT), (iv) glutathione peroxidase (GPx), and (v) glutathione reductase. In Figure 1B,
SOD converts superoxide to O2 and H2O2, whereas CAT and GPx convert H2O2 into H2O
and O2. Along with the primary antioxidant defense against ROS, secondary antioxidant
and cellular detoxification programs are mainly regulated by NF-E2-related factor 2 (Nrf2)
and Kelch-like ECH-associated protein 1 (Keap1). Under normal conditions, Nrf2 is re-
tained in the cytoplasm by the actin-binding protein Keap1; a substrate adaptor protein
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for the Cullin3-containing E3–ligase complex, which targets Nrf2 for ubiquitination and
degradation by the proteasome [8]. Keap1 is redox sensitive since this protein can be
modified by different oxidants and electrophiles [9]. OS abrogates the Keap1-mediated
degradation of Nrf2, which in turn accumulates in the nucleus [10]. It heterodimerizes
with a small musculoaponeurotic fibrosarcoma (Maf) protein on antioxidant response ele-
ments (AREs). Nrf2, along with ARE, further stimulates the expression of a wide array of
phase II antioxidant enzymes, which includes NAD(P)H quinone oxidoreductase 1 (Nqo1),
heme oxygenase 1 (Hmox1), glutamate-cysteine ligase, and glutathione S transferases
(GSTs) [10–12]. In addition, Nrf2 also contributes to cellular proteostasis by regulating the
expression of molecular chaperones and various proteasomal subunits [13–15]. Apart from
antioxidant enzymes, small molecular weight and nonenzymatic antioxidants, such as
vitamins, carotenoids, thiol antioxidants, and natural flavonoids, also protect intracellular
components against ROS [16].

Deposition and spreading of aggregated proteins are the main characteristics of spo-
radic (s) and familial (f) forms of various neurodegenerative disorders, such as AD. This,
in turn, results in excessive ROS production leading to OS, chronic neuroinflammation,
and mitochondrial dysfunction, which altogether cause neuronal loss [17] and protein
misfolding [18]. ROS-induced protein misfolding/unfolding can result in gain/loss-of-
function. The protein modification of the oxidized proteins is insufficient to achieve their
actual shape, impacting stability, activity, and/or function [19,20]. Several lines of evidence
suggest that elevated ROS production initiates toxic amyloid beta precursor protein (APP)
processing and thereby triggers amyloid-beta (Aβ) generation [21,22]. These elevations in
ROS are the results of protein aggregation and corresponding neuronal damage, which in
turn activates disease-associated microglia via damage-associated molecular patterns [23].
These ROS are primarily generated via NADPH oxidase 2, which is well associated with
DAMP signaling, inflammation, and amyloid plaque deposition [23]. Additionally, ROS
generated from mitochondria helps in the propagation of immune activation, leading to
excessive OS and neurodegeneration. Interestingly, recent studies on postmortem AD
brains and AD transgenic mice have shown that Aβ and APP are found in mitochondrial
membranes to block protein transport and disrupt the ETC with final, irreversible cell
damage [24]. Moreover, these disruptions are further exacerbated by a defective repair sys-
tem. Tamagno and colleagues reported that OS resulting from hydroxynonenal (HNE) or
H2O2 leads to enhanced Aβ production in different cell models [21]. In addition, HNE also
modifies the γ-secretase substrate receptor nicastrin, which leads to enhanced binding of
the γ-secretase substrate APP and likely results in elevated Aβ generation [22]. Moreover,
neurons contain a high amount of polyunsaturated fatty acids (PUFAs) that can interact
with ROS, leading to a self-propagating cascade of lipid peroxidation and molecular de-
struction [25]. Products of lipid peroxidation have also been shown to be elevated in blood
samples and brains of AD patients at autopsy [26,27]. Both nuclear and mitochondrial DNA
and RNA also exhibit oxidative damage in the AD brain [28–30]. Hence, understanding
oxidative balance is regarded as an important event in understanding AD pathogenesis.
OS might increase the aggregation and production of Aβ and assist polymerization and tau
phosphorylation via the creation of a vicious cycle that stimulates the progression and even
initiation of AD. Keeping this in mind, in this review, we sought to analyze the myriad
interactions between oxygen radicals and toxic protein oligomers in the context of AD to
understand their importance in disease pathogenesis. Furthermore, we also discuss the role
of microbiota in altering redox balance and its consequences concerning Aβ production
and tau hyperphosphorylation.

2. Markers of Oxidative Stress

ROS are oxygen-containing molecules that are more chemically reactive than O2 and,
therefore, can damage cellular macromolecules. For example, ROS can react with nucleic
acids (NA) by attacking nitrogenous bases and the sugar–phosphate backbone. Further,
these can evoke single- and double-stranded DNA breaks, affecting the protein-coding
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region of mtDNA and influencing OXPHOS [31,32]. mtDNA mutations can cause distur-
bances in the respiratory chain, and as a result, it loses control over ROS production [1].
In addition, the modification in core DNA repair genes can result in an impaired recogni-
tion system and an inefficient repair of DNA damage, which in turn can accelerate aging
and leads to age-related disruptions in cellular and tissue functions. This also results
in the accumulation of ROS, which increases with age and intensifies OS. This elevation
in OS damages mtDNA, leading to apoptosis, inhibition of mitochondrial respiratory
chain transition, and increased mitochondrial membrane permeability in the absence of
sufficient antioxidant capacity [5]. Thus, pro-oxidative/antioxidative cellular imbalance
between ROS production and the ability of the defense mechanisms of biological systems
to eliminate ROS-mediated cellular stress disturbances results in a vicious cycle, since
the OS reciprocally aggravates ROS production. ROS have also been reported to attack
structural and enzymatic proteins via oxidation of residual amino acids, prosthetic groups,
formation of cross-links and protein aggregates, and proteolysis [32]. Lipid peroxidation
(auto-oxidation) is a process in which PUFAs are oxidized due to several double bonds
in their structure. This process involves producing peroxides (chemical compounds in
which a single covalent bond links two oxygen atoms), ROS, and other reactive organic free
radicals. Several markers of oxidative damage have been defined, including the following:
8-hydroxy-2-deoxyguanosine (8-OHdG) and 8-hydroxyguanosine, markers of oxidative
DNA damage; 8-hydroxyguanine, a marker of RNA oxidation; protein carbonyls and
nitrotyrosine, markers of protein oxidation; and malondialdehyde (MDA), thiobarbituric-
acid-reactive substances, 4-hydroxy-2-nonenal (4-HNE), acrolein, isoprostanes, and neuro-
prostanes, markers of lipid peroxidation [5,32,33]. Moreover, ROS and aging have also been
linked to the promotion and accumulation of advanced glycation end products (AGEs).
AGEs are insoluble in detergents, protease-resistant, and non-degradable protein, lipid, or
NA aggregates generated by non-enzymatic glycation or glycoxidation after exposure to
aldose sugar. AGEs have been reported to impair normal cellular/tissue functions directly
or indirectly through the AGE/RAGE pathway after binding to specific receptors for ad-
vanced glycation end products (RAGEs) [34]. Due to synergism with OS, the production of
AGEs is promoted by OS, which eventually leads to ROS generation.

Furthermore, AGEs have been found to accumulate in numerous tissues throughout
physiological aging, which leads to OS since the ability to respond to OS reduces with
age. Due to this, many proteins lose their function, including those involved in gene
transcription regulation [32,33]. Thus, AGEs serve not only as proinflammatory molecules
but also as potent neurotoxins [35]. Protein glycation begins as a nonenzymatic process
with a free amino acid group capable of producing a labile Schiff base. The process thus
takes place along with the unconstrained condensation of aldehyde or ketone groups
reportedly present in sugars. Furthermore, the phenomenon mentioned above also agrees
with Maillard’s classical reaction in 1912 [36,37]. Subsequently, a series of reactions occur
that result in the generation of AGEs containing irreversibly cross-linked heterogeneous
protein aggregates.

3. Linking OS and Proteinopathy in AD

The molecular associations of proteinopathy and proteotoxicity with OS are varied and
complicated. Indeed, considerable evidence suggests that OS occurs before the appearance
of symptoms in AD and that oxidative damage is detected not only in the vulnerable brain
regions [38] but also in peripheral areas [36,38–40]. A reduction in the protein’s breakdown
rate due to impaired proteasomal or lysosomal pathway or transcriptional activation or
rapid translation of a specific mRNA may result in the accumulation of a specific hazardous
protein [41–43]. In some circumstances, the mutant gene produces an abnormal protein
product that is not cleared by the protein degradation machinery, causing it to accumulate.
A similar event may occur in post-translationally modified proteins due to changes in
the internal milieu of the cell, such as those observed in the redox status and kinase
activity [42,43]. Excess accumulation of wild-type (WT) or mutant protein can precede
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various conformational alterations, e.g., helix to β-strand, facilitating oligomerization
and self-aggregation. Heat shock proteins (HSP), such as HSP40, HSP70, HSP90, and
other chaperones and co-chaperones, usually prevent misfolding of intracellular proteins.
However, excessive accumulation, redox modifications, and/or mutations of such proteins
may overwhelm this system and alter these chaperones’ expression [44,45]. The term
proteotoxicity refers to the toxic effect of these protein aggregates on the various functions
of cell organelles. ROS-responsive TFs can alter genes that encode such toxic proteins or
enzymes involved in their production, processing, or degradation [46]. Furthermore, the
proteasomal system, particularly the 26S proteasome, is responsible for degrading toxic
protein aggregates and can be directly inactivated by OS to varying degrees. The in-depth
mechanism of how ROS-mediated regulation of 26S proteasomal degradation occurs is
currently being researched and clarified [47,48]. Furthermore, ROS may also influence
the lysosomal clearance of toxic proteins, resulting in autophagy failure. The former is
known to have an intricate relationship with autophagy, an intracellular degradation
system [48]. ROS may also potentiate the oligomerization of proteins, such as Aβ, which
interacts with transition metals (TM) such as iron (Fe), copper (Cu), zinc (Zn), etc., or other
components capable of generating additional ROS (2–3). Likewise, proteotoxicity and
mitochondrial dysfunction are also intertwined. Several studies conducted using isolated
mitochondria, in vitro cell cultures, and postmortem brain samples showed that all forms of
Aβ (monomer, oligomerized, or aggregated) cause a wide-ranging mitochondrial functional
impairment which includes a reduction in bioenergetics, alteration in fusion/fission cycle,
and impaired mitophagy [49,50]. Thus, proteotoxicity-induced mitochondrial dysfunction
results in excess ROS production and triggers cell death pathways.

Aβ + TM→ Aβ − TM (2)

Aβ − TM→ TM − Aβ+• (3)

3.1. Oxidative Stress and Aβ Proteinopathy

APP is a type I membrane protein that is synthesized and modified post-translationally
in the endoplasmic reticulum (ER) and Golgi apparatus (GA) [51–53]. APP is further trans-
ported to the cell surface by a mechanism analogous to those used by other integral trans-
membrane proteins [51–53]. The metabolism of APP follows either a non-amyloidogenic
pathway through α-secretase cleavage or an amyloidogenic pathway through cleavage
mediated by β-site APP cleaving enzyme 1 (BACE1) [51–53]. Non-amyloidogenic pro-
cessing predominantly occurs at the cell surface where α-secretase cleaves APP within
the Aβ domain and generates a secreted large amino fragment ((s)APPα) and a small
carboxyl (C)-terminal fragment (αCTF: C83) [51–53]. On the contrary, during the amy-
loidogenic processing, which takes place in the endosomes, BACE1 processes APP to a
soluble β-cleaved ectodomain (sAPPβ) and a C-terminal fragment (βCTF: C99) [51–53].
This cleavage of APP results in the generation of toxic proteins termed Aβ peptides (Aβ42
and Aβ40 peptides), deposited as amyloid and neuritic plaques in extracellular brain
regions [51–53]. Recent studies have demonstrated that APP is internalized through lipid
rafts and clathrin-mediated endocytosis [53]. However, BACE1 is internalized by ADP
ribosylation factor 6 endocytosis and is then sorted into early endosomes [53]. Further, the
γ-secretase complex is responsible for the cleavage of βCTF (cleaved product of BACE1),
which generates Aβ. Thus, generated Aβ is finally released into the extracellular space
by fusing multi-vesicular bodies with the plasma membrane (PM) or is degraded via an
endolysosomal pathway [52–58].

The expression, processing, and intracellular protein trafficking of APP and Aβ pep-
tides reportedly occur in the trans-Golgi network, endosomes, and PM and are well-
defined phenomena [57,58]. Importantly, endosomal changes, which are early events in
AD progression, result in intra-neuronal Aβ accumulation and are correlated with re-
dox imbalance, OS, synaptic dysfunction, cognitive impairment, and accelerated aging.
During self-aggregation on neuronal membranes, a toxic aldehyde known as 4-HNE is
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produced, which causes lipid peroxidation and can cause ion-motive ATPases, glucose
transporters, and glutamate transporters to malfunction [57–59]. In turn, Aβ promotes
synaptic membrane depolarization, excessive calcium influx, and mitochondrial damage,
impairing cells’ capacity to carry out normal physiological functions [60,61]. Thus, based
on postmortem data and experimental studies carried out using cell lines, primary cul-
ture of hippocampal neurons, and transgenic animal models, it has been prominently
suggested that Aβ peptide oligomers can interact with numerous astrocytic, microglial,
and neuronal synaptic proteins, including α7- acetylcholine receptors (AChRs) and N-
methyl-D-aspartate receptors (NMDARs); this, in turn, triggers a series of toxic synaptic
events [58–61]. These events include abnormal activation of NMDARs (particularly NR2B-
containing extrasynaptic NMDARs), increased neuronal calcium influx, calcium-dependent
activation of calcineurin/PP2B, and its downstream signal transduction pathways involv-
ing cofilin, glycogen synthase kinase 2 beta (GSK-3β), cAMP response element-binding
protein (CREB), and myocyte enhancer factor 2 (MEF2) [58–61]. This results in aberrant
redox reactions and severing/depolymerizing F-actin, tau hyperphosphorylation, and en-
docytosis of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs),
which eventually leads to synaptic dysfunction and cognitive impairment and triggers
the process of neurodegeneration in AD [56–62]. The inactivation of key proteins can
lead to serious consequences in vital metabolic pathways. For instance, oxidized proteins
can be harmful to membrane integrity. They may change the sensitivity of enzymes such
as glutamine synthetase and creatine kinase, which are essential for brain function, to
oxidative alterations [57,61,62]. This evidence suggests that Aβ trafficking pathways may
be a therapeutic target through which disease manifestations may be improved [56–62].

Aβ toxicity has been demonstrated in vitro [63]. When placed in a physiological
solution, Aβ precipitates into fibrils and generates free radicals. Casley et al. (2002)
investigated the connection between Aβ and mitochondrial function using a cell-culture
system [64]. They revealed that Aβ directly induces mitochondrial oxidative damage due
to the generation of free radicals [64]. To this aim, they isolated rat mitochondria and
incubated them with Aβ alone and with Aβ and nitric oxide (NO) together. They further
measured the levels of tricarboxylic acid (TCA) enzyme complexes [65] and a-ketoglutarate
dehydrogenase and pyruvate dehydrogenase activities [64]. Their findings revealed that
Aβ significantly reduces mitochondrial respiration. Additionally, Aβ, together with NO,
can further diminish mitochondrial respiration. In addition, they found that Aβ also
inhibits the activities of cytochrome oxidase, a-ketoglutarate dehydrogenase, and pyruvate
dehydrogenase [66,67]. Similarly, Kim et al. (2002) also showed that the addition of Aβ

to isolated mitochondria from brain tissues taken directly from rats induces the release
of cytochrome c and mitochondrial swelling [67]. These findings from the study by Kim
et al. (2002) suggest that in AD, Aβ may accumulate intracellularly via abnormal APP
processing. Its accumulation may exert neurotoxicity by interacting with mitochondria
and causing oxidative damage apoptosis [67]. Furthermore, Tamagno et al. (2002) reported
that the OS product 4-HNE could modulate BACE1. The NT2 neurons, when exposed to
ascorbate/FeSO4 and H2O2/FeSO4, resulted in a significant generation of 4-HNE. They
also reported that an increase in the levels of 4-HNE was well correlated with an increase in
BACE1 protein levels and was accompanied by a proportional increase in carboxy-terminal
fragments of APP [21,22]. They confirmed their findings by pretreating NT2 neurons with
alpha-tocopherol, which is reported to prevent the formation of aldehydic end products
of lipid peroxidation, including 4-HNE. These findings of Tamagno et al. (2002) support
the hypothesis that OS and Aβ production are strictly interrelated events and that BACE1
inhibition may have a synergic therapeutic effect with antioxidant compounds [21,22].

In AD, the presence of elevated extracellular Aβ levels at potential sites of lipid per-
oxidation only serves to elevate the risk of oxidative damage. Compellingly, compared
with age-matched controls, in areas such as the hippocampus, where AD pathology is
concentrated, higher levels of 4-HNE in AD patients are observed [68]. Reports investigat-
ing patients with mild cognitive impairment confirm an increase in OS due to high levels
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of brain 4-HNE, an early event in AD pathogenesis [68–70]. Supporting this notion, OS
markers, including lipid peroxidation, have been shown to precede and be accompanied
by Aβ pathology in AD transgenic mouse models [71]. Recently, a study by Gwon and
colleagues explained how OS could induce Aβ42 production via 4-HNE- or Fe2+-mediated
modification of γ-secretase activity [72]. Using cultured human neuroblastoma (SH-SY5Y)
cells and a luciferase reporter assay, they demonstrated that exogenous addition of 4-HNE
or Fe2+ enhanced γ-secretase activity results in an increase in the Aβ42/Aβ40 ratio [72,73].
They further identified 4-HNE-mediated modification of nicastrin, a component of mature
γ-secretase complexes, as the possible reason for the increase observed in the Aβ42/Aβ40
ratio. This could be because nicastrin liberates Aβ from APP, which may amplify amy-
loidogenic processing of APP via increased 4-HNE activation of γ-secretase activity [72,73].
However, the application of reduced glutathione (GSH) analog or the γ-secretase inhibitor
(GSI) L685,458 could suppress the increase in γ-secretase activity [72,73]. Altogether, a
positive feedback system might exist in which Aβ not only participates but also promotes
lipid peroxidation, which in turn is facilitated by increases in extraneuronal Fe2+ [72,73].

Aβ has been reported to generate H2O2, a key ROS, from O2 through electron transfer
interactions involving bound redox-active Cu2+ and Fe3+ [73,74]. H2O2 is readily converted
into an aggressive OH radical by Fenton chemistry (4). These two types of ROS have been
reported to be responsible for the early oxidative damage seen in AD. Some studies have
shown that the levels of H2O2 generated by Aβ can be enhanced by co-incubation of the
peptide with a reducing substrate, which becomes oxidized in the process [73–75]. For
instance, using cholesterol as a reducing substrate, the resulting oxidation product will be
7β-hydroxycholesterol, proapoptotic and neurotoxic even at nanomolar concentrations.
Thus, this molecule can also contribute to oxidative brain damage in AD [75].

H2O2 + Fe2+ → OH• + HO− + Fe3+ (4)

AGEs are regarded as chemical molecules that can be cross-linked to long-lived
proteins [76,77]. In AD, enhanced oxidation of glycated proteins (i.e., glycoxidation) results
in the extracellular accumulation of AGEs [78]. This has been confirmed in classic and
primitive plaques observed in different cortical areas and senile plaques [78]. In vitro
experiments conducted by Li and Dickson using double immunohistochemistry revealed
AGE’s colocalization with apolipoprotein E (ApoE) [79]. They examined the binding of
ApoE variants to AGE in the presence of bovine serum albumin and found that the dimeric
form of ApoE has more binding specificity towards AGE. Furthermore, the results also
suggested a three-fold higher binding activity between AGE and ApoE4 compared to
binding activity between AGE and ApoE3, which signifies the pathogenic risk associated
with ApoE4 in the case of fAD. AGE formation is reported to accelerate the formation
of Aβ monomer to oligomeric forms [80]. Lines of evidence have shown prominent
binding between Aβ and ApoE4, resulting in Aβ fibril formation and many subsequent
pathways [79–82]. Recently, a cohort study involving the Dutch population revealed a
higher association between AGEs and carriers of ApoE4 in progressive dementia [83].

Abnormal Cu, Zn, and Fe levels have been reported in the hippocampus and amygdala,
along with severe histopathological changes in patients with AD [84–86]. Aβ generates ROS
through different redox activities by binding to Cu or Fe (5–7) [74,86–89]. Cu2+ is reportedly
found bound to several enzymes, such as SOD, cytochrome c oxidase, ceruloplasmin, and
tyrosinase, which are involved in critical neuronal and non-neuronal cellular biochemical
pathways. For instance, astrocytes can store and export Cu2+ to neurons. However, excess
Cu2+ in astrocytes results in binding of Cu2+ to Aβ to form a cuproenzyme-like complex,
which can transfer an electron to Cu2+ to convert Cu2+ to Cu+, thus forming the Aβ radical
(Aβ+•) [74,85–90]. Furthermore, Cu+ can donate two electrons to O2 to generate H2O2 and
produce OH radicals (Fenton-type reaction) [74,88,89]. Fe2+ is highly reactive, and excess of
this metal ion often overproduces reactive chemical species (OH•) [74,91]. Fe accumulation
is prominent in both in vitro and in vivo AD models that involve neuritic plaques, which
further result in OS [92]. For instance, in SH-SY5Y cells overexpressing the Swedish
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mutant form of human APP, the intracellular Fe levels are significantly elevated along with
increased OS [74]. The binding of Fe to Aβ results in the reduction of Fe3+ to Fe2+ and the
generation of H2O2 [90,91]. As a critical component of amyloid plaques and cerebrovascular
amyloidosis, Zn has also been reported to be involved in Aβ accumulation and ROS
production in triple-transgenic mice [93]. It has been suggested that OH• formation
further damages biomolecules, such as lipids, proteins, and NA, due to the ability of
OH• to catalyze specific reactions, including hydrogen abstraction, addition reactions, and
oxidation reactions in AD. These findings demonstrate that the interactions between Aβ

and metals also produce ROS.

Fe3+/Cu2+ + O2
•− → Fe2+/Cu+ + O2Fe3+/Cu2+ + O2

•− → Fe2+/Cu+ + O2 (5)

Fe2+/Cu+ + H2O2 → Fe3+/Cu2+ + OH• + OH-Fe2+/Cu+ + H2O2 → Fe3+/Cu2+ + OH• + OH (6)

O2
•− → H2O2 → O2 + OH• + OH-O2

• + H2O2 → O2 + OH• + OH (7)

3.2. Oxidative Stress and Tau Proteinopathy

Besides Aβ proteinopathy, another prominent feature of AD pathogenesis is the accu-
mulation of phosphorylated tau protein within neurons, known as neurofibrillary tangles
(NFTs). These tau neurites also contribute to synaptic dysfunction and axonal degener-
ation [94]. Tau usually plays a significant role by stabilizing neuronal microtubules [95].
However, in AD, abnormal phosphorylation facilitates disassociation from the microtubule,
resulting in the loss of function [96]. The change prompts self-assembly into highly toxic
soluble oligomers, forming larger fibrils and tangles deposited within neurons [95,96].
Tau aggregates exhibit cell–cell transfer, which leads to seeding and further aggregation,
supporting the concept of region to region spreading of phosphorylated tau in AD [97].
These plaques and NFTs are primarily deposited in brain regions, such as the hippocampus,
amygdala, entorhinal cortex, and basal forebrain, which reportedly play an essential role
in memory, learning, and emotional behaviors; plaques and NFTs reduce the number
of synapses in these areas [55,98,99]. It has been suggested that an imbalance between
kinases and phosphatases leads to aberrant tau hyperphosphorylation. As of now, nearly
28 protein kinases are known to be responsible for tau phosphorylation [100]. Furthermore,
Aβ aggregates could be a component in a set of molecular events that lead to tau hyper-
phosphorylation [101,102]. For example, to favor the NFT formation, 4-HNE can induce
alterations in tau protein structure which facilitates the participation of Aβ-induced OS in
AD pathogenesis.

According to the published experiments and reports, OS is well associated with tau
pathology. Moreover, cells with overexpressing tau protein are more vulnerable to the OS,
likely caused by peroxisome depletion [103,104]. Tau protein can effectively induce ROS
production in mitochondria. For instance, hippocampal tau phosphorylation in tau trans-
genic mice with the P301L mutation reportedly induces mitochondrial dysfunction, which
results in H2O2 production, lipid peroxidation, and eventually neuronal loss [103–106].
Moreover, a reduction in cytoplasmic SOD1 or a deficit in mitochondrial SOD2 [107] in-
creases tau phosphorylation in Tg2576 AD transgenic mice. Besides reducing nicotinamide
adenine dinucleotide (NADH), ubiquinone oxidoreductase and mitochondrial dysfunction
are also observed in the tau transgenic AD mouse model. This phenomenon has been well
associated with elevated production of ROS, weakened synthesis of adenosine triphosphate
(ATP), and mitochondrial respiration in aged animals [108].

Interestingly, P301S transgenic mouse brains showed enhanced OS and higher protein
carbonyl levels in the cortical mitochondria. The relationship between tau pathology and
OS was confirmed in P301L and P301S transgenic mouse models carrying the human tau
gene with either the P301L or P301S mutation; these mice display accumulation of hyper-
phosphorylated tau, which causes neurodegeneration and the development of NFTs [109].
Tau, both directly and indirectly, influences mitochondrial function and mitochondrial
transport along the neuronal axon, resulting in the reduction and impairment of mito-
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chondria at presynaptic terminals with obvious deleterious consequences [110,111]. In
AD-induced brains, phosphorylated tau was discovered to engage with voltage-dependent
anion channel 1 (VDAC1), causing mitochondrial dysfunction [112]. As observed in AD
postmortem brains and rodent models, tau hyperphosphorylation reduces complex I ac-
tivity. It further causes a reduction in ATP generation, elevation in OS, mitochondrial
membrane potential (mt∆Ψ) dissipation, promotion of mitochondrial fission, and fragmen-
tation [113]. Additionally, in a mouse model, mitochondrial stress was found to induce tau
hyperphosphorylation [107]. These findings strongly suggest that tau pathology plays a
significant role in mitochondrial dysfunction in AD.

Application of extracellular tau at different stages of aggregation to cortical co-cultures
of neurons and astrocytes showed that only insoluble aggregates of tau could induce ROS
production by activating nicotinamide adenine dinucleotide phosphate (NADPH) oxidase
in a calcium-dependent manner [114]. The essential constituent of NFTs, the microtubule-
associated protein tau (MAP-tau), was revealed to be vital to the formation of intracellular
AGEs [115]. On the contrary, MAP-tau can be glycated in vitro, which decreases its capacity
to bind to microtubules. Moreover, MAP-tau in the tubulin-binding region isolated from
AD brains is glycated, leading to β-sheet fibril formation [116,117].

4. Linking Microbiota with Oxidative Stress and AD

Recently, several pieces of evidence link the role of microbiota in brain biology and
aging, being an essential factor involved in various physiological processes via interactive
symbiotic network system with host [118–123]. This interactive network between host
and microbiota interconnects the gut track, epidermis, liver, and all other organs with the
central nervous system, generally referred to as the microbiota–gut–brain axis [124,125].
The microbiota is composed mainly of bacteria that colonize all mucosal surfaces, with
higher density in the gastrointestinal tract, approximately 100 trillion bacteria from nearly
1000 various bacterial species [118,124], thereby influencing and triggering various events
associated with aging disorders such as AD [118–120,124,126]. Recently, a line of evidence
revealed an association of brain amyloidosis with pro-inflammatory gut bacteria in cog-
nitively impaired patients [127] and various AD mouse models [128,129]. These findings
strongly highlight the association of microbiota and amyloid pathogenesis in AD. However,
these fields lack crucial in-depth information and require more exploration.

Physiological levels of OS have been generated in the microbiota, which can interfere
with its composition and functionality [130]. Furthermore, interactions between microbe–
microbe or host–microbiota may also impact the CNS redox balance by elevating ROS
levels or impairing the antioxidant system or both [131,132]; hence, serving not only as
a cause but also a consequence of increased levels of oxidative injury in CNS [131], thus
adding a new dimension to the interplay between the gut microbiota and the brain. More-
over, the microbiota can also produce a considerable amount of CNS neurotransmitters,
including dopamine, serotonin, and gamma-aminobutyric acid, that can modulate the
local activity of the enteric nervous system and can correlate with their respective levels
within the CNS, which in turn depends on the intestinal and BBB permeability [133]. The
microbiota may also produce neurotoxic and potentially neurotoxic substances (such as
lipopolysaccharides and amyloid proteins), which can also reach to CNS via the systemic
circulation or the vagus nerve, promoting microglial activation and neuroinflammation,
elevated ROS levels, and/or making neurons more susceptible to OS [133]. Therefore,
gut microbes were considered plausible triggering factors for several neurodegenerative
disorders, considering the proximity of enteric nervous system neurons to the intestinal
lumen [134].

However, the production of amyloid proteins helps in the formation of bacterial
biofilms by promoting the binding of bacterial cells with each other, thus providing re-
sistance from physical or immune factor-mediated destruction [126]. However, in abnor-
mal physiological conditions, bacterial amyloids may act as prion proteins and result
in cross-seeding of amyloidogenic protein that elevates pathogenic Aβ formation both
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in vitro and in vivo [126,135–138]. For instance, the interaction of cyanobacteria with
synaptic receptors such as NMDA results in upregulation of β-N-methylamino-L-alanine
(BMAA), an OS-inducing neurotoxin [139,140], in AD brains. Furthermore, BMAA has
been linked with protein misfolding and resulting inflammatory consequences in the AD
mice model [139–141]. Numerous studies also suggested a link between activation of en-
dogenous herpes simplex-1 (HSV-1) and amyloidogenesis in AD. This intimate relationship
resulted in progressive neurodegeneration and cognitive impairment, contributing to AD
pathogenesis [142–144]. A possible reason for this could be the alteration in gut dysbiosis,
which results in increased gut barrier permeability, which in turn hyper activates the innate
immune response that leads to systemic inflammation, thus impairing the blood–brain
barrier [126], which results in neuronal injury, protein misfolding, and neurodegeneration
leading to cognitive impairment [145]. In addition, overwhelmed microglial stimulation
and NF-κB-mediated proinflammatory signaling and reactive oxidative and nitrosative
stressors can result in neuronal and glial cell death, which can further impair phagocytosis,
leading to the accumulation of Aβ42 [146,147]. C/EBPβ/AEP signaling was activated
in 3xTg mice 5xFAD mice due to gut dysbiosis, resulting in Aβ aggregates, OS, and tau
hyperphosphorylation [148].

Furthermore, reduction in the relative abundance of Proteobacteria and the low levels
of Bifidobacteria can reduce beneficial short-chain fatty acids, leading to lipid peroxida-
tion [149]. This, in turn, results in impaired APP processing and trafficking, thus impacting
the production of Aβ. Studies conducted using germ-free mice have confirmed the impact
of microbiota on microglia maturation, astrocyte activity, neuroinflammation, OS, protein
misfolding, and cognitive impairment in AD pathogenesis [129]. Modifying the gut mi-
crobiota composition with food-based therapy or supplementing with probiotics may be
helpful as a new preventive and therapeutic option in both in vitro and in vivo AD models
and clinical trials [146,147,150–154].

5. Antioxidants and AD

It is now evident that Aβ and tau pathologies are modulated by ROS and are also
self-perpetuating concerning ROS formation [155]. Hence, strategies involving inhibition
of Aβ oligomerization or decreasing ROS production through the design of multitargeted
compounds, such as antioxidants, have resulted in several promising approaches currently
being tested in clinical trials. Antioxidants are a broad and heterogeneous collection
of chemicals that work by inhibiting the production, detoxification, or scavenging of
oxidant species. According to a different criterion, antioxidants can be classified into
four different classes based on their chemical structure: vitamins (e.g., ascorbic acid, α-
tocopherol, β-carotene, and retinol), synthetic compounds (e.g., butylated hydroxytoluene),
natural compounds (e.g., plant-derived polyphenols), and inorganic compounds. Some
antioxidants act as chain-breaking molecules, as they can prevent the propagation of or
stop radical chain reactions (e.g., α-tocopherol). On the contrary, antioxidants, such as Gpx
and catalase, can detoxify H2O2. This chemical reaction serves a vital role in cell biology as
H2O2 can produce OH radicals in the presence of transition metals such as Fe2+, for which
there is no detoxification system [32].

Several antioxidant studies in AD models have also been reported, demonstrating
that antioxidants consistently positively affect the animals’ behavioral and amyloidotic
phenotypes (Table 1). Vitamins are potent antioxidants that directly affect free radicals
by reducing OS, inflammatory processes, and neuronal loss [156]. Vitamin A (retinol) is
essential for neuronal formation and remains present in the nervous system across life.
Along with β-carotene, vitamin A also protects regenerating neurons during the neurode-
generation process by preventing the development and aggregation of Aβ plaques both
ex vivo and in vivo. It may also prevent impaired cognition in AD and improve memory
performance and spatial learning in rodent models. Studies have shown that AD patients
have lower vitamin A and β-carotene compared with healthy individuals [156,157]. Early
vitamin E (α-tocopherol) supplementation significantly reduced Aβ levels and deposition
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in the Tg2576 AD model [158]. The same therapeutic regimen prevents a surge in amyloido-
sis [158]. It improves cognitive function after experimental traumatic brain injury, a known
risk factor for AD development in Tg2576 mice [159]. Curcumin, a popular antioxidant
and anti-inflammatory substance found in curry spices, substantially decreases OS and
amyloid pathology in the Tg2576 mouse model [160].

Furthermore, curcumin is a potent inhibitor of Aβ fibrillization [161] and oligomer-
ization [162] and promotes destabilization of pre-existing Aβ deposits in both cell culture
models and animal models of AD [160–162]. Curcumin and its derivatives also increase
the uptake and clearance of Aβ by macrophages in AD patients [163]. Furthermore, using
LLC-PK1 and NRK-52E cells, Balogun and colleagues reported that curcumin upregulates
Aβ-induced SOD and catalase and can further activate Nrf2 by selectively binding to
Keap1 [164]. Luteolin has also been associated with activating the Nrf2 pathway, which
increases endogenous antioxidative gene expression in neuronal cells [165]. Melatonin, a
drug with antioxidant properties, partially inhibits the expected time-dependent elevation
in Aβ levels, reduces the abnormal nitration of proteins, and increases the survival of
Tg2576 mice [166]. Similarly, ferulic acid, rosmarinic acid, and nordihydroguaiaretic acid
(NDGA) have also been reported to inhibit the fibrillization and/or oligomerization of Aβ

into higher-order species in vitro [167–170].
The significant outcomes of these studies are reductions in Aβ levels, phosphory-

lated tau, mitochondrial dysfunction, microglial activation, enhanced synaptic activity,
and amelioration of cognitive decline. These results indicate that antioxidant treatment
is beneficial in reducing and/or preventing AD progression. The findings also show that
combination therapy positively impacts cognitive behavior and lowers AD pathology.
The positive findings of these studies are promising. However, they warrant prospective
studies (e.g., antioxidant treatment of elderly individuals without AD) and clinical trials
(antioxidant treatment for patients with AD). Recent work has also highlighted the im-
portance of a healthy and detoxified innate response by consuming diet precursors and
enhancing responsiveness [171]. For instance, the application of radiation health, such
as UV radiation from the Sun, can prepare an individual for further UV exposure [172].
Another example includes exposure to pro-oxidants such as H2O2, which can prepare the
body for subsequent pro-oxidant exposure, which is similar to the formation of antibodies
in vaccines.
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Table 1. Overview of the experimentally documented roles of various known natural antioxidant compounds in cases of Alzheimer’s disease.

Antioxidant Mechanism Experimental Model Reference

Vitamins

α-Tocopherol Reduces Aβ and lipid peroxidation; delays development of tau
pathology; reduction in learning deficits and motor weakness Tg2576 mice [156,157,167–170,173]

Ascorbic acid Reduces Aβ oligomers, tau phosphorylation, and oxidative stress hAPP-J20 mice [174]

Retinol Reduces MDA levels; upregulates SOD activity; reduces Aβ

pathology

APPswe/
PS1M146V/

tauP301L (3 × Tg) mice; in vitro enzymatic assay
and in silico modeling

[175]

Naturally present

CoQ10 Reduces MDA levels; upregulates SOD activity; reduces Aβ

pathology Tg19959 mice; APP/PS1 Tg mice [176,177]

Synthetic

Mito Q Prevents cognitive decline, oxidative stress, Aβ accumulation,
synaptic loss, and caspase activation 3 × Tg mice [178]

Plant-based

Zeolite Increases endogenous SOD; reduces Aβ levels and plaque burden Randomized clinical trial [179]
β-Carotene Improves cognitive impairment and oxidative stress Streptozotocin-induced AD mice model [180]

Curcumin
Inhibits Aβ fibrillization and oligomerization; clearance of Aβ by

macrophages; reduces Aβ40 and 42 and Aβ-derived diffusible
ligands; increases Aβ-degrading enzymes; promotes destabilization

Tg2576 mice; APPSw mice; APPswe/PS1dE9
mice; in vitro enzymatic assay [160–163,181]

Ferulic acid Inhibits the fibrillization and/or oligomerization of Aβ In vitro enzymatic assay [167,168]

Rosmarinic acid Inhibits the fibrillization and/or oligomerization of Aβ
Molecular docking analysis; Tg2576 mice; PC12

neuroblastoma [168–170]

Nordihydroguaiaretic acid (NDGA) Inhibits the fibrillization and/or oligomerization of Aβ Tg2576 mice [168]

Mimetic

ApoE mimetic peptide Ac-hE18A-NH2 Reduces oxidative stress and ApoE secretion; inhibits Aβ plaque
deposition

APP/PS1∆E9 mice and U251 human astrocyte
cells [182]

Catalase mimetic Protects against oxidative stress, DNA, and protein oxidation;
reduces Aβ and tau phosphorylation 3 × Tg-AD mice [183]
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Table 1. Cont.

Antioxidant Mechanism Experimental Model Reference

Drug

Melatonin

Inhibits time-dependent elevation of Aβ; reduces abnormal
oxidation and nitration of proteins; increases survival; alleviates

learning and memory deficits; decreases choline acetyltransferase
activity and increases acetyltransferase activity; increases

mitochondrial function

Tg2576 mice; APP 695 Tg mouse model; APP/PS1
mice; APPswePS1dE9 mice [166,184–187]

N-Acetyl-L-cysteine Reduces lipid peroxidation, oxidative stress, and glutathione
peroxidase activity APP/PS-1 knock-in mice [188]
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6. Conclusions

ROS are the byproducts of normal cell metabolism and are therefore unavoidable.
However, an imbalance between pro-oxidative and antioxidative cellular mechanisms leads
to a vicious cycle since OS reciprocally aggravates ROS production, which results in the
oxidation of lipids, proteins, and NA in neurons. This oxidation is a frequently encountered
pathological marker in the case of AD. It contributes to the disease’s progression by
increasing Aβ deposition, hyperphosphorylation of tau, and synaptic and neuronal loss.
Altogether, the relationship between OS and AD suggests that OS is an essential part of the
pathological process and that antioxidants may be helpful in treating AD. However, AD
demands a precisely targeted treatment. Furthermore, non-antioxidant, targeted protection
against OS, including transition metal chelators, compounds that modify the oligomeric
structure, and inhibitors of enzymatic ROS production (such an NADPH oxidase), may
potentially exert a strong therapeutic effect against AD. Additionally, consumption of
precursors in the diet and mild exposure to pro-oxidants can benefit future exposure to the
same stressor. All of these approaches are currently being rapidly developed.
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metals; ER: Endoplasmic reticulum; GA: Golgi apparatus; BACE1: β-site APP cleaving enzyme 1; PM:
Plasma membrane; AChRs: α7-acetylcholine receptors; NMDARs: N-methyl-D-aspartate receptors;
GSK-3β: Glycogen synthase kinase 3 beta; CREB: cAMP response element-binding protein; MEF2:
Myocyte enhancer factor 2; AMPARs: α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid re-
ceptors; NO: Nitric oxide; TCA: Tricarboxylic acid; ApoE: Apolipoprotein E; NFTs: Neurofibrillary
tangles; NADH: Nicotinamide adenine dinucleotide; ATP: Adenosine triphosphate; VDAC1: Voltage
dependent anion channel 1; mt∆Ψ: Mitochondrial membrane potential; NADPH: Nicotinamide
adenine dinucleotide phosphate; MAP: Microtubule-associated protein; NDGA: Nordihydrogua-
iaretic acid.
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