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Abstract To address the increasing need for detecting and validating protein biomarkers in clinical

specimens, mass spectrometry (MS)-based targeted proteomic techniques, including the selected

reaction monitoring (SRM), parallel reaction monitoring (PRM), and massively parallel data-

independent acquisition (DIA), have been developed. For optimal performance, they require the

fragment ion spectra of targeted peptides as prior knowledge. In this report, we describe a MS pipe-

line and spectral resource to support targeted proteomics studies for human tissue samples. To build

the spectral resource, we integrated common open-source MS computational tools to assemble a

freely accessible computational workflow based on Docker. We then applied the workflow to gen-

erate DPHL, a comprehensive DIA pan-human library, from 1096 data-dependent acquisition
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(DDA) MS raw files for 16 types of cancer samples. This extensive spectral resource was then

applied to a proteomic study of 17 prostate cancer (PCa) patients. Thereafter, PRM validation

was applied to a larger study of 57 PCa patients and the differential expression of three proteins

in prostate tumor was validated. As a second application, the DPHL spectral resource was applied

to a study consisting of plasma samples from 19 diffuse large B cell lymphoma (DLBCL) patients

and 18 healthy control subjects. Differentially expressed proteins between DLBCL patients and

healthy control subjects were detected by DIA-MS and confirmed by PRM. These data demonstrate

that the DPHL supports DIA and PRM MS pipelines for robust protein biomarker discovery.

DPHL is freely accessible at https://www.iprox.org/page/project.html?id=IPX0001400000.
Introduction

The recent development of high-throughput genomic sequenc-
ing techniques, as well as methods for the global expression
analysis of biomolecules, has enabled identification of a num-

ber of oncological biomarkers from clinical samples and
advanced the field of cancer precision medicine [1–4]. Novel
diagnostic/prognostic protein marker candidates for colorectal

[5,6], breast [7], ovarian [8], and gastric [9] tumors have been
identified through shotgun proteomics [10], and plasma pro-
teomes have been reported for 1500 obese patients [11].

Sequential window acquisition of all theoretical fragment ion
spectra mass spectrometry (SWATH-MS) is a massively paral-
lel data-independent acquisition (DIA) technique that combi-
nes the multiplexing ability of shotgun proteomics with the

high-accuracy data analysis of selected reaction monitoring
(SRM), and can quantify proteomes using single-shot MS/
MS analysis [12,13]. The SWATH/DIA data sets are analyzed

through spectral libraries using software tools like Open-
SWATH [14,15], DIA-Umpire [16], Group-DIA [17], Skyline
[18], and Spectronaut [19]. Most of these tools generate com-

parable results [15] and require a priori spectral library. A
pan-human spectral library (PHL) for SWATH data process-
ing has been developed to analyze SWATH maps generated
by TripleTOF MS [20] using open-source computational pro-

grams, and the error rates of peptide and protein identification
in large-scale DIA analyses have been statistically controlled
[21]. The development of these tools has extended the applica-

tion of SWATH-MS to diverse clinical sample types including
plasma [22], prostate [23], and liver [24] tissues.

Despite these advances, the implementation of DIA-MS on

widely used Orbitrap instruments has currently been restricted
on account of the lack of non-commercial tools to build spec-
tral libraries. Theoretically, one could build a spectral library

based on the established protocol for TripleTOF data [1].
However, in practice an optimal and robust pipeline for Orbi-
trap data is missing, as we have implemented in this work. Fur-
thermore, it has been demonstrated that for Orbitrap

instruments, using the library built from TripleTOF data leads
to identification of much fewer proteins than using that built
from Orbitrap data [25]. Moreover, there is no bioinformatics

pipeline to couple DIA-MS and parallel reaction monitoring
(PRM)-MS for validation, thus a comprehensive human spec-
tral library resource for Orbitrap data is yet to be established.

Parallel computing is only available for OpenSWATH soft-
ware tools till now. Spectronaut has been developed to support
the generation of DIA spectral libraries and analysis of DIA

data sets against these libraries [19], however, it is only com-
mercially available. To extend the application of large-scale
DIA-MS on Orbitrap instruments, an open-source workflow
is in great need to build a pan-human spectral library for

DIA files generated for cancer biomarker discovery. More-
over, the workflow as well as spectral library are essential to
validate the candidate protein biomarkers by PRM, a more

recently developed technique with higher sensitivity and speci-
ficity than SWATH/ DIA, albeit with limited throughput [26].

Here, we developed an open-source computational pipeline

to build spectral libraries from Orbitrap spectral data and gen-
erated DPHL, a comprehensive DIA pan-human library, from
16 different human cancer types. In addition, we have pro-

vided a Docker resource to integrate this pipeline to the
data-dependent acquisition (DDA) spectral scans, which
allows an easy and automatic expansion of the library by
incorporating more MS data generated from ongoing studies.

Finally, to validate its applicability in DIA and PRM, we
applied DPHL to identify differentially expressed proteins
between tumor and normal tissues in a prostate cancer (PCa)

cohort and a diffuse large B cell lymphoma (DLBCL) cohort,
respectively.
Results and discussion

Build DPHL using 1096 shotgun proteomics data files

To build a DIA spectral library for Orbitrap data that can also
be used for PRM assay generation, we collected shotgun pro-

teomics data from two laboratories. These two laboratories,
the Guo lab from China and the Jimenez lab from the Nether-
lands, used Q Exactive HF mass spectrometers and consistent

experimental conditions (see Materials and Methods section).
A total of 1096 raw MS data files were collected from a range
of samples that included tissue biopsies from PCa, cervical

cancer (CC), colorectal cancer (CRC), hepatocellular carci-
noma (HCC), gastric cancer (GC), lung adenocarcinoma
(LADC), squamous cell lung carcinoma (SCLC), thyroid dis-
eases, glioblastoma (GBM), triple-negative breast cancer

(TNBC), sarcoma, and DLBCL (Figure 1A). In addition,
blood plasma samples from acute myelocytic leukemia
(AML), acute lymphoblastic leukemia (ALL), chronic myel-

ogenous leukemia (CML), multiple myeloma (MM),
myelodysplastic syndrome (MDS), and DLBCL patients, as
well as the human CML cell line K562 were also analyzed,

with the resulting data included in the library too. The sample
types and their DDA files are summarized in Figure 1A and
Table S1A. Comparison of DDA files acquired from the
Guo lab and the Jimenez lab demonstrated a high degree of

consistency (File S1).

https://www.iprox.org/page/project.html%3fid%3dIPX0001400000


Figure 1 Workflow for building DPHL

A. Schematic representation of DDA shotgun proteomics data acquisition. Numbers in parentheses indicate the number of DDA files per

tissue type. B. Protein identification and iRT detection from DDA raw files using pFind. C. SiRT detection and calibration. D. CiRT

detection and calibration. E. Generation of DPHL. Details of the commands are presented in File S18. DDA, data-dependent acquisition;

DIA, data-independent acquisition; iRT, indexed retention time; PCT, pressure cycling technology; SCX, strong cation-exchange; SiRT,

synthetic iRT; CiRT, common internal iRT; DPHL, DIA pan-human library.

Zhu T et al /DPHL: A DIA Pan-human Protein Mass Spectrometry Library 107



108 Genomics Proteomics Bioinformatics 18 (2020) 104–119
Establish an open-source Docker-based computational pipeline

for building DIA/PRM spectral library

The conventional OpenMS and OpenSWATH pipeline [14]
requires sophisticated installation, which relies on multiple

existing software packages. A Docker image can largely facil-
itate the installation process. We developed an open-source
Docker image with all the pre-installed pipelines and its depen-
dent packages to democratize the generation of DIA/PRM

spectral libraries. The workflow of this computational pipeline
is shown in Figure 1. Briefly, the DDA files were firstly cen-
troided and converted to mzXML using MSconvert from Pro-

teoWizard [27] (Figure 1A), and pFind [28] was used to
identify the relevant peptides and proteins in the protein data-
base (Figure 1B). The shotgun data from each tissue type were

processed separately. We wrote two scripts, namely pFindex-
tract.R and addRT.py (Figure 1C and D), to extract the reten-
tion time (RT), peptide sequence, charge state, protein name,

and identification score for each peptide precursor. SpectraST
version 5.0 [29] was used to generate consensus spectra of pep-
tides for each tissue type to build the library; spectrast2spec-
trast_irt.py [30] was used to calibrate RT; and spectrast2tsv.

py [14] was used to select the top six fragments for each peptide
precursor (Figure 1C and D). Decoy assays were generated
using OpenSwathDecoyGenerator from OpenSWATH soft-

ware [14].
For both library building and SWATH/DIA analysis, the

synthetic indexed RT (SiRT) peptides [31] were spiked in the

peptide samples for RT calibration (Figure 1C), and these
samples were subjected to SWATH library building workflow
[1]. For some samples without SiRT spike-in, we developed
software tools to identify the conserved high-abundance pep-

tides with common indexed RT (CiRT) (Figure 1D) [30].
The peptides of each tissue type had to fulfill the following cri-
teria to be considered as CiRT peptides: (1) proteotypic, (2)

amino acid sequences with no modification, (3) signal intensi-
ties above the 3rd quartile of all quantified peptide precursors,
(4) charge +2 or +3, and (5) uniformly distributed RT across

the entire liquid chromatography (LC) gradient. Following
these criteria, we implemented codes dividing the LC gradient
window into 20 bins and selected one peptide for each bin.

Thereby we selected 20 CiRT peptides for each tissue type.
The detailed information of CiRT peptides in different tissue
types is shown in Table S2A and CiRT peptides of each tissue
type are shown in Table S2B. The transitions markup language

(TraML) format of the CiRT peptides is provided in File S2–
S17. The CiRT peptides can either be used unified with exoge-
nous SiRT standards or as an alternative RT standard in the

respective samples. We expect these CiRT peptides to be of
wide use in future DIA experiments for clinical tissue samples.

Since the current version of the pFind software does not

support the quantification of identified peptides, CiRT pep-
tides were selected from a representative DDA dataset that
was analyzed by MaxQuant (version 1.6.2) [32]. We then wrote
the generate_CiRT.R script to analyze the peptides.txt files

from the MaxQuant search results, and generated the tissue-
specific CiRT peptides (Figure 1D). The latter was used to
replace SiRT peptides in the command spectrast2spec-

trast_irt.py [30]. For RT calibration, we used the spec-
trast2spectrast_irt.py converter script on the SiRT or CiRT
peptides. Then, SpectraST was used to build a consensus
library, and spectrast2tsv.py and OpenSwathDecoyGenerator
[14] were applied to filter low quality assays and append decoy
assays into the library (Figure 1E). The computational pipeline

is illustrated and explained in more detail in File S18 and File
S19.

DPHL is to date the most comprehensive DIA/PRM library for

human specimens

We first characterized the content of the newly-generated

DPHL library in terms of the peptide and protein identifica-
tion, and compared it to the PHL library for SWATH [20].
The DPHL library includes 359,627 transition groups (referred

as peptide precursors thereafter), 242,476 peptides, 14,782 pro-
tein groups, and 10,943 proteotypic Swiss-Prot proteins (re-
ferred as proteins thereafter for short). DPHL and PHL
share 9241 proteins, which represent 84.4% content of DPHL

and 89.5% content of PHL (Figure 2A). The DPHL library
includes more peptide precursors, peptide, protein groups,
and proteins compared to the PHL library for SWATH (Fig-

ure 2A). Proteins in DPHL are of higher sequence coverage
(Figure S1), enabling better measurement of specific domains
of proteins.

We then counted the number of peptide precursors, pep-
tides, and protein groups for each of the 16 sample types (Fig-
ure 2B) and found that the solid tissues, but not the plasma
samples, shared a large number of proteins. The leukemia sam-

ples had the highest number of peptides and proteins due to
the higher number of DDA files (n= 160) available (Fig-
ure 2C). The plasma samples had, as expected, the lowest num-

ber of peptides and proteins due to the dominance of high
abundance proteins (Figure 2C). Cumulative plots of peptides
and proteins of the 16 types of cancer samples (tissue, plasma,

and cell line) are shown in Figure S2A and B. There was a sig-
nificant increase in the number of transition groups when
DDA data was added from different tissue types (Figure S2A),

while the increase in the number of proteins was relatively low
(Figure S2B). We further investigated the increase in the num-
ber of peptide precursors and proteins in two well-sampled tis-
sue types and found that the current DPHL library is not yet

complete, probably due to the presence of semi-tryptic pep-
tides, missed cleavages, and biological heterogeneity (Fig-
ure S2C and D), waiting for future expansion with more

spectral data.
Next, we analyzed the biological content of the DPHL

library. To investigate the biological coverage of DPHL, we

did Gene Ontology (GO) enrichment analysis using R package
clusterProfiler. It is shown that DPHL covers proteins with
diverse molecular functions (Figure S3).

The kinases were next characterized using KinMap [33], an

online tool that links the biochemical, structural, and disease
association data of individual kinases to the human kinome
tree. A total of 340 kinases (63.2% out of 538 known protein

kinases) identified in DPHL were plotted in the KinMap tree.
As shown in Figure S4, DPHL covers all the major branches of
the kinome tree. More characteristics of the kinases in DPHL

are shown in Figure S5. Given that transcription factors (TFs)
are extremely important to disease genesis, development, and
disease progression, we matched DPHL to the 1639 TFs from

the Human Transcription Factors database [34]. We found
that DPHL covers 33.0% of the known TFs (Figure S6).



Figure 2 Comparison of DPHL and PHL

A. Venn diagram showing the comparison of transition groups (i.e., peptide precursors), peptides, protein groups, and proteins in DPHL

and PHL. B. Visualization of tissue intersections using R package UpSet. C. Bar plots displaying the number of transition groups,

peptides, protein groups, proteins in DPHL library for each sample type. PHL, pan-human spectral library.
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DPHL assists stratification of PCa tissue samples and discovery

of potential protein biomarkers

Next, we applied DPHL to analyze representative clinical sam-
ple cohorts. First, we procured prostate tissue samples from 17

patients consisting of 8 PCa cases and 9 benign prostate hyper-
plasia (BPH) cases (Table S3A and B) for analysis on Q-
Exactive HF MS operated in DIA mode. The peptides were
separated on a 60-min LC gradient. Two additional technical
replicates were randomly selected for each patient group. As
a result, 24 DIA files were acquired; 4785 protein groups and

3723 proteins were identified from 37,581 peptide precursors
that were searched against DPHL using the CiRT strategy.
CiRT and SiRT strategy shared most of protein groups and



Figure 3 PCa proteome using 60-min gradient DIA

A. Number of protein groups and peptide precursors identified using SiRT and CiRT. B. Technical reproducibility of proteome matrix

using CiRT and SiRT. C. Comparison of protein quantification based on MS intensity using the SiRT and CiRT methods. D. 2D plane t-

SNE plot of disease classes, color coded by sample type using CiRT and SiRT. E. Boxplots showing the expression (MS intensity) of the

significantly dysregulated proteins; P values adjusted with Benjamini & Hochberg are shown under each protein name. ROC curves of the

proteins were also shown. R1, technical replicate 1; R2, technical replicate 2; PCa, prostate cancer; BPH, benign prostate hyperplasia; t-

SNE, t-distributed stochastic neighbor embedding; FASN, fatty acid synthetase, UniProtKB: P49327; TPP1, tripeptidyl-peptidase 1,

UniProtKB: O14773; SPON2, spondin-2, UniProtKB: Q9BUD6.
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peptide precursors (Figure 3A, Table S3C). Figure 3B shows
that proteins were identified at a high degree of reproducibility

across the samples tested. The SiRT (Table S3D) and CiRT
strategies achieved comparable performance (Figure 3C). T-
distributed stochastic neighbor embedding (t-SNE) [35] plots

show that PCa and BPH samples were clearly distinguished
by the data analyzed by both the CiRT and SiRT strategies
(Figure 3D).
Of the 3723 identified proteins, 1555 (1451 up-regulated and
104 down-regulated) proteins showed significantly differential

abundance [Benjamini–Hochberg (BH) adjusted P < 0.05
and intensity absolute fold change |FC| � 2] using the CiRT
strategy, compared to 2109 (1954 up-regulated and 155

down-regulated) proteins identified using the SiRT strategy
(Table S3E and F). The two regulated proteomes shared
1359 proteins in common. Then, random forest (RF, using R
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package ‘randomForest’) analysis was applied to the 1359
common proteins to select prioritized proteins to distinguish
benign and malignant tumor samples in this PCa patient

cohort, leading to a shortlist of 400 proteins. We further ana-
lyzed the 400 proteins using Metascape [36] based on pathway
and protein interaction, resulting in a further refined shortlist

of 86 proteins (Table S4A–C). Among these 86 proteins, we
focused on three biomarker candidates, i.e., fatty acid synthase
(FASN; UniProtKB: P49327), tripeptidyl-peptidase 1 (TPP1;

UniProtKB: O14773), and spondin-2 (SPON2; UniProtKB:
Q9BUD6), based on their functional annotation. FASN,
TPP1, and SPON2 are all significantly upregulated in this
tumorous samples (Figure 3E). FASN overexpression has been

reported to be associated with poor prognosis in PCa [37].
TPP1 regulates single-stranded telomere DNA binding and
telomere recruitment, thus maintaining telomere stability

[38–40]. Since genomic instability drives PCa progression from
androgen-dependence to castration resistance [41], TPP1 is a
promising biomarker [42]. SPON2, a cell adhesion protein that

plays a role in tumor progression and metastasis, has been
reported as a serum biomarker [43–45]. The receiver operating
characteristic (ROC) curves of these three proteins were shown

in Figure 3E, and the high area under curve (AUC) values sug-
gest these proteins as potential markers for PCa.

DPHL assists stratification of DLBCL plasma samples and

discovery of potential protein biomarkers

Plasma has been widely used in clinical diagnosis for its conve-
nient access. Here we applied DIA-MS and DPHL to analyze
Figure 4 DIA analysis of plasma samples from DLBCL patients and

A. Technical reproducibility for protein quantification of four plasm

subjects. B. 2D plane t-SNE plot showing that proteomes are separated

up-regulated (red) proteins in 37 plasma samples (19 samples from DL

protein expression as calculated by MS intensity for CRP and SAA1. P

protein name Left: Boxplot and ROC curve of CRP. Right: Boxplot a

HC, healthy control; CRP, C-reactive protein, UniProtKB: P02741; S
the plasma samples fromDLBCL patients. The plasma samples
were procured from 19 DLBCL patients and 18 healthy control
subjects (Table S5A–C). Each unfractionated and un-depleted

plasma sample was trypsinized and the resulting peptides were
separated on a 20-min LC gradient and measured by DIA-MS
on a Q-Exactive HF instrument. A total of 7333 peptide precur-

sors were identified by searching the data against the DPHL
plasma subset library using the CiRT strategy with high techni-
cal reproducibility (R2 = 0.96, Figure 4A). We identified 507

protein groups and 304 proteins. More detailed information
for each sample is shown in Figure S7. The DLBCL samples
were clearly distinguished from the healthy control samples
by t-SNE analysis of the quantified proteome (Figure 4B), indi-

cating that our workflow can distinguish DLBCL patients from
healthy control subjects based on their plasma proteomes.

After comparing the plasma proteomes of DLBCL with

healthy control (or normal) samples using t-test using the same
criteria as in the prostate cohort, we identified 24 differentially
regulated proteins (Figure 4C, Table S5D). Two protein candi-

dates that were closely associated with DLBCL were chosen
for further investigation in this study, including C-reactive pro-
tein (CRP; UniProtKB: P02741) and serum amyloid A1

(SAA1; UniProtKB: P0DJI8). CRP is an indicator of the
inflammatory response and has prognostic value in various
solid tumors, including DLBCL [46]. The hyaluronic acid
receptor SAA1 has been previously identified as a prognostic

biomarker for DLBCL [47,48]. The boxplots and ROC curves
of these proteins are shown in Figure 4D. Our data support
that DPHL is an effective resource for DIA-based discovery

of potential prognostic biomarkers of DLBCL.
HC subjects

a samples from two DLBCL patients and two healthy control

. C. Volcano plot showing significantly down-regulated (blue) and

BCL patients and 18 samples from HC subjects). D. The relative

values adjusted with Benjamini & Hochberg are shown under each

nd ROC curve of SAA1. DLBCL, diffuse large B cell lymphoma;

AA1, serum amyloid A1, UniProtKB: P0DJI8.
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DPHL assists protein validation using PRM

We then validated the candidate biomarkers using PRM, a
highly specific and sensitive mass spectrometric method that
can precisely and systematically quantify peptides in highly

complex samples. The DPHL spectra were used to develop
PRM assays using Skyline [18].

Validation in prostate samples

To validate the DIA results of the prostrate samples, we
included another independent PCa cohort including 73 sam-
Figure 5 PRM validation of TPP1, FASN, and SPON2 across 73 pe

Two best flying peptides were selected for each protein. For each pept

PRM runs as calculated from MS intensity (on the left), and XIC dem

P values are computed using Student’s t test. PRM, parallel reaction
ples from 57 patients (Table S6A–C). The two best flying pep-
tides were selected for each protein to measure the abundance
of FASN, TPP1, and SPON2 (Figure 5). As shown in Figure 3E

and Figure 5, PRM data exhibited good consistency with the
DIA results. As a representative example, the peak areas of
protein TPP1 (UniProtKB: O14773) across all samples are

shown in Figure S8.
Validation in plasma samples

The putative DLBCL biomarkers CRP and SAA1 that were

identified from the DIA dataset were selected for PRM valida-
ptide samples from 53 PCa patients

ide, boxplot shows the relative abundance of the peptide across 73

onstrates a representative peak group of the peptide (on the right).

monitoring; XIC, extracted ion chromatogram.
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tion, using the same cohort as DIA (Table S7A–C). Skyline
was used to visualize characteristic peptides for CRP and
SAA1. One of the best flying peptides were selected for CRP

and SAA1 to measure the abundance of each protein (Fig-
ure S9). The peak groups of the fragment ions were manually
curated. As shown in Figure S9, amounts of both proteins are

highly upregulated in DLBCL patients compared to healthy
control subjects, confirming the results obtained by DIA (Fig-
ure 4D). As an example, the peak areas of peptide ESDT-

SYVSLK (m/z of 564.77) of CRP across all samples are
shown in Figure S10.
Conclusion

In this study, we have developed an open-source platform
consisting of a computational pipeline to generate spectral

libraries for DIA and PRM analyses on Orbitrap instru-
ments. We also reported a reference spectral library that
can be used to identify and validate protein biomarkers in

clinical samples using DIA-MS. With over 370,000 peptide
precursors and more than 10,000 proteins identified, DPHL
is the most comprehensive human DIA library built to date
and allows convenient partitioning into tissue-specific and

disease-specific sub-libraries. Additionally, DPHL is specifi-
cally designed for protein measurement of clinical samples
including tissues and plasma, while PHL is mainly for cell

lines and synthetic peptides. With the established pipeline
and DPHL library, we are able to analyze the proteomes of
20 human tissue samples or 40 plasma samples per MS

instrument per day. We will continue to generate additional
DDA files from more types of human tumors with the ambi-
tion of incorporating internal and external data to create a

comprehensive resource, reflecting tumor heterogeneity that
enables biomarker discovery as a mission of the Human Can-
cer Proteome Project (Cancer-HPP) of the Human Proteome
Organization [49]. By appending these results to DPHL, we

can increase the human proteome coverage. Users could
add their own DDA files to DPHL to extend the library, fol-
lowing the instructions in File S18 (Part 4). The pipeline is

robust to different experiment conditions. DPHL itself is
composed of DDA files produced by two different labs with
slightly different LC columns and gradients. The data consis-

tency of DDA files acquired from the Guo lab and the Jime-
nez lab to constitute DPHL was high (File S1). DPHL is not
only applicable to open-source SWATH/DIA analysis tools

like OpenSWATH, but also to other tools including Spectro-
naut and Skyline, among others.
Materials and methods

All chemicals were purchased from Sigma unless otherwise sta-
ted. All MS grade reagents for MS analyses were obtained

from Thermo Fisher Scientific (Waltham, MA).

Clinical samples

Formalin-fixed paraffin-embedded (FFPE), fresh or fresh fro-
zen (FF) tissue biopsies from PCa, CC, CRC, HCC, GC,
LADC, SCLC, thyroid diseases, GBM, sarcoma, and DLBCL
were analyzed in this study. Human plasma samples from a
range of types of leukemia, lymphoma, plasma cell disorders,
anemia, and DLBCL were also included. The human chronic
myelocytic leukemia (CML) cell line, K562, was present in

the dataset. The details about the samples are described in
Table S1A.

Cancer tissue cohorts from China

PCa FFPE samples were acquired from the Second Affiliated
Hospital of Zhejiang University School of Medicine, China.

The first cohort including 3 PCa patients and 3 BPH patients
was used for DPHL library building. The second cohort con-
taining 8 PCa patients and 9 BPH patients was selected for

DIA-MS proteotyping. For each patient, four tissue biopsies
(punch 1 � 1 � 5 mm3) from the same region were procured
for the subsequent FFPE pressure cycling technology (PCT)-
SWATH/DIA workflow for targeted quantitative proteomics

profiling [50]. Besides the second cohort, a third cohort includ-
ing 57 patients (10 BPH and 47 PCa) was also included for
PRM validation. PRM and DIA analyses were performed in

technical duplicate. Information about samples of patient used
for DIA and PRM measurements are described in Tables S3
and S6.

The CRC cohort was acquired from histologically con-
firmed tumors at the First Affiliated Hospital of Zhejiang
University School of Medicine and the Second Affiliated
Hospital of Zhejiang University School of Medicine. Among

the 15 donors, eight patients were diagnosed with colorectal
adenocarcinoma, one patient with mucinous adenocarcinoma,
three patients with adenoma, two patients with polyps, and

one with benign tissue at the edge of colorectal tumors. The
CRC cohort of 15 donors consisted of FFPE and FF tissue
samples. These samples (1.5 � 1.5 � 5 mm3 in size) were

punched from pathologically confirmed tissue areas using
Manual Tissue Arrayer MTA-1 (Beecher Instruments, Sun
Prairie, WI). FF tissue samples were snap frozen and stored

in liquid nitrogen immediately after surgery and were trans-
ported to the proteomics lab within 24 h.

The HCC cohort and LADC cohort were collected from
Union hospital, Tongji Medical College, Huazhong University

of Science and Technology. 66 tissue samples (benign and
tumor) from 33 HCC patients were collected within 1 h after
hepatectomy, then snap frozen and stored at �80 �C. Simi-

larly, 16 tissue samples (matched benign and tumor pairs) from
eight LADC patients were collected within 1 h after pneu-
monectomy, then snap frozen and stored at �80 �C.

The CC cohort was collected from Tongji Hospital, Tongji
Medical College, Huazhong University of Science and Tech-
nology. 13 FFPE cancerous and benign tissues were obtained
from patients with operable CC.
Cancer plasma cohorts from China

Pooled plasma for building the plasma library was created by

mixing plasma (10 ll for each patients) from 20 patients from
Union Hospital, Tongji Medical College, Huazhong University
of Science and Technology. Each of the 20 patients had one of

the following: AML, ALL, CML, MM, MDS, and DLBCL.
The validation cohort consisted of two groups: 18 clinically
healthy control subjects from the Second Affiliated Hospital,

Zhejiang University School of Medicine, and 19 patients diag-
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nosed with DLBCL from Union Hospital, Tongji Medical Col-
lege, Huazhong University of Science and Technology.

Cancer tissue cohorts from the Netherlands

The GBM, DLBCL, AML, ALL, CC, pancreatic, and GC
cohorts were collected at Amsterdam UMC/VU Medical Cen-

ter, Amsterdam. mirVana acetone precipitations of 19 GBM
cancer tissues were pooled according to epidermal growth fac-
tor receptor (EGFR) status (10 samples with wild-type EGFR

and 9 samples with mutant (vIII) EGFR). Similarly, mirVana
acetone precipitations of samples from 27 DLBCL patients
were pooled according to origin (12 samples of neck origin

and 17 of non-neck origin). For AML, two pools of two
patient samples each were prepared. For ALL, 14 individual
primary ALL cell samples were used, including nine
glucocorticoid-resistant and five glucocorticoid-sensitive sam-

ples. CC tissue lysates of 16 patients were prepared and
pooled. For pancreatic cancer, individual tissue lysates of 20
patients were used. For GC, tissues in the form of FFPE mate-

rial of 10 patients were pooled according to tumor percentage
(7 with > 50% and 3 with � 50% tumor content).

The lung cancer cohort was acquired from Amsterdam

UMC/VU Medical Center, Amsterdam and Antoni van
Leeuwenhoek Hospital/Netherlands Cancer Institute, Amster-
dam. Tumor resection samples in the form of FFPE material
were collected from 10 LADC, 10 SCLC, and three large cell

lung carcinoma (LCLC) patients and pooled per subtype.
The soft tissue sarcoma cohort was acquired from Antoni

van Leeuwenhoek Hospital/Netherlands Cancer Institute,

Amsterdam. Seven sarcoma and nine sarcoma metastasis tis-
sues were pooled separately.

PCa and bladder cancer cohorts were acquired from Ams-

terdam UMC/VU Medical Center, Amsterdam and Erasmus
University Medical Center, Rotterdam. In total 18 PCa tissues
and nine healthy control tissues in the form of FFPE material

were pooled separately. In addition, 22 FF PCa tissues were
combined into two pools of 11 samples each. Additionally,
10 bladder cancer tissues in the form of FFPE material were
combined into two pools of five samples each.

The CRC and TNBC cohorts were collected at Erasmus
University Medical Center, Rotterdam. For CRC, two pools
were made per consensus molecular subtypes (CMS1, 2, 3,

and 4), with each pool containing tissue lysates of five patients.
For TNBC, two pools of 23 and 24 patient tissues each were
used.

Thyroid cancer cohort from Singapore

The thyroid tissue cohort was kindly provided by the National

Cancer Centre Singapore, Singapore. In total 105 FFPE thy-
roid tissue punches from 63 patients were included in this
study. The cohort is composed of five patients with normal
thyroid, 28 with multinodular goiter, 10 with follicular thyroid

adenoma, five with follicular thyroid carcinoma, and 15 with
papillary thyroid carcinoma.

Pre-treatment and de-crosslinking of FFPE tissue samples

About 1 mg of FFPE tissue was first dewaxed three times by
heptane, then rehydrated in a gradient of 100%, 90%, and
75% ethanol (G73537B; Titan, Shanghai, China). The par-
tially rehydrated samples were then transferred into micro-
tubes (MT-96; Pressure Biosciences, Boston, MA) and

soaked in 0.1% formic acid (FA) (T-27563; Thermo Fisher Sci-
entific, Waltham, MA) for complete rehydration and acidic
hydrolysis for 30 min, under shaking at 600 rpm, 30 �C. The
treated FFPE samples were washed using 0.1 M Tris-HCl
(pH 10.0) by gentle shaking and spinning down. The super-
natant was discarded. 15 ml of 0.1 M Tris-HCl (pH 10.0) was

added to cover tissues and the suspension was boiled at
95 �C for 30 min for basic hydrolysis under gentle shaking.
Subsequently the sample was fast cooled to 4 �C, topped with
25 ml of lysis buffer containing 6 M urea (U1230; Sigma, St.

Louis, MO) and 2 M thiourea (M226; Amresco, India),
0.1 mM NH4HCO3 (G12990A; Titan) (pH 8.5), and subjected
to PCT-assisted tissue lysis and digestion [50].

PCT-assisted tissue lysis and digestion

After prewashing or de-crosslinking, the FF or FFPE tissues

were subjected to PCT-assisted tissue lysis and digestion as
described previously [51]. Tissues were lysed in a barocycler
NEP2320-45 k (Pressure Biosciences) at the PCT scheme of

30 s high pressure at 45 kpsi plus 10 s ambient pressure, oscil-
lating for 90 cycles at 30 �C. Extracted proteins were reduced
and alkylated by incubating with 10 mM Tris (2-
carboxyethyl) phosphine (C4706; Sigma, China) and 20 mM

iodoacetamide (IAA; I6125; Sigma, China) at 25 �C for
30 min, in darkness, by gently vortexing at 800 rpm in a ther-
momixer. Afterward, proteins were digested by Lys-C (HLS

LYS001C; Hualishi, Beijing, China; enzyme-to-substrate
ratio, 1:40) using the PCT scheme of 50 s high pressure at
20 kpsi plus 10 s ambient pressure, oscillating for 45 cycles

at 30 �C. This was followed by a tryptic digestion step
(HLS TRY001C; Hualishi; enzyme-to-substrate ratio, 1:50)
using the PCT scheme of 50 s high pressure at 20 kpsi plus

10 s ambient pressure, oscillating for 90 cycles at 30 �C.
Finally, 15 ml of 10% trifluoroacetic acid (TFA) (T/3258/
PB05; Thermo Fisher Scientific) was added to each tryptic
digest to quench the enzymatic reaction (final concentration

of 1% TFA). Peptides were purified by BioPureSPN Midi
C18 columns (The Nest Group, Southborough, MA) accord-
ing to the manufacturer’s protocol. Peptide eluates were then

dried under vacuum (CentriVap; LABCONCO, Kansas,
MO). Dry peptides were dissolved in 20 ml of water contain-
ing 0.1% FA (T-27563; Thermo Fisher Scientific) and 2%

acetonitrile (ACN) (34851; Sigma, China) (all MS grade).
Peptide concentration was measured using ScanDrop (Ana-
lytikJena, Beijing, China) at A280.

1D SDS-PAGE separation at protein level for building DDA

library

SDS-PAGE separation and peptide preparation in Jimenez lab,
the Netherlands

Tissues were lyzed in 1� reducing NuPAGE LDS sample buf-

fer (Invitrogen, Carlsbad, CA), sonicated in a Branson cup-
type digital sonifier, centrifuged, and heated for 5 min at
95 �C. Protein lysates were separated on precast 4%–12%

gradient gels using the NuPAGE SDS-PAGE system (Invitro-
gen). Following electrophoresis, gels were fixed in 50% etha-
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nol/3% phosphoric acid solution and stained with Coomassie
R-250. Subsequently, gel lanes were cut into 10 bands and
each band was cut into �1 mm3 cubes. The gel cubes from

each band were transferred into a well of a 96-well filter plate
(Eppendorf, Hamburg, Germany) and were washed in 50 mM
NH4HCO3 and 2 � 50 mM NH4HCO3/50% ACN. Subse-

quently, gel cubes were reduced for 60 min in 10 mM dithio-
threitol (DTT) at 56 �C and alkylated for 45 min in 50 mM
IAA (both Sigma, St Louis, MO) in the dark, at 25 �C. After

washing with 50 mM NH4HCO3 and 2 � 50 mM NH4-
HCO3/50% ACN, the gel cubes were dried for 10 min in a
vacuum centrifuge at 60 �C and subsequently incubated in
50 ml 6.25 ng/ml sequence-grade trypsin (Promega, Madison,

WI) in 50 mM NH4HCO3 at RT overnight. Peptides from
each gel band were extracted once using 150 ml 1% FA, and
twice using 150 ml 5% FA/50% ACN and were pooled in a

96-deep-well plate and centrifuged to dryness at 60 �C in a
vacuum centrifuge and stored at �20 �C. Dried peptide
extracts were dissolved in 25 ml loading solvent (0.5% TFA

in 4% ACN) containing 2.5 injection equivalent (IE) iRT pep-
tide standard (Biognosys, Schlieren, CH). Finally, 5 ml of pep-
tide extract containing 0.5 IE iRT peptides was injected into

the nanoLC system.

SDS-PAGE separation and peptide preparation in Guo lab,
China

About 200–300 mg of protein was mixed with 3 � SDS sample
loading buffer (GenScript Biotech, China) supplemented with
150 mM DTT, and the mixture was boiled at 95 �C for 5 min.

Subsequently, 1D gel electrophoresis was performed using
4%–12% gradient SDS-PAGE, after which the gel was
removed, washed first with distilled water, and then with the
fixing buffer (50% (v/v) ethanol with 5% (v/v) acetic acid in

water) at 25 �C for 15 min with gentle agitation to remove
excessive SDS. The fixed and washed gel was stained in Coo-
massie Blue, and then de-stained until the background was

clear and protein bands were visible. The gel was rehydrated
in distilled water at 25 �C for 10 min with gentle agitation.
Subsequently, gel lanes were cut into 10 bands and each band

was cut into �1 mm3 cubes, followed by reduction with 10 mM
Tris(2-carboxyethyl)phosphine hydrochloride (TCEP) in
25 mM NH4HCO3 at 25 �C for 1 h, alkylation with 55 mM
IAA in 25 mM NH4HCO3 solution at 25 �C in the dark for

30 min, and sequential digestion with trypsin at a concentra-
tion of 12.5 ng/ml at 37 �C overnight (1st digestion for 4 h
and 2nd digestion for 12 h). Tryptic-digested peptides were

extracted three times using 50% ACN/5% FA and dried under
vacuum. Dry peptides were purified by Pierce C18 Spin Tips
(Thermo Fisher Scientific).

Preparation and fractionation of plasma protein samples

Venous blood of each patient was collected in EDTA and anti-

coagulation proceeded for 9 h. After centrifugation, plasma
samples were transferred to a new set of Eppendorf tubes
and cold-transported to the proteomics lab at 4 �C within
36 h. Plasma samples were centrifuged again at 300g for

5 min at 4 �C to remove cells after arrival at the lab. Super-
natant was further centrifuged at 2500g for 15 min at 4 �C
to remove cell debris and platelets. The final supernatant was

stored at �80 �C for further protein digestion.
To remove high abundance plasma proteins, several meth-
ods such as SDS-PAGE separation, antibody-depletion of high
abundance proteins, and exosome isolation were adopted in

this study. For SDS-PAGE fractionation, the entire gel was
cut into 12 thin rows, of which four rows with heavily stained
protein bands (3 adjacent bands between 45–75 kD, and a

band between 25–35 kD) were abandoned for depletion of high
abundance proteins. Each of the other remaining 8 rows was
subjected to in-gel digestion as described above. In an alterna-

tive strategy, the High Select Top 14 Abundant Protein Deple-
tion Resin spin columns (A36370, Thermo Fisher Scientific)
was used to deplete high abundance proteins according to
the manufacturer’s instructions. After depletion, proteins were

further fractionated and digested using 1D SDS-PAGE. To
obtain the enriched exosome fraction, an aliquot of 200 ml
plasma was collected after centrifuging venous blood for

10 min at 3000g, 4 �C. The exosome pellet was further collected
after ultracentrifugation at 160,000g, 4 �C for 12 h and resus-
pended in cold PBS for washing. Resuspended exosomes were

further centrifuged at 100,000g, 4 �C for 70 min. The pellet was
redissolved in 150 ml of 2% SDS (S8010; Solarbio, Beijing,
China), and was subjected to PCT-assisted sample lysis, under-

going 60 cycles at 20 �C, with 45 kpsi for 50 s and atmosphere
pressure for 10 s. After lysis, the exosome protein mixture was
precipitated with 80% cold acetone (1000418; Sinopharm
Chemical Reagent, China) at �20 �C for 3 h. The suspension

was centrifuged at 12,500g, 4 �C for 15 min to collect the pro-
tein pellet. The protein pellet was redissolved with 200 ml of
1% SDS, followed by 1D SDS-PAGE.

Strong cation-exchange fractionation at peptide level for building

DDA library

For strong cation-exchange (SCX) fractionation, about 1 mg
peptides were dissolved in 1 ml of 5 mM KH2PO4

(G82821D; Titan)/25%ACN (Sigma, 34851, China) (pH3.0),

then the peptide solution was loaded onto the well-
conditioned SCX SPE cartridge (60108-421; Thermo Fisher
Scientific). The cartridge was then rinsed with 5 mM KH2-
PO4/25%ACN (pH3.0). Finally, six peptide fractions were col-

lected by eluting the cartridge with 1.5 ml increments of
increasing KCl concentration in 5 mM KH2PO4/25%ACN,
i.e., 50 mM, 100 mM, 150 mM, 250 mM, 350 mM, and

500 mM. Each fraction was collected and vacuumed to dry-
ness. Dry peptides and precipitated salts were redissolved in
200 ml of 0.1% TFA (T/3258/PB05; Thermo Fisher Scientific)

and subjected to further C18 desalting by BioPureSPN Midi
SPE (HEM S18V; Nest Group).

DDA data acquisition in Jimenez lab

In total 547 DDA raw data files were generated at Jimenez lab.
All peptides were prepared via 1D SDS-PAGE. Peptides were
separatedbyanUltimate 3000nanoLC-MS/MSsystem (Dionex

LC-Packings, Amsterdam, The Netherlands) equipped with a
40 cm � 75 lm inner diameter (ID) fused silica column custom
packed with 1.9 lm 120 Å ReproSil Pur C18 aqua (Dr Maisch

GMBH, Ammerbuch-Entringen, Germany). After injection,
peptideswere trapped at 10 ll/min on a 10mm� 100 lmID trap
column packedwith 5 lm120 Å ReproSil Pur C18 aqua in 0.1%

FA. Peptides were separated at 300 nl/min along a 90-min
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10%–40%linearLCgradient (bufferA:0.1%FA;bufferB: 80%
ACN, 0.1% FA) (130 min inject-to-inject in total). Eluting pep-
tideswere ionized at a potential of+2kV into aQExactivemass

spectrometer (Thermo Fisher Scientific, Bremen, Germany).
Intact masses were measured at resolution 70,000 (at m/z of
200) in the Orbitrap using an automatic gain control (AGC) tar-

get value of 3E6 charges and an S-lens setting of 60. The top 10
peptide signals (charge state 2+ and higher) were submitted to
MS/MS in the higher-energy collision (HCD) cell (1.6 amu isola-

tion width, 25% normalized collision energy). MS/MS spectra
were acquired at resolution 17,500 (atm/z of 200) in theOrbitrap
using an AGC target value of 1E6 charges, a max injection time
(IT) of 80ms, and an underfill ratio of 0.1%.Dynamic exclusion

was appliedwith a repeat count of 1 andan exclusion timeof 30 s.

DDA data acquisition in Guo lab

In total 549 DDA raw data files were generated in Guo lab.
Biognosys-11 iRT peptides (Biognosys) were spiked into pep-
tide samples at the final concentration of 10% prior to MS

injection for RT calibration. Peptides were separated by Ulti-
mate 3000 nanoLC-MS/MS system (Dionex LC-Packings)
equipped with a 15 cm � 75 lm ID fused silica column

(National Institute of Biological Sciences, Beijing, China)
packed with 1.9 lm 100 Å C18. After injection, peptides were
trapped at 6 ll/min on a 20 mm � 75 lm ID trap column
(Thermo Fisher Scientific, Waltham, MA) packed with 3 lm
100 Å C18 aqua in 0.1% FA. Peptides were separated along
a 120-min 3%–25% linear LC gradient (buffer A: 2% ACN,
0.1% FA; buffer B: 98% ACN, 0.1% FA) at the flowrate of

300 nl/min (148 min inject-to-inject in total). Eluted peptides
were ionized at a potential of +1.8 kV into a Q-Exactive
HF MS (Thermo Fisher Scientific, Waltham, MA). Intact

masses were measured at resolution 60,000 (at m/z of 200) in
the Orbitrap using an AGC target value of 3E6 charges and
an S-lens setting of 50. The top 20 peptide signals (charge-

states 2+ and higher) were submitted to MS/MS in the
HCD cell (1.6 amu isolation width, 27% normalized collision
energy). MS/MS spectra were acquired at resolution 30,000
(at m/z of 200) in the Orbitrap using an AGC target value of

1E5 charges, a max IT of 80 ms, and an underfill ratio of
0.1%. Dynamic exclusion was applied with a repeat count of
1 and an exclusion time of 30 s.

DIA data acquisition in Guo lab

The LC configuration for DIA data acquisition is as the same

as for DDA data acquisition with slight modifications.
Biognosys-11 iRT peptides (Biognosys) were spiked into pep-
tide samples at the final concentration of 10% prior to MS

injection for RT calibration. Peptides were separated at
300 nl/min in a 3%–25% linear gradient (buffer A: 2%
ACN, 0.1% FA; buffer B: 98% ACN, 0.1% FA) in 60 min
(75 min inject-to-inject in total) for prostate samples and

20 min (35 min inject-to-inject in total) for plasma samples.
Eluted peptides were ionized at a potential of +1.8 kV into
a Q-Exactive HF mass spectrometer (Thermo Fisher Scientific,

Waltham, MA). A full MS scan was acquired by analyzing
390–1010 m/z at resolution 60,000 (at m/z of 200) in the Orbi-
trap using an AGC target value of 3E6 charges and maximum
IT of 80 ms. After the MS scan, 24 MS/MS scans were
acquired, each with a 30,000 resolution at a m/z of 200,
AGC target 1E6 charges, and normalized collision energy as

27%, with the default charge state set to 2 and maximum IT
set to auto. The cycle of 24 MS/MS scans (center of isolation
window) with three kinds of wide isolation window are as fol-

lows (m/z): 410, 430, 450, 470, 490, 510, 530, 550, 570, 590,
610, 630, 650, 670, 690, 710, 730, 750, 770, 790, 820, 860,
910, and 970. The entire cycle of MS and MS/MS scans acqui-

sition took roughly 3 s and was repeated throughout the LC/
MS/MS analysis.

DIA data analysis using OpenSWATH and TRIC

Briefly, DIA raw data files were converted in profile mode to
mzXML using msconvert and analyzed using OpenSWATH
(2.0.0) [14] as described previously [13]. Retention time extrac-

tion window was set as 600 s (for 60 min LC) or 350 s (for
20 min LC), and m/z extraction was performed with 0.03 Da
tolerance. Retention time was then calibrated using both SiRT

and CiRT peptides. Peptide precursors that were identified by
OpenSWATH and pyprophet with d_score > 0.01 were used
as inputs for TRIC [52]. For each protein, the median MS2

intensity value of peptide precursor fragments that were
detected to belong to the protein was used to represent the pro-
tein abundance.

Terms for protein identification

In this paper, the term ‘‘protein group” indicates (i) one pro-
tein that is identified by a set of peptides that are not included

in any other protein group, and (ii) a group of proteins sharing
the same set or subset of identified peptides. Proteins identified
from Swiss-Prot protein sequence database (i.e., one manually

inspected protein sequence per gene symbol, excluding iso-
forms, splicing variants, and theoretical protein sequences)
are called ‘‘Swiss-Prot proteins”.

Validation of representative proteins using PRM

PRM quantification strategy was used to further validate pro-
teins that were measured by DIA quantification above.

Biognosys-11 iRT peptides (Biognosys) were spiked into pep-
tide samples at the final concentration of 10% prior to MS
injection for RT calibration. Peptides were separated at

300 nl/min along a 60 min 7%–35% linear LC gradient (buffer
A: 100% water, 0.1% FA; buffer B: 80% ACN, 0.1% FA).
The Orbitrap Fusion Lumos Tribrid mass spectrometer

(Thermo Fisher Scientific, Waltham, MA) was operated in
the MS/MS mode with time-scheduled acquisition for 100 pep-
tides in a +/� 5 min retention time window. The individual

isolation window was set at 1.2 Th. The full MS mode was
measured at resolution 60,000 at the m/z of 200 in the Orbi-
trap, with AGC target value of 4E5 and maximum IT of
50 ms. Target ions were submitted to MS/MS in the HCD cell

(1.2 amu isolation width, 30% normalized collision energy).
MS/MS spectra were acquired at resolution 30,000 (at m/z of
200) in the Orbitrap using AGC target value of 1E5 and max-

imum IT of 100 ms.
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