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INTRODUCTION

Since artificial intelligence (AI) surpassed humans in 
the computerized version of the traditional board game 
Go, deep learning technology has become indispensable 
to technological innovation in medicine [1,2]. In 
cardiovascular imaging, where various technological 
innovations are rapidly applied, several papers on the 
applications of deep learning technology have been 
published [3]. Among cardiovascular imaging modalities, 
computed tomography (CT) is one of the most active 
fields with technical innovation. Cardiac CT has been used 
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to evaluate coronary stenosis, identify hemodynamically 
significant stenosis, elucidate the pathology in structural 
heart disease, and measure cardiac function [4-7]. Some 
excellent reviews on the application of AI in cardiovascular 
imaging have been published recently [3,8-11]. Although 
these studies included cardiac CT, the subject of discussion 
was multimodality imaging, including echocardiography, 
nuclear imaging, and cardiac magnetic resonance imaging 
(MRI). These studies also addressed how clinicians could 
apply AI in the clinical workflow with multimodality 
imaging, such as patient screening, decision support, 
prognostication, and follow-up [3,9,11]. Although these 
discussions are worthwhile, a more focused review of 
the CT imaging workflow is also meaningful from the 
perspective of the radiologist. Litjens et al. [3] summarized 
deep learning research based on PubMed search results, 
including publications from inception until January 2019. 
In the present review, the results of the search using ‘deep 
learning’ OR ‘machine learning’ AND ‘Cardiac CT’ as keywords, 
with publication dates specified between January 2019 
and August 2020, were added. AI can be applied to various 
tasks related to cardiovascular CT, such as the improvement 
of CT image quality, segmentation, and coronary stenosis 
evaluation. In this review, the latest studies have been 
divided into the following categories by topic: image 
quality improvement, segmentation of anatomic structures, 
automatic coronary calcium score, and coronary stenosis/
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plaque evaluation. The AI technologies that are currently 
available and those that require further research have also 
been discussed.

DEEP LEARNING ALGORITHMS

A detailed description of the deep learning networks is 
provided in the previous literature [1,3,12]. Radiologists 
need to understand that applied networks should be 
different depending on the deep learning task. The 
following four algorithm types have been used in the deep 
learning applications for cardiac CT: convolutional neural 
network (CNN), fully convolutional neural network (FCN), 
recurrent neural network (RNN), and generative adversarial 
network (GAN). Brief descriptions and application examples 
of these networks are summarized in Table 1. CNNs are 
the most widely used architectures, and they consist of 
a convolutional layer, pooling layer, and fully connected 
layers [3]. The convolutional layer extracts various features 
from an image and generates multiple feature maps. To 
apply CNNs to a large field of view, feature maps are 
progressively and spatially reduced by pooling the pixels 
together [1]. The pooling layer helps CNNs increase the 
receptive field through downsampling to facilitate an 
understanding of the contextual information. In the context 
of cardiovascular CT, CNNs can perform calcium scoring 
through the classification of specific voxels [13,14] or 

play a role in classification or slice selection as part of a 
segmentation algorithm [15,16]. FCNs are a modified form 
of CNNs that are specialized for image segmentation [3]. 
U-net is a type of FCN that is most widely used in organ 
segmentation studies [4,17,18]. After the downsampling 
path, which is similar to that of the CNNs, the FCNs contain 
an upsampling path in the architecture that produces an 
output image with the same resolution as the input images 
[1]. RNNs feed their output back as input through feedback 
loops, which is suitable for sequence data analysis [3]. 
Use cases of RNNs include electrocardiography (ECG), text, 
tracking of vessel centerline, cine MRI, and automatic 
labeling of anatomic structures [19]. GANs consist of two 
networks [3]: a generator and a discriminator. If the GAN 
network is sufficiently trained so that the discriminator 
cannot distinguish the image produced by the generator, 
a realistic image can be created [3]. Recently, GANs have 
become popular for image quality improvement [20] and 
the generation of virtual images [21].

IMAGE QUALITY IMPROVEMENT

Iterative reconstruction (IR) is a classical method that 
has been widely used for image denoising [22]. However, 
IR requires huge computing resources, and IR performance 
highly depends on hyperparameters, which are often 
difficult to tune. AI-based CT denoising is rapidly emerging 

Table 1. Deep Learning Algorithms for Cardiac CT
Method Description Example Applications

CNN

- The most common architecture in image analysis
- CNN is composed of convolutional and pooling layers
-  Convolutional layer is to detect distinctive local motif-like 

edges and other visual elements. This operation mimics  
the extraction of visual features, such as edges and colors

-  Pooling layer downsamples the data, which helps CNNs 
incorporate more contextual information

- Calcium scoring: CNN for voxel classification [13,14]
-  Segmentation of abdominal aortic thrombi in CT 

angiography [15]
-  Adipose tissue segmentation in a non-contrast 

CT: subsequent CNNs for slice selection and image 
segmentation [16]

FCN/U-net

- Adapted CNN to perform image segmentation
-  FCN takes an image an input and directly predict  

an image-sized segmentation 
- The most common FCN in cardiovascular imaging is U-net 

-  Segmentation of cardiac structures in CT angiography  
[4,17,18]

RNN
-  RNNs feed their own output back as input, which is suitable  

for sequence data analysis, such as text, electrocardiography, 
or cine-MRI  

-  Automated anatomical labeling of the coronary a 
rtery tree [19]

GAN
- GANs consist of two networks: generator and discriminator
-  GANs are used for image noise reduction or generation  

(e.g., conversion of MRI to CT)

- Image noise and artifact reduction [20,23]
- Generation of virtual images [21]

CNN = convolutional neural network, CT = computed tomography, FCN = fully convolutional neural network, GAN = generative adversarial 
network, MRI = magnetic resonance imaging, RNN = recurrent neural network
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as an alternative to conventional IR [20,23,24]. For the 
AI-based method, denoised image reconstruction can be 
performed almost in real-time when the network has been 
trained, without concern about hyperparameter tuning. 
A ‘matched dataset’ of low-dose and standard-dose CT 
images is required for training a denoising network in 
supervised learning. Obtaining a matched dataset based 
on two different CT scans is a complex task, even in 
research settings. In contrast-enhanced CT scans, it is 
necessary to increase the contrast agent twice. Therefore, 
previous researchers have obtained low-dose datasets using 
anthropomorphic phantoms [23] or mathematical noise 
additions [24] from standard-dose images. Using paired 
datasets for training, AI networks learn noise patterns 
to predict noise maps. Denoised images can be obtained 
by subtracting the predicted noise maps from the low-
dose images. In supervised learning, CNNs or FCNs have 
been used (Table 2) [24-27]. Green et al. [24] showed 
the efficiency of the FCN-based technique for reducing 
image noise in low-dose coronary computed tomography 
angiography (CCTA). Lossau et al. [25] applied a CNN 
technique to motion artifact detection and quantification 
in coronary arteries on CT, which is potentially useful 
for reducing motion artifacts. GANs are architectures for 
unsupervised learning [3,20]. Wolterink et al. [23] applied 
GANs to noise reduction of low-dose CT images obtained 
from an anthropomorphic phantom and nonenhanced 
cardiac CT. One of the important limitations of GANs for 

CT denoising is that potential mode-collapsing behavior 
means that some imaging features that are not present in 
the input images can be generated [28]. Kang et al. [20] 
introduced a cycle GAN as an alternative unsupervised 
learning method for denoising CCTA. They used a low-
dose (20% of standard dose) image in early systole and 
late diastole and generated a retrospective ECG-gated scan 
with dose modulation. The standard-dose image was a mid-
diastole (70–80% of the R-R interval) image. Using cycle 
GANs, they successfully obtained a denoised CT image with 
better performance than the state-of-the-art model-based 
IR technique [20]. Figure 1 and Supplementary Movie 1 
show an example of denoised imaging using a cycle GAN-
based image quality improvement algorithm with a very low 
dose (4% of the standard dose in retrospective ECG-gated 
scan mode). 

SEGMENTATION OF ANATOMIC STRUCTURES

In cardiovascular CT research and quantitative reporting 
[6,17,29-31], image segmentation is the starting point 
and the most time-consuming step. Even with advanced 
cardiovascular CT applications, such as CT-derived fractional 
flow reserve (FFR) [5] and three-dimensional printing 
[7,32,33], accurate image segmentation is one of the most 
critical steps. If a segmentation algorithm with an accuracy 
similar to that of an expert is developed, radiological 
reporting will change, and advanced applications, such as 

Table 2. Application of Deep Learning to Reduce Image Noise or Artifacts

Study Year
CT Scans 

for Test (n)
Low Dose Data Network Summary

Wolterink 
  et al. [23]

2017 28 Phantom GAN Noise reduction in low-dose CCTA; 3D GAN

Green 
  et al. [24]

2018 45 Synthetic data FCN
Noise reduction in low-dose CCTA; FCN for per voxel 
  prediction

Lossau 
  et al. [25]

2019 4 Synthetic data CNN Motion artifact recognition and quantification; CNN

Tatsugami 
  et al. [26]

2019 30 Synthetic data CNN
Deep learning–based imaging restoration; lower image 
  noise and better CNR compared with hybrid IR images

Kang 
  et al. [20]

2019 50
Patients data with 
  different cardiac phase

GAN
Noise reduction in low-dose CCTA (multiple cardiac 
  phase data); 2D cycle-consistent GAN (CycleGAN)

Benz 
  et al. [52]

2020 43 Synthetic data NA
Comparison between model-based IR and 
  deep-learning image reconstruction in CCTA

Hong 
  et al. [49]

2020 82 Synthetic data FCN
Applying a deep learning–based denoising technique 
  to CCTA along with IR for additional noise reduction

CCTA = coronary computed tomography angiography, CNN = convolutional neural network, CNR = contrast-to-noise ratio, D = dimensional, 
FCN = fully convolutional neural network, GAN = generative adversarial network, IR = iterative reconstruction, NA = not available
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CT-based simulation and printing, will be more widely used. 
Several researchers have published various studies that 
have applied AI to image segmentation and verified such 
techniques on this background (Table 3).

The most popular and essential targets for image 
segmentation are the cardiac chambers [4,31,34-37] (Fig. 2). 
Researchers have reported AI-based automatic segmentation 
of the four cardiac chambers using cardiac CT [4,17]. Koo 
et al. [17] reported the accuracy of AI-based segmentation 
of the left ventricular (LV) myocardium and contrast-filled 
LV chamber in 1000 CT scans. The sensitivity and specificity 
of the automatic segmentation for each LV segment (1–16 
segments) were high (85.5–100.0%) [17]. Some researchers 
have studied specific areas, other than cardiac chambers, 
that are suitable for clinical purposes [18]. Commandeur et 
al. [16] reported the results of segmentation of epicardial 
and paracardial fat tissue on nonenhanced CT. Automatic 
quantification of adipose tissue showed good agreement 
with manual segmentation in epicardial locations (median 
Dice score coefficient 0.82) [16]. Cao et al. [38] split false 
and true lumen automatically in 276 patients with type 

B aortic dissection (Fig. 3). Although they showed good 
agreement, as defined by the Dice score coefficient (whole 
aorta, 0.93; true lumen, 0.93; false lumen, 0.91), the 
patients were relatively few (training set n = 246; testing set 
n = 30). Automatic quantification of a peri-graft thrombus 
after endovascular repair of an aortic aneurysm can be 
performed automatically using an AI-empowered algorithm 
[15]. For segmentation tasks, most researchers have applied 
FCNs or U-Nets (Table 3).

When developing an AI segmentation algorithm, 
preparing and labeling the dataset for development is 
a fundamental and critical step [1,3]. Most studies use 
the same imaging technique for labeling and prediction 
(e.g., left atrial labeling on CCTA for AI training [labeling] 
and automatic segmentation of the left atrium on CCTA 
[prediction]) [4,17,31,38]. Some researchers have 
developed an AI algorithm that divides the four cardiac 
chambers into nonenhanced cardiac CT images [35,36]. 
With nonenhanced CT, it is challenging, even for experts, 
to prepare a labeled dataset for AI training. Researchers 
have solved this problem in a quite creative way. Morris et 

Fig. 1. Image noise reduction by artificial intelligence in multiphase cardiac computed tomography obtained by retrospective 
electrocardiography-gated scanning.
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al. [35] used a paired CT/MRI dataset to label nonenhanced 
CT images. Bruns et al. [36] prepared enhanced CT and 
virtual nonenhanced CT datasets using dual-energy cardiac 
CT and developed a segmentation algorithm that works 
for nonenhanced CT images. Lee et al. [39] developed an 
algorithm that works for nonenhanced CT images using 
matched CCTA and nonenhanced CT training datasets, which 
were used for automatic coronary calcium (CAC) scoring. 
The use of these unmatched datasets to solve technically 
challenging issues is an excellent example of how 
radiologists can contribute to AI algorithm development.

CORONARY CALCIUM SCORING

The CAC scoring workflow can be described as follows: 
1) in a nonenhanced scan, determine whether calcium 
over 130 Hounsfield unit is present in the coronary artery, 
and 2) if calcium is in a coronary artery, identify the 
coronary artery (e.g., left main, right coronary artery, left 
anterior descending artery). Several researchers attempted 
automatic CAC scoring using feature extraction or multi-
atlas methods even in the pre-AI era, but the results 

were unsatisfactory based on the high false-positive 
lesions and long calculation durations [40-42]. Recently, 
automatic CAC scoring using AI has been reported, showing 
promising results in clinical practice (Table 4). Lessmann 
et al. [13] employed a CNN to classify calcium candidate 
objects (sensitivity of 91.2% per lesion). Martin et al. [14] 
presented a multi-step deep learning model and tested it 
in 511 patients. The first step was used to identify and 
segment the regions, such as the coronary artery, aorta, 
aortic valve, and mitral valve. The second step classified 
the voxels as coronary calcium. They achieved a good 
sensitivity of 93.2% and an intraclass correlation coefficient 
of 0.985. Recently, Lee et al. [39] proposed an atlas-based 
fully automated CAC scoring system that uses AI (Fig. 4). 
The novelty of the system is that it can precisely detect 
coronary artery regions using a deep learning model based 
on semantic segmentation in a single step. This method can 
also provide regional information about the coronary artery 
and surrounding structures, such as the aorta, ventricular 
chambers, and myocardium. Therefore, this method can 
be easily extended to the segmentation of the aortic and 
mitral valves. This atlas-based automatic algorithm showed 

Table 3. Application of Deep Learning for Image Segmentation in Cardiovascular CT

Study Year
Development 

Dataset
CT Scans 

for Test (n)
Performance, 

Dice Coefficient
Network

Target of Segmentation/
Modality for Prediction

Trullo 
  et al. [34]

2017
Nonenhanced 
  chest CT

  30 0.91 FCN
Heart, thoracic aorta/nonenhanced 
  chest CT

Commandeur 
  et al. [16]

2018
Nonenhanced 
  cardiac CT

  250 0.82
Multi-task CNN 
  (ConvNet)

Epicardial adipose tissue, paracardial 
  adipose tissue, thoracic adipose tissue/
  nonenhanced cardiac CT

Jin 
  et al. [18]

2017 CCTA   150 0.94 FCN Left atrial appendage/CCTA

López-Linares 
  et al. [15]

2018
Aorta CT 
  angiography

    13 0.82 FCN 
Postoperative thrombus after EVAR/
  aorta CT angiography

Cao 
  et al. [38]

2019
Aorta CT 
  angiography

    30 0.93 FCN (3D U-Net)
Whole aorta, true lumen, false lumen/
  aorta CT angiography

Morris 
  et al. [35]

2020
Paired CT/
  MRI data

    11 0.88 FCN (3D U-Net)
Cardiac chambers, great vessels, coronary 
  artery/nonenhanced CT for simulation

Baskaran 
  et al. [4]

2020 CCTA     17 0.92 FCN (3D U-Net) Cardiac chambers, LV myocardium/CCTA

Bruns 
  et al. [36]

2020
CCTA (dual-
  energy set)

  290 0.89 3D CNN
Cardiac chambers, LV myocardium/
  nonenhanced cardiac CT

Chen 
  et al. [31]

2020 CCTA   518 - CNN Left atrium/CCTA

Koo 
  et al. [17]

2020 CCTA 1000 0.88 FCN LV myocardium/CCTA

CCTA = coronary computed tomography angiography, CNN = convolutional neural network, CT = computed tomography, D = dimensional, 
DC = dice coefficient, EVAR = endovascular aneurysm repair, FCN = fully convolutional neural network, LV = left ventricle
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good agreement with manual segmentation (sensitivity, 
93.3%; intraclass correlation coefficient, 0.99) as well as a 
low false-positive rate (0.11 calcium lesion per CT scan). 

CORONARY STENOSIS AND PLAQUE EVALUATION

Among the techniques for predicting hemodynamically 
significant coronary stenosis with CCTA, CT-FFR has 
attracted the most attention [29,43]. However, this 
technique requires extensive coronary lumen segmentation 
and complex simulations of computational fluid dynamics 
[29]. Recently, machine learning-based CT-derived FFR 
technology was reported and is expected to increase 
efficiency [44]. This machine learning application was 
trained using 12000 synthetic coronary trees with various 
degrees of coronary stenosis, for which the CT-FFR values 
were computed using the computational fluid dynamics 
method [4]. It should be noted that machine learning 
shortens the computational simulation time and not the 
time required for coronary lumen segmentation [44]. The 
diameters of the coronary artery and plaque are relatively 
small, and research to accurately distinguish them is still in 

the early stages (Table 5). Other alternatives for predicting 
FFR using CCTA have also been reported [45-47]. van 
Hamersvelt et al. [46] applied feature extraction from the 
LV myocardium to classify patients with hemodynamically 
significant stenosis. The deep learning algorithm that 
characterized the LV myocardium improved the diagnosis of 
hemodynamically significant coronary stenosis (area under 
the receiver operating characteristic curve [AUC] = 0.76) as 
compared with the diameter stenosis (AUC = 0.68) [4]. Zreik 
et al. [45] successfully identified patients requiring invasive 
angiography in the stretched multiplanar reformatted image 
of CCTA using an autoencoder and a support vector machine. 
Using invasive FFR as a reference standard, the AUC for 
detecting coronary stenosis requiring invasive evaluation 
was 0.81 at the per-vessel level and 0.87 at the per-patient 
level [45]. Deep learning applications for relatively basic 
technologies, such as centerline extraction of the coronary 
tree [48] and annotation of coronary segments [19], have 
also been recently reported. The tree labeling network, a 
type of RNN, can annotate main coronary branches and 
major side branches with high accuracy (main branch 97%, 
side branch 90%) [19]. This automated anatomical labeling 

Fig. 2. Example of ventricular segmentation by artificial intelligence.
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technology can streamline the diagnostic workflow in daily 
practice for radiologists and radiology technologists. Hong 
et al. [27] reported deep learning-based coronary stenosis 
quantification using CCTA. All quantitative measurements 
showed a good correlation between an expert reader and 
a deep learning algorithm (minimal lumen area r = 0.984, 
diameter stenosis r = 0.975, and percent contrast density 
difference r = 0.975) [27]. To date, one study reported by 
Kumamaru et al. [21] predicted FFR using only CT images 
without any human input. They overcame the complex 
process of coronary lumen segmentation using GAN. The 
deep-learning CT-FFR model achieved 76% accuracy in 
detecting abnormal FFR [21]. Coronary stenosis and plaque 
analysis require continuous technological development in 
the future for clinical applications.

FUTURE PERSPECTIVES

The application of AI in cardiovascular CT is being 
developed in various ways, from image improvement to 
quantitative diagnosis. Some technologies are ready to be 
used in routine workflows or are already being used (Fig. 
5); for example, low-dose CT denoising [49] or automatic 

Fig. 3. Fully automated segmentation of true and false lumina 
in a patient with aortic dissection.

Table 4. Application of Automatic Coronary Calcium Scoring

Study Year
Sensitivity (%), 

per Lesion

False 
Positives 

per CT Scan
ICC

CT Scans 
for Test (n)

Protocol 
of CT Scan

Method of Detection

Wolterink 
  et al. [53]

2016 79 0.2 0.96   530 ECG-gated CT
2.5D patch-based CNN 
  (15 or 25 sizes from axial, 
  coronal, sagittal planes)

Lessmann 
  et al. [13]

2018 91.2
40.7 mm3/

scan
NA   506

Non-ECG-gated 
  chest CT

Cascaded two 2.5D CNNs 
  (CNN1 with large receptive field
   and CNN2 with smaller 
  receptive field)

Cano-Espinosa 
  et al. [54]

2018 NA NA 0.93* 1000
Non-ECG-gated 
  chest CT

CNN based regression model, 
  which directly predicts CAC score

Martin 
  et al. [14]

2020  93.2† NA 0.985   511 ECG-gated CT

Two-fold deep-learning models, 
  first one to exclude aorta, 
  aortic valve, mitral valve 
  regions; second one to classify 
  coronary calcium voxels

van Velzen 
  et al. [55]

2020 93
4 mm3/
scan

0.99   529
ECG-gated CT 
Non-EGC-gated 
  chest CT (n = 3811)

Same as Lessmann et al. 
  2018 [13]

Lee 
  et al. [39]

2021 93.3 0.11 0.99 2985 ECG-gated CT
3D patch-based CNN for semantic 
  segmentation

*Pearson correlation coefficient, †Per-patient sensitivity. CAC = coronary artery calcium score, CNN = convolutional neural network, CT = 
computed tomography, D = dimensional, ECG = electrocardiography, ICC = intraclass correlation coefficient, NA = not applicable
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Fig. 4. Fully automated coronary artery calcium scoring software.

Table 5. Application of Coronary Stenosis and Plaque

Study Year Role of Artificial Intelligence
Dataset 
for Test

Performance Algorithm

Coenen
   et al. [44]

2018
Prediction of FFR based on synthetic 
  data (manual segmentation 
  of coronary tree) in CCTA

351 0.78 accuracy
Machine learning using synthetic 
  stenosis model and computational 
  fluid dynamics results

Zreik 
  et al. [47]

2019
Automatic plaque and stenosis 
  characterization in stretched MPR 
  image of CCTA

65 0.77 accuracy 3D recurrent CNN

van Hamersvelt 
  et al. [46]

2019
Identification of patients with 
  functionally significant coronary 
  stenosis in CCTA

101 0.76 AUC
CNN for LV myocardial segmentation; 
  SVM for patient classification 

Wolterink 
  et al. [48]

2019
Coronary centerline extraction 
  in CCTA

24 93.7% overlap
3D CNN for prediction of vessel 
  orientation and radius to guide 
  iterative tracker

Wu 
  et al. [19]

2019
Coronary artery tree segment labeling 
  in CCTA

436 0.87 F1
Bidirectional LSTM in three graph 
  representation

Hong 
  et al. [27]

2019
Quantification of coronary stenosis 
  automatically in CCTA

156
0.95 correlation 
  coefficient

U-Net

Zreik 
  et al. [45]

2020
Identification of a patient requiring 
  invasive coronary angiography 
  in stretched MPR image of CCTA

137 0.81 AUC Autoencoder and SVM

Kumamaru 
  et al. [21]

2020
Fully automatic estimation 
  of minimum FFR from CCTA 
  (i.e., free from human input)

131 0.76 accuracy
Lumen extraction block using GAN; 
  residual extraction block; prediction 
  block for minimum FFR estimation

AUC = area under the receiver operating characteristic curve, CCTA = coronary computed tomography angiography, CNN = convolutional 
neural network, CT = computed tomography, D = dimensional, ECG = electrocardiography, FFR = fractional flow reserve, GAN = generative 
adversarial network, LSTM = long short-term memory, LV = left ventricle, MPR = multiplanar reformatted, SVM = support vector machine
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quantification of relatively easy to distinguish structures 
(e.g., coronary calcification, cardiac chambers) [17]. 
Some technologies have promising results [27], but they 
require more time to be applied in routine practice. Typical 
examples include the improvement of ultra-low-dose CT and 
the segmentation of very small or delicate structures (e.g., 
coronary plaques and valves) [21,27]. Recently, electronic 
medical records with large data have been prepared for 
various AI research [50]. Cardiovascular CT powered by 
AI or radiomic analysis [51] can be combined with other 
imaging modalities or clinical information (e.g., ECG 
and blood laboratory tests) to guide decision-making or 
prognostication. 

Cardiovascular CT requires quantitative reporting for 
several scenarios, such as CAC scoring, ventricular function 
assessment, and coronary stenosis evaluation [29,33,43]. 
For quantitative reporting, a process that lasts for a shorter 

duration is essential, and AI can significantly help shorten 
the duration of the quantification process [17,39]. To 
date, one of the best techniques for shortening the actual 
workflow is automatic CAC scoring [14,39]. At Asan Medical 
Center, Seoul, Korea, from October 2020, manual primary 
analysis of calcium scoring by an experienced radiological 
technologist was replaced by AI software-guided 
analysis. After primary analysis by AI, the CAC results are 
automatically transferred to a picture archiving system, and 
the radiologist carries out the final confirmation of CAC. 
The time saved by AI will be used for higher-level image 
analysis processes (e.g., ventricular function analysis) 
to improve the quality of CT reporting. Cardiac CT can be 
applied to the evaluation of the coronary arteries and other 
indications, such as the evaluation of the cardiac valves, 
myocardium, and congenital heart disease. Therefore, it is 
necessary to develop specific AI applications to promote 

Fig. 5. Current status and future perspectives of artificial intelligence in cardiovascular CT. CT = computed tomography, GAN = 
generative adversarial network
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research and quantitative reporting in related fields.

CONCLUSION

AI can be implemented and applied in various ways to 
cardiovascular CT-from image reconstruction to quantitative 
analysis. The interpretation room environment of 
radiologists changes as AI technology develops. As imaging 
specialists, radiologists should be actively involved in 
the entire process of AI development: from conception to 
clinical validation.

Supplement

The Supplement is available with this article at  
https://doi.org/10.3348/kjr.2020.1314.

Supplementary Movie Legends

Movie 1. Image noise reduction by AI in multiphase 
cardiac CT obtained by retrospective ECG-gated scanning.
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