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Abstract

Zinc deficiency causes oxidative stress in many organisms including the yeast Saccharomyces cerevisiae. Previous studies of
this yeast indicated that the Tsa1 peroxiredoxin is required for optimal growth in low zinc because of its role in degrading
H2O2. In this report, we assessed the importance of other antioxidant genes to zinc-limited growth. Our results indicated
that the cytosolic superoxide dismutase Sod1 is also critical for growth under zinc-limiting conditions. We also found that
Ccs1, the copper-delivering chaperone required for Sod1 activity is essential for optimal zinc-limited growth. To our
knowledge, this is the first demonstration of the important roles these proteins play under this condition. It has been
proposed previously that a loss of Sod1 activity due to inefficient metallation is one source of reactive oxygen species (ROS)
under zinc-limiting conditions. Consistent with this hypothesis, we found that both the level and activity of Sod1 is
diminished in zinc-deficient cells. However, under conditions in which Sod1 was overexpressed in zinc-limited cells and
activity was restored, we observed no decrease in ROS levels. Thus, these data indicate that while Sod1 activity is critical for
low zinc growth, diminished Sod1 activity is not a major source of the elevated ROS observed under these conditions.

Citation: Wu C-Y, Steffen J, Eide DJ (2009) Cytosolic Superoxide Dismutase (SOD1) Is Critical for Tolerating the Oxidative Stress of Zinc Deficiency in Yeast. PLoS
ONE 4(9): e7061. doi:10.1371/journal.pone.0007061

Editor: Julian Rutherford, Newcastle University, United Kingdom

Received August 4, 2009; Accepted August 14, 2009; Published September 16, 2009

Copyright: � 2009 Wu et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: Funded by NIH grant RO1-GM56285. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the
manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: deide@wisc.edu

Introduction

Zinc is an essential nutrient because it is a required structural or

catalytic cofactor for many proteins. These proteins include zinc

finger-containing transcription factors and enzymes such as

carbonic anhydrase, alcohol dehydrogenase, and Cu/Zn-super-

oxide dismutase. Excess zinc can also be toxic to cells. Zinc toxicity

may be due to the binding of zinc to inappropriate sites that inhibit

enzyme function or by displacing other metal ions from the active

sites of enzymes. Thus, mechanisms of zinc homeostasis are

required to maintain intracellular zinc levels within a narrow

optimal range.

Both extremes of zinc status, i.e. excess and deficiency, cause

oxidative stress in cells through the increased accumulation of

reactive oxygen species (ROS) such as superoxide anion, hydrogen

peroxide, and hydroxyl radical [1,2]. Zinc excess likely leads to

increased levels of ROS by disrupting mitochondrial function and

inhibiting the activity of the electron transport chain [3,4]. The

mechanisms underlying the increased oxidative stress that occurs

in zinc deficiency are much less clear. Possible mechanisms include

loss of activity of zinc-dependent antioxidant enzymes such as

superoxide dismutase and loss of the antioxidant properties of

zinc-metallothionein complexes [5,6]. Whatever the source of

oxidative stress, zinc deficiency causes increased levels of lipid and

protein oxidation [7,8]. In addition, the oxidative stress of zinc

deficiency leads to increased levels of DNA damage [8,9,10]. For

these reasons, zinc deficiency has been proposed to be an

important risk factor for cancer and other human diseases

[5,11]. It has been estimated that ,2 billion people worldwide

do not consume adequate levels of zinc in their diets so zinc

deficiency is clearly an important public health problem [12].

To combat oxidative stress, organisms express a large repertoire

of different antioxidant proteins. These include thioredoxin-

dependent peroxiredoxins, superoxide dismutases, glutathione

peroxidases, and catalases. These proteins play different roles in

metabolizing ROS depending on the specific form of ROS on

which they act, the compartment in which they are targeted, and

how their expression or activity is regulated in response to

oxidative stress and other environmental signals. We recently

showed that yeast, like other organisms, has elevated ROS when

grown under zinc-limiting conditions [13]. We also found that

these cells increase expression of the major cytosolic peroxir-

edoxin, Tsa1, to eliminate at least some of that increased ROS.

Tsa1 degrades H2O2 and this gene is critical for the growth of

zinc-limited yeast. Moreover, TSA1 gene expression is induced in

zinc-limited cells by the action of the Zap1 transcription factor

[13,14]. Zap1 up-regulates expression of plasma membrane and

organellar zinc transporters to maintain zinc homeostasis and

induces expression of other genes, such as TSA1, to help cells adapt

to the stresses that accompany zinc deficiency [15].

In this report, we describe a search for other antioxidant systems

that are important for growth under zinc-limiting conditions. As a

result, we have discovered that the activity of cytosolic Cu/Zn-

superoxide dismutase, encoded by the SOD1 gene, is also critical
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for zinc-limited growth. Sod1’s copper chaperone Ccs1 is also

required for zinc-limited growth consistent with its role in

activating Sod1. To our knowledge, this is the first demonstration

of the critical role of Cu/Zn-SOD and its copper chaperone in

zinc deficiency. Coupled with previous studies showing Sod1 is

required for tolerance of high zinc [16], our results show that Sod1

is required for growth at both extremes of zinc status.

Materials and Methods

Yeast strains, plasmid and growth conditions
Yeast cells were grown in YPD (YP medium + 2% glucose) and

in synthetic defined SD medium with 2% glucose and any

necessary auxotrophic requirements. Methionine, leucine, and

lysine were supplemented into all cultures except when used as a

plasmid retention marker. YPD and SD are zinc-replete because

they contain micromolar levels of zinc and lack strong zinc

chelators. Yeasts were made zinc limited by culturing in low zinc

medium (LZM) prepared as described previously [17]. LZM is

zinc limiting because it contains 1 mM EDTA and 20 mM citrate

to buffer metal availability. Zinc was added as ZnCl2. Cells were

grown anaerobically using the BBL GasPakTM system (Pharmin-

gen). Strains used in this study were DY1457 (MATa ade6 can1 his3

leu2 trp1 ura3), CWY2 (MATa his3 leu2 ura3), CWY8 (CWY2

tsa1D::kanMX4 ), JSY92 (CWY2 sod1D::hphMX4), JSY94 (CWY2

tsa1D::kanMX4 sod1D:: hphMX4), BY4743 (MATa/MATa his3/his3

leu2/leu2 ura3/ura3 lys2/+ met15/+), BY4743 sod1D::kanMX4/

sod1D::kanMX4 and BY4743 ccs1D::kanMX4/ccs1D::kanMX4.

Strains used in the initial screen were isogenic to BY4743 and

carried the indicated homozygous mutation tagged with the

kanMX4 cassette (Invitrogen). Plasmids used in this study were as

follows: pEL124 (cytSOD2) encodes a cytosolic-targeted form of S.

cerevisiae Mn-dependent Sod2 and was a gift from Dr. Val Culotta

(Johns Hopkins University) [18]. YEp351 is a high copy vector

with a LEU2 selectable marker. YEp600 contains the wild-type

SOD1 gene in YEp351 expressed from its own promoter. Plasmid

YEp351-yH46C encodes a mutant allele in which histidine 46 was

replaced with cysteine in YEp600 [16]. YEp600 and YEp351-

yH46C were gifts from Dr. Joan Valentine (University of

California-Los Angeles).

RNA and protein analysis
S1 nuclease protection assays were performed with total RNA

as described [13]. For each reaction, 15 mg of total RNA was

hybridized to a 32P-end-labeled DNA oligonucleotide probe before

digestion with S1 nuclease and separation on a 10% polyacryl-

amide gel containing 5M urea. Band intensities were quantitated

by PhosphorImager analysis (PerkinElmer Life Sciences).

SOD activity assays and immunoblotting
Cell lysates for SOD activity assays were prepared as described

[18,19]. Briefly, cells were harvested at OD600 of 1.0 and were

lysed using glass beads in 0.5 ml lysis buffer [10 mM NaPO4

(pH 7.8), 5 mM EDTA, 0.1% Triton, 50 mM NaCl, 0.5 mM

phenylmethylsulfonyl fluoride (PMSF) and Complete EDTA-free

Protease Inhibitor cocktail (Roche Applied Science)]. The cell

suspensions were vortexed 561 min with 1 min intervals on ice.

Cell debris and glass beads were removed by centrifugation at

13,0006g for 10 min at 4uC. The supernatant was collected and

protein concentration was measured by the Bradford method [20].

To perform the SOD activity assays, extracts were separated on a

nondenaturing 12% polyacrylamide gel. After electrophoresis, the

gel was subjected to nitro blue tetrazolium (NBT) staining for

detecting superoxide. A 75-ml staining solution contained 10 mg

NBT (Sigma) in 50 mM KPO4 (pH 7.8), 0.1 mg/ml riboflavin,

and 1 ml/ml TEMED. The gels were soaked in the dark in

staining solution for 45 min and then exposed to light for color

development. For immunoblotting, cell lysates were separated on

denaturing 12% SDS-polyacrylamide gels prior to blotting. The

primary antibodies used were anti-Sod1 (a gift from Dr. Valeria

Culotta, Johns Hopkins University) and anti-Pgk1 (Molecular

Probes). Signal intensities of activity and protein were quantified

using OPTI-QUANT software.

DCF Assays
Measurement of the production of the reactive oxygen species

(ROS) used 2, 7-dichlorodihydrofluoroscein diacetate (DCFH-DA)

(Calbiochem) [13]. DCFH-DA is membrane-permeable and is

trapped intracellularly following deacetylation. The resulting

compound, DCFH, reacts with ROS to produce the oxidized

fluorescent form, 2,7-dichlorofluoroscein (DCF). ROS analysis

using DCFH-DA was performed as follows. Yeast cells grown to

an OD600 of 0.6–0.8 were treated in the dark with 10 mM DCFH-

DA in culture media for 1 h prior to harvesting. Cells were then

washed twice in ice-cold phosphate-buffered saline, resuspended in

phosphate-buffered saline, and disrupted by vortexing with glass

beads. Following centrifugation at 13,0006g for 10 min at 4uC,

the supernatant was collected, and protein concentration was

measured by the Bradford method. DCF fluorescence intensity

was measured at an excitation wavelength of 504 nm and an

emission wavelength of 524 nm and then normalized to protein

level.

Results

Requirement for Cu/Zn-superoxide dismutase (SOD1) in
low zinc

We previously observed that zinc-deficient yeast experience

increased oxidative stress and that the Tsa1 peroxiredoxin is

required to deal with this oxidative stress and allow for optimal

growth under zinc-limiting conditions [13]. These results raised

the question of whether Tsa1 was uniquely important in this role

or whether other antioxidant genes were also important for low

zinc growth. To address this question, we assessed the growth of

strains mutated for 28 different antioxidant genes for growth

in low and high zinc. Wild type cells and deletion mutants

were inoculated into high (LZM + 1000 mM ZnCl2) and low zinc

(LZM + 1 mM ZnCl2) liquid medium at low initial cell density

and cultured for 48 h prior to measuring the cell densities of the

cultures. The tested genes involved in thioredoxin-dependent

antioxidant pathways encode five peroxiredoxins (TSA1, TSA2,

AHP1, PRX1, DOT5), thioredoxins (TRX1-3), thioredoxin reduc-

tase (TRR2) and sulfiredoxin (SRX1). Of these, only TSA1 was

required for low zinc growth (Fig. 1A). A second major group of

antioxidants are the glutathione-dependent systems. The genes

tested from this group encoded glutathione peroxidases (GPX1-3),

glutathione reductase (GLR1), glutathione S-transferases (GTT1-2),

and glutaredoxins (GRX1-3). None of these genes were required

for low zinc growth (Fig. 1B). Additional antioxidant systems

include superoxide dismutases (SOD1, SOD2), catalases (CTT1,

CTA1), and cytochrome c peroxidase (CCP1). Of these, only the

sod1D mutant showed a strong growth defect in low zinc (Fig. 1C).

Unlike the tsa1D mutant, which grew as well as wild type cells in

high zinc, the sod1D mutant showed reduced growth (,60% of

wild type). Slower growth of the sod1D mutant in zinc-replete

aerobic conditions has been observed previously [21]. However, in

low zinc, both tsa1D and sod1D strains showed only about 10% of

the growth yield observed in zinc-replete cultures. Finally, none of

Sod1 and Zinc-Limited Growth
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the transcription factors involved in oxidative stress response that

we tested (YAP1, SKN7, MSN2, MSN4) were defective for low zinc

growth. Thus, among the many antioxidant genes examined,

SOD1 and TSA1 play the key roles in supporting zinc-limited

growth.

The growth defect of sod1D mutants in low zinc medium
is zinc-specific

To further characterize the effect of sod1D mutation on zinc-

limited growth, wild type and sod1D mutant cells were inoculated

into zinc-replete or zinc-limiting media and cell growth was

monitored over time. Both wild type and sod1D mutant cells grew

well when inoculated into zinc-replete medium (LZM + 1000 mM

ZnCl2) (Fig. 2A). Zinc-replete sod1D mutants showed a longer lag

phase and reached saturation at a lower cell density than the wild

type cells. While growth of wild type cells was somewhat impaired

in the zinc-limiting medium (LZM + 1 mM ZnCl2) due to zinc

deficiency, the sod1D mutant was severely defective for growth

under this condition. It should be noted that sod1D mutants are

auxotrophic for methionine, leucine, and lysine due to the ROS-

sensitive biosynthetic pathways for these amino acids [21]; the

media in these experiments were supplemented with these amino

acids so the poor growth observed is not due to these auxotrophies.

To determine the level of zinc required for optimal growth of

the sod1D mutant, wild type and sod1D cells were inoculated into

LZM supplemented over a range of zinc concentrations and cell

density was determined after 48 h. While the poor growth of the

sod1D mutant was again observed in LZM + 1 mM ZnCl2,

supplementing with higher concentrations improved growth of this

mutant strain considerably (Fig. 2B). However, even zinc

supplements as high as 100 mM did not restore growth to their

maximum zinc-replete level. These results indicate that sod1D
mutants are sensitive to even mild deficiency. As shown in Fig. 2C,

the growth defect was specific to zinc deficiency; supplementation

with 100 mM concentrations of several other metal ions did not

restore growth to the sod1D mutant strain.

Growth in zinc-limiting conditions requires Sod1 activity
To investigate the functional role of Sod1 in zinc-limited cells,

we examined whether Sod1 activity was required to combat the

oxidative stress of zinc deficiency. We predicted that growth under

anaerobic conditions, under which the generation of reactive

oxygen species is diminished, would suppress the sod1D mutant

growth defect. As shown in Fig. 3A, this was indeed the case.

While growth of wild type cells was not greatly altered by

anaerobic growth, anaerobic sod1D mutants grew almost as well in

low zinc as they did in the zinc-replete medium. An alternative

explanation for these results is that cells grown under anaerobic

conditions may have a lower requirement for zinc than do

aerobically grown cells. If this were the case, the improved growth

of sod1D mutants under anaerobic conditions would be due to zinc

repletion rather than decreased oxidative stress. However, a zrt1D
mutant defective for zinc uptake grew poorly under low zinc

conditions under both aerobic and anaerobic conditions (Fig. 3A)

suggesting that zinc requirements were not greatly altered by

anaerobiosis. In addition, wild type cells showed a similar dose

response of growth to added zinc under aerobic and anaerobic

conditions indicating that zinc requirement of yeast cells is not

greatly altered by the absence of oxygen (data not shown).

A second prediction was that zinc-limited growth would also

require the Ccs1 copper chaperone. Ccs1 is needed to deliver

copper to yeast Sod1 for its activity [22]. While ccs1D mutants

grew relatively well in zinc-replete cells, these mutants were

severely defective for zinc-limited growth (Fig. 3B). The low zinc

Figure 1. The importance of antioxidant genes to growth under
zinc-limiting conditions. Wild type (WT, BY4743) cells and isogenic
mutants defective for various antioxidant proteins were inoculated into
LZM medium supplemented with 1000 mM (+Zn) or 1 mM (–Zn) ZnCl2 at
an initial optical density measured at 600 nm (OD600) of 0.01 and 0.02,
respectively. The cultures were then incubated at 30uC with aeration and
their optical densities were determined after 40 h. A) Mutants defective
in peroxiredoxins or other thioredoxin-related antioxidant proteins. B)
Mutants defective in glutathione peroxidases or other glutathione-
related antioxidant proteins. C) Mutants defective in superoxide
dismutases, catalases, cytochrome c peroxidase, or oxidative stress-
responsive transcription factors. The plotted values represent the means
of three independent cultures and the error bars indicate 1 S.D.
doi:10.1371/journal.pone.0007061.g001

Sod1 and Zinc-Limited Growth
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growth defect of ccs1D mutants could be partially suppressed by

supplementation with copper (Fig. 3B, inset); it has been shown

previously that high copper can weakly bypass the requirement of

Sod1 for Ccs1 copper delivery [23]. However, copper supplements

had no effect on sod1D low zinc growth.

To further investigate whether activity of Sod1 is required for

low zinc growth, we tested whether a zinc-binding but catalytically

inactive allele, Sod1H46C, or mitochondrial manganese-dependent

Sod2 could suppress the low zinc growth defect when targeted to

the cytosol. The Sod1H46C allele was of particular interest because

it was previously shown to confer tolerance of sod1D cells to high

zinc [16]. In zinc-replete cells, both Sod1H46C and cytosolic Sod2

partially suppressed the growth defect of sod1D mutant cells

(Fig. 3C). This result suggests that the Sod1H46C allele retains

some residual SOD activity. In low zinc, however, expression of

Sod1H46C had no beneficial effects on cell growth (Fig. 3C).

Expression of the manganese-dependent Sod2 in the cytosol

resulted in weak but detectable suppression of the low zinc growth

defect of the sod1D mutant (Fig. 3C, inset). Additional manganese

improved the ability of cytosolic Sod2 to suppress the sod1D
mutation (Fig. 3D) suggesting that the weak suppression is due to

inefficient metallation of the Sod2 protein in the cytosol.

Manganese supplements alone are known to suppress the

phenotypes of sod1D mutants [24] but no benefit was seen with

vector-transformed or Sod1H46C-expressing cells. Taken together,

the results shown in Figure 3 indicate that Sod1 activity is

required for zinc-limited growth. This is in contrast to the

observation that catalytically inactive Sod1 suppresses zinc

toxicity.

Sod1 activity is diminished in zinc-limited cells
Sod1 is a zinc-dependent enzyme. Because of this fact, one of

the proposed mechanisms for the source of oxidative stress under

zinc deficiency is loss of Sod1 activity and the consequent build up

of ROS that is constitutively generated by aerobic metabolism [5].

To investigate this hypothesis, we first examined the effects of zinc

deficiency on SOD1 expression, protein accumulation, and SOD

activity. As shown in Fig. 4A, zinc deficiency had little impact on

SOD1 mRNA levels. This was especially clear when SOD1 mRNA

levels were normalized to calmodulin (CMD1) mRNA that was

used as a loading control. In contrast, Sod1 protein accumulation

was reduced by ,50% under zinc-limiting conditions (Fig. 4B).

Sod1 activity decreased to a similar degree under zinc deficiency.

No effect of zinc limitation was apparent on the activity of

manganese-dependent Sod2 activity. Quantitation of Sod1 protein

and activity levels suggested that the protein that does accumulate

in zinc-limited cells is fully active, albeit less abundant than in zinc-

replete cells (Fig. 4C).

The decreased Sod1 in zinc-limited cells is consistent with the

hypothesis that the loss of SOD activity leads directly to the

increased oxidative stress detected in these cells. This hypothesis is

also consistent with our previous observation that increased ROS in

wild type cells occurs under the same conditions where we observed

loss of Sod1 activity (LZM + 3 or less mM Zn) [13]. If so, we

predicted that ROS levels would be elevated in zinc-limited sod1D
mutants. ROS was detected in these experiments using DCFH-DA.

DCFH fluorescence increases when it is oxidized to DCF by O2
2,

H2O2, or .OH [25]. As shown in Fig. 5A, all strains tested had little

DCFH-detectable ROS in zinc-replete conditions. As we observed

previously, ROS levels rose ,10 fold in zinc-limited wild type cells

and ,40-fold in the zinc-limited tsal1D mutant. Thus, loss of Tsa1

activity greatly increases oxidative stress in zinc-limited cells.

Similarly, ROS levels in the zinc-limited sod1D mutant also rose

to very high levels. When both mutations were combined, even

Figure 2. SOD1 is required for growth in zinc-limiting condi-
tions. A) Wild type (WT, BY4743) and sod1D mutant (BY4743 sod1D)
cells were inoculated into LZM medium supplemented with 1000 mM
(+Zn) or 1 mM (–Zn) ZnCl2 at an initial OD600 of 0.02. The cultures were
then incubated at 30uC with aeration and their optical densities were
measured over time. B) The same strains as in panel A were inoculated
into LZM supplemented with the indicated concentration of ZnCl2 at a
starting OD600 of 0.02. The cultures were incubated at 30uC with
aeration for 48 h prior to measuring their optical densities. C) sod1D
mutant cells were inoculated into LZM + 1 mM ZnCl2 medium with or
without 100 mM of the indicated metal ion added as the chloride salt.
The negative control condition (C-) had no metals added and the
positive control (C+) had 1000 mM ZnCl2 added. Cultures were
inoculated at an initial OD600 of 0.01 and their optical densities were
determined after 48 h. The values plotted in panels A, B and C are the
means of three independent cultures and the error bars indicate 1 S.D.
doi:10.1371/journal.pone.0007061.g002
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higher levels of ROS were detected. These results indicate that, like

Tsa1, Sod1 acts on ROS in zinc-limited cells.

To determine whether decreased Sod1 activity in zinc-limited

wild type cells is indeed the source of the increased ROS in these

cells, we overexpressed Sod1 from a high copy plasmid. We

predicted that if loss of Sod1 activity was the source of the ROS,

restoration of that activity by overexpression would result in ROS

levels similar to zinc-replete cells. Control experiments indicated

that overexpression of Sod1 greatly elevated its activity in zinc-

limited cells indicating that the higher expressed level of Sod1

Figure 3. Sod1 activity is required to deal with the oxidative stress of zinc deficiency. A) Anaerobic conditions suppress the sod1D growth
defect in low zinc. Cells of the indicated genotype were inoculated at an initial OD600 of 0.01 in high zinc (+Zn, LZM + 1000 mM ZnCl2) or 0.04 in low
zinc medium (–Zn, LZM + 1 mM ZnCl2) under aerobic (+O2) or anaerobic (–O2) conditions. Culture optical densities were then measured after 20 h of
incubation at 30uC. B) CCS1 is required for low zinc growth. Wild type (WT, BY4743), sod1D (BY4743 sod1D) and ccs1D (BY4743 ccs1D) mutant cells
were inoculated into high zinc (+Zn, LZM + 1000 mM ZnCl2, left panel) or low zinc (-Zn, LZM + 1 mM ZnCl2, right panel) at an initial OD600 of 0.02. The
cultures were incubated at 30uC with aeration and their optical densities were monitored over time. The curve fitting for the +Zn cultures was
performed with SigmaPlot software and the dashed lines indicate the early predicted values. As shown in the inset, sod1D and ccs1D strains were
inoculated into low zinc media (LZM + 1 mM ZnCl2) with or without 100 mM added copper (CuCl2). Culture optical densities were measured after 42 h
of incubation at 30uC. C) Wild type (BY4743) or sod1D (BY4743 sod1D) mutant cells bearing the indicated plasmids were inoculated into high (+Zn,
LZM + 1000 mM ZnCl2, left panel) or low zinc (-Zn, LZM + 1 mM ZnCl2, right panel) and optical densities were measured over time. D) sod1D mutant
cells bearing the indicated plasmid were cultured in low zinc media (LZM + 1 mM ZnCl2) with or without 100 mM added manganese (MnCl2). Culture
optical densities were measured after 60 h of incubation at 30uC. The data in all panels represent the means three independent cultures and the error
bars indicate 1 S.D.
doi:10.1371/journal.pone.0007061.g003

Sod1 and Zinc-Limited Growth
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Figure 4. Effects of low zinc growth on Sod1 expression and
activity. A) Wild type cells were grown in LZM supplemented with the
indicated zinc concentrations. RNA was then isolated and analyzed for
SOD1 and CMD1 mRNA levels by S1 nuclease protection assay. The ratio
of SOD1 mRNA to CMD1 mRNA was determined in two independent
experiments with similar results. B) Sod1 protein accumulation and
activity were assayed in wild type, sod1D, and sod2D mutant cells
grown in LZM supplemented with the indicated zinc concentrations.
Sod1 activity was assessed using an in-gel assay (SOD Act.) and Sod1
protein accumulation was assessed by immunoblotting (IB). Pgk1
phosphoglycerate kinase was used as an immunoblot loading control.
The results shown in panel B are representative of two independent
experiments. C) The Sod1 protein levels were normalized to loading
control Pgk1 protein and plotted in the histogram. Relative specific
activities of Sod1 were assessed by dividing the measured Sod1
activities by the corresponding Sod1 protein levels.
doi:10.1371/journal.pone.0007061.g004

Figure 5. The effect of SOD1 mutation and overexpression on
oxidative stress. A) Wild type (WT, CWY2), tsa1D (CWY8), sod1D
(JSY92), and tsa1D sod1D (JSY94) were inoculated into high zinc (+Zn,
LZM + 1000 mM ZnCl2) or low zinc (-Zn, LZM + 1 mM ZnCl2) at an initial
OD600 of 0.02. The cultures were incubated at 30uC with aeration for
24 h and then harvested and then assayed for ROS levels using DCFH-
DA. B) Wild type or sod1D mutants were transformed with either the
YEp351 vector or YEp600 (pSOD1), a high copy plasmid that results in
overexpression of Sod1. The cells were grown as described for panel A
and then assayed for Sod1 activity (SOD Act.) and protein level (IB) as
described in Figure 4. The results indicate that YEp600 increases Sod1
activity in low zinc. C) Wild type and sod1D mutants transformed with
either YEp351 (vec) or YEp600 (pSOD1) were grown as described for
panel A and assayed for ROS levels using DCFH-DA. The data in panels
A and C represent the means three independent cultures and the error
bars indicate 1 S.D.
doi:10.1371/journal.pone.0007061.g005

Sod1 and Zinc-Limited Growth
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protein could compete effectively for the small amount of available

zinc in these cells (Fig. 5B). When Sod1-overexpressing cells and

vector-transformed control cells were assayed for ROS levels,

however, we found that cells with increased Sod1 activity did not

have reduced levels of ROS (Fig. 5C). These results suggest that

the loss of Sod1 activity in zinc-limited cell is not responsible for

the increased oxidative stress that accumulates under these

conditions.

Discussion

We describe here a screen for antioxidant genes in addition to

TSA1 that are important in combating the oxidative stress that

occurs in zinc-limited cells. This analysis identified SOD1,

encoding cytosolic Cu/Zn-superoxide dismutase, as critically

important for low zinc growth. Sod1 was shown previously to be

important for tolerating such varied stresses as oxidant insult, heat

shock, hyperosmosis, freeze-thaw stress, stationary phase growth

arrest, and ER stress [26,27,28,29,30,31]. To our knowledge, this

is the first demonstration of the essential role that Sod1 plays in

supporting zinc-limited growth.

It was previously found that Sod1 is also required for resistance

to high zinc [16]. Thus, Sod1 is required at both extremes of zinc

status. Intriguingly, despite the fact that high zinc induces

oxidative stress, the contribution of Sod1 to zinc tolerance is not

dependent on its SOD activity and therefore does not involve

Sod1’s antioxidant role. A zinc binding but catalytically inactive

Sod1 allele, Sod1H46C, conferred wild type zinc tolerance on a

sod1D mutant strain while an active, Mn-binding SOD did not

[16]. These observations led to the hypothesis that Sod1 serves as a

‘‘zinc sink’’ and, by binding zinc in the cell, helps buffer cytosolic

zinc and thereby contributes to zinc tolerance. It has been

estimated that there are ,500,000 molecules of Sod1 protein per

cell under zinc-replete conditions [32] so the amount of zinc that is

bound by this one protein is substantial. These observations

initially suggested to us that Sod1 may be playing a similar role in

low zinc by serving as a zinc reservoir and supplying zinc to other

proteins under those conditions. However, our results indicate that

Sod1 enzymatic activity is required in low zinc suggesting that it is

needed to metabolize increased levels of superoxide anion that

accumulate in these cells. The source of ROS in low zinc is still

unknown and this is an issue we are currently addressing. Our

results indicate that decreased Sod1 activity is not the primary

source. Other possible sources under investigation include

mitochondrial dysfunction and/or ER stress.

Sod1 and the Tsa1 peroxiredoxin are both critical for low zinc

growth. Sod1 converts O2
2 into H2O2 (and O2) while Tsal

metabolizes H2O2 into H2O. Thus, it is conceivable that these two

proteins function primarily in a sequential manner with Sod1

generating H2O2 and Tsa1 further reducing that oxidant. If true,

this would suggest that O2
2 is the primary form of ROS generated

in zinc-limited cells. This hypothesis remains to be tested.

However, our observation that the tsa1D sod1D double mutant

has elevated ROS when compared to either single mutant suggests

that these proteins are not functioning solely in a sequential

fashion. It is intriguing that substantially higher amounts of zinc in

the growth medium are required to suppress the sod1D mutant

than the tsa1D mutant; the low zinc growth defect of the tsa1D
mutant was suppressed by as little as 10 mM added zinc [13] while

the sod1D mutant required greater than 10-fold more zinc for

suppression. While the mechanism underlying this difference is

unknown, it clearly shows that Sod1 is needed for optimal cell

growth during even modest zinc limitation while Tsa1 is only

required under the most severely zinc-deficient conditions.

We noted that Sod1 activity is decreased by about 50% in zinc-

limited cells. Protein levels also decreased to a similar extent

despite no change in mRNA levels. These results suggest that if

Sod1 fails to acquire its zinc cofactor soon after translation, the

protein is degraded. While the mechanism of Sod1 turnover in

yeast has not been studied, both proteasomal and autophagic

degradation of SOD has been observed in mammalian cells

[33,34]. Fifty percent of Sod1 molecules represent ,250,000

atoms of zinc. The minimum number of total zinc atoms per yeast

cell required for growth is ,56106 [17]. Thus, decreased Sod1

accumulation represents a considerable decrease (,5%) in the

total zinc demand of the cell.

Our findings may have important relevance with regard to

amyotrophic lateral sclerosis (ALS), a fatal neurodegenerative

disorder in humans. ALS is characterized by the progressive loss of

motor neurons due to cell death. Approximately 10% of ALS cases

are inherited and a subset of these are caused by dominant

mutations in human Cu/Zn-SOD. While the mechanism of

neuronal cell death in both heritable and spontaneous cases of

ALS is not known, there is a consensus that it results from the

accumulation of toxic SOD protein aggregates [35,36]. Zinc

appears to play an important role in influencing this aggregation

process [37,38]. For example, it has been shown that zinc inhibits

the aggregation of both wild type and ALS mutant SOD in vitro

[39,40]. In addition, some ALS-causing mutations reduce the

affinity of the SOD protein for its zinc cofactor [41]. Zinc-deficient

wild type and ALS-causing SOD proteins induce apoptosis when

delivered to motor neurons in vitro [42]. Finally, high dietary zinc

was found to improve survival in a mouse model of heritable ALS

[43]. Formation of the toxic SOD aggregates is also thought to be

favored by increased oxidative stress due to the formation of

intermolecular disulfide bonds [44,45,46]. Thus, nutritional zinc

deficiency may play a role in the etiology of ALS for two reasons.

First, decreased zinc availability will reduce the amount of the

metal ion available for binding to the zinc site. Several studies

demonstrate decreased SOD activity in zinc-deficient mammalian

cells [47,48]. Second, the increased oxidative stress associated with

zinc deficiency could potentially increase the likelihood of

aggregate formation.

Finally, aside from TSA1 and SOD1, we did not identify any

other antioxidant genes that are as important for low zinc growth.

Genes playing little if any apparent role include those encoding the

four other peroxiredoxins, TSA2, AHP1, PRX1, and DOT5. In

addition, we found no major role for CTT1, which encodes the

cytosolic isozyme of catalase. This result was unexpected given our

recent observations indicating that CTT1 expression is up-

regulated in zinc-deficient cells and may be a direct target of

Zap1 regulation [14]. No major roles were found for the

glutathione peroxidases nor for transcription factors YAP1,

SKN7, MSN2, and MSN4 that are normally involved in oxidative

stress responses. This result is consistent with our observation that

the targets of these transcription factors are not induced in zinc-

limited cells despite the increased oxidative stress [14,49]. The

level of oxidative stress in zinc deficiency may be insufficient to

cause a response by these factors or, alternatively, their activity

may be impaired under these conditions. One important caveat to

these observations is that our analysis would not have detected

small effects on growth rates that might have been caused by these

mutations and, therefore, small but important contributions could

have been missed. In addition, because we only analyzed strains

carrying single mutations, we would not have identified genes that

contribute to low zinc growth but are redundant with other genes.

Thus, the full repertoire of genes required for tolerance of the

oxidative stress of zinc deficiency remains to be defined.
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