Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

1-Oxoisoindoline-2-carboxamide

Bushra Maliha, ${ }^{\text {a }}$ Ishtiaq Hussain, ${ }^{\text {a }}$ M. Nawaz Tahir, ${ }^{\text {b }}$ Muhammad Ilyas Tariq ${ }^{c}$ and Hamid Latif Siddiqui ${ }^{\text {a }}$
${ }^{\text {a }}$ University of the Punjab, Institute of Chemistry, Lahore 54590, Pakistan, ${ }^{\text {b }}$ University of Sargodha, Department of Physics, Sargodha, Pakistan, and ${ }^{\text {c }}$ University of Sargodha, Department of Chemistry, Sargodha, Pakistan
Correspondence e-mail: dmntahir_uos@yahoo.com

Received 15 February 2008; accepted 20 February 2008
Key indicators: single-crystal X-ray study; $T=296 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$;
R factor $=0.040 ; w R$ factor $=0.139 ;$ data-to-parameter ratio $=10.1$.

The title molecule, $\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{2}$, is essentially planar. The crystal structure is stabilized by hydrogen bonding. An intramolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond results in a sixmembered ring. Each molecule interacts with two others through $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonding, resulting in the formation of nine-membered rings. These hydrogen bonds generate a two-dimensional polymeric network. There are also $\pi-\pi$ interactions between the aromatic and heterocyclic rings [centroid-centroid distance 3.638 (2) $\AA]$.

Related literature

For related literature, see: Berger et al. (1999); Cignarella et al. (1981); Goddard (1977); Goddard \& Levitt (1979); Maliha et al. (2007); Mancilla et al. (2007); Momose (1980); Zuman (2004).

Experimental

Crystal data

$\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{2}$

$M_{r}=176.17$
Orthorhombic, $P 2_{1} 2_{1} 2_{1}$
$a=3.9839$ (3) \AA
$b=7.8732(8) \AA$
$c=25.651$ (2) \AA

$$
V=804.58(13) \AA^{3}
$$

$Z=4$
Mo $K \alpha$ radiation
$\mu=0.11 \mathrm{~mm}^{-1}$
$T=296$ (2) K
$0.25 \times 0.12 \times 0.10 \mathrm{~mm}$

Data collection

Bruker Kappa APEXII CCD diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 2005)
$T_{\text {min }}=0.975, T_{\text {max }}=0.990$

5461 measured reflections 1254 independent reflections 860 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.037$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.040 \quad \mathrm{H}$ atoms treated by a mixture of
$w R\left(F^{2}\right)=0.138 \quad$ independent and constrained
$S=1.07$ refinement
1254 reflections
124 parameters
$\Delta \rho_{\text {max }}=0.23 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\min }=-0.22 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry ($\AA^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 2-\mathrm{H} 2 A \cdots \mathrm{O} 1$	$0.95(3)$	$1.91(3)$	$2.710(3)$	$140(2)$
$\mathrm{N} 2-\mathrm{H} 2 B \cdots \mathrm{O} 2^{\mathrm{i}}$	$0.88(3)$	$2.08(3)$	$2.943(3)$	$167(3)$
$\mathrm{C} 8-\mathrm{H} 8 A \cdots \mathrm{O}^{\text {ii }}$	0.97	2.57	$3.447(4)$	151
Symmetry codes: (i) $-x+1, y-\frac{1}{2},-z+\frac{1}{2} ;$ (ii) $-x+1, y+\frac{1}{2},-z+\frac{1}{2}$				

Data collection: APEX2 (Bruker, 2007); cell refinement: APEX2; data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON.

The authors acknowledge the Higher Education Commision, Islamabad, Pakistan, for the purchase of the diffractometer.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2545).

References

Berger, D., Citarella, R., Dutia, M., Grenberger, L., Hallett, W., Paul, R. \& Poweel, D. (1999). J. Med. Chem. 42, 2145-2161.
Bruker (2005). SADABS. Bruker AXS Inc. Madison, Wisconsion, USA.
Bruker (2007). APEX2 and SAINT. Bruker AXS Inc. Madison, Wisconsion, USA.
Cignarella, G., Sanna, P., Miele, E., Anania, V. \& Desole, M. S. (1981). J. Med. Chem. 24, 1003-1010.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Goddard, S. J. (1977). US Patent. No. 4032326.
Goddard, S. J. \& Levitt, G. (1979). US Patent. No. 4175948.
Maliha, B., Hussain, I., Siddiqui, H. L., Tariq, M. I. \& Parvez, M. (2007). Acta Cryst. E63, o4728.
Mancilla, T., Correa-Basurto, J. C., Carbajal, K. S. A., Escalante, E. T. J. S. \& Ferrara, J. T. (2007). J. Mex. Chem. Soc. 51, 96-102.
Momose, T. (1980). Talanta, 27, 605-607.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Zuman, P. (2004). Chem. Rev. 104, 3217-3238.

supplementary materials

1-Oxoisoindoline-2-carboxamide

B. Maliha, I. Hussain, M. N. Tahir, M. I. Tariq and H. L. Siddiqui

Comment

A number of isoindole type compounds are known due to their wide importance in pharmaceutical industry (Berger et al., 1999; Cignarella et al., 1981). Several isoindoles have exhibited anti-inflammatory and analgesic activity (Mancilla et al., 2007). Certain substituted isoindoles have wide applications as herbicides (Goddard, 1977; Goddard et al., 1979). In continuation to our studies of ortho-phthaldehyde with various types of ureas (Maliha et al., 2007), the present compound is isolated when simple urea is reacted as given in preparation. The estimation of urea present in the biological fluids is determined with the help of color development (Momose, 1980; Zuman, 2004) when it is reacted with ortho-phthaldehyde. This fact was utilized for the formation of the title compond (I).

For comparison the best molecule is of 1-oxo- N-phenylisoindoline-2- carboxamide (Maliha et al., 2007). The bond distances in the aromatic ring (A) containing C3 are in the range of 1.379 (4) \AA to 1.392 (4) \AA. The formation of heterocyclic ring ($\mathrm{B}: \mathrm{C} 1 / \mathrm{N} 1 / \mathrm{C} 8 / \mathrm{C} 7 / \mathrm{C} 2$) containing carbonyl group $(\mathrm{C} 1=\mathrm{O} 1)$ and attached to ring (A), affects the bond angles in the aromatic ring. These bond angles vary in the range $\left[118.1(3)^{\circ}-121.2(3)^{\circ}\right]$. In this range there are three values which are compareable for diagonal atoms. The range of the bond angles in the heterocyclic ring is [1.396(3) $\AA-1.500(4) \AA]$, in comparison to $[1.3865$ (17) $\AA-1.5016(18) \AA$] as reported in 1-oxo- N-phenylisoindoline-2-carboxamide. The molecule is essentially planar with a maximum deviation of -0.028 (3) \AA for N 2 . There exists an intramolecular H -bond $[\mathrm{N} 2-\mathrm{H} 2 \mathrm{~A} \cdots \mathrm{O} 1]$, thus forming a six membered ring as shown in Fig 1. The $\mathrm{O} 1-$ atom is not involved in intermolecular H -bonding. There exist intermolecular H -bond of $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ type as given in the Table 1. This kind of H -bond links each asymmetric unit at two places as shown in Fig 2. The distance between ring centroids of aromatic and heterocyclic is 3.638 (2) \AA along the a axis, which is indication of $\pi-\pi$ interaction.

Experimental

A mixture of o-phthaldehyde $(0.67 \mathrm{~g}, 200 \mathrm{mmol})$ and urea $(0.30 \mathrm{~g}, 200 \mathrm{mmol})$ in 100 ml of ethanol was refluxed for 6 h . A blue color developed. The flask contents were allowed to stand for 24 h at room temperature. A white solid was separated from the solution and was washed with ethanol, ether and hexane respectively, and dried in open air. The crystals suitable for X-ray diffraction were grown in a mixture of acetone-ethanol (1:1) by slow evaporation at room temperature. The compound is soluble in DMSO, DMF, acetone, ethyl acetate, and partially soluble in ethanol and chloroform [m.p.: 493 K , yield: 55\%].

Refinement

H atoms were positioned geometrically, with $\mathrm{C}-\mathrm{H}=0.93,0.97 \AA$ for aromatic and methylene C -atoms and constrained to ride on their parent atoms. The H -atoms attached to N 2 were taken from fourier synthesis and their coordinates were refined. The thermal parameter of all H -atoms was taken 1.2 times $U_{\text {eq }}$ of the parent atom.

supplementary materials

Figures

Fig. 1. The ORTEP diagram of the title compound (I) with displacement ellipsoids at 50% probability level; intramolecular interaction has been indicated by broken line. H-atoms are shown by small circles of arbitrary radii.

1-Oxoisoindoline-2-carboxamide

Crystal data

$\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{2}$
$M_{r}=176.17$
Orthorhombic, $P 2_{1} 2_{1} 2_{1}$
Hall symbol: P 2ac 2ab
$a=3.9839$ (3) \AA
$b=7.8732(8) \AA$
$c=25.651(2) \AA$
$V=804.58(13) \AA^{3}$
$Z=4$

Data collection

Bruker KappaAPEXII CCD
diffractometer
Radiation source: fine-focus sealed tube
Monochromator: graphite
Detector resolution: 7.40 pixels mm^{-1}
$T=296(2) \mathrm{K}$
ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
$T_{\text {min }}=0.975, T_{\text {max }}=0.990$
5461 measured reflections
$F_{000}=368$
$D_{\mathrm{x}}=1.454 \mathrm{Mg} \mathrm{m}^{-3}$
Mo K α radiation
$\lambda=0.71073 \AA$
Cell parameters from 1295 reflections
$\theta=1.6-28.6^{\circ}$
$\mu=0.11 \mathrm{~mm}^{-1}$
$T=296$ (2) K
Needle, colourless
$0.25 \times 0.12 \times 0.10 \mathrm{~mm}$

860 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.037$
$\theta_{\text {max }}=28.6^{\circ}$
$\theta_{\text {min }}=1.6^{\circ}$
$h=-3 \rightarrow 5$
$k=-9 \rightarrow 10$
$l=-34 \rightarrow 22$

Refinement

Refinement on F^{2}	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.040$
$w R\left(F^{2}\right)=0.138$
$S=1.07$
1254 reflections
124 parameters
Primary atom site location: structure-invariant direct methods

H atoms treated by a mixture of independent and constrained refinement

$$
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0804 P)^{2}\right]
$$

where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\max }=0.23$ e \AA^{-3}
$\Delta \rho_{\text {min }}=-0.22$ e \AA^{-3}
Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F , with F set to zero for negative F^{2}. The threshold expression of $\mathrm{F}^{2}>2 \operatorname{sigma}\left(\mathrm{~F}^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F , and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
O1	$0.1443(8)$	$0.5881(3)$	$0.09333(8)$	$0.0599(8)$
O2	$0.3962(6)$	$0.7070(2)$	$0.24721(7)$	$0.0479(7)$
N1	$0.1909(7)$	$0.7618(2)$	$0.16626(8)$	$0.0335(6)$
N2	$0.3940(9)$	$0.4951(3)$	$0.18736(10)$	$0.0512(8)$
H2A	$0.346(10)$	$0.476(4)$	$0.1514(13)$	0.061^{*}
H2B	$0.478(10)$	$0.421(4)$	$0.2092(14)$	0.061^{*}
C1	$0.1002(9)$	$0.7240(3)$	$0.11498(10)$	$0.0380(7)$
C2	$-0.0491(8)$	$0.8806(3)$	$0.09388(10)$	$0.0351(7)$
C3	$-0.1770(10)$	$0.9115(4)$	$0.04430(11)$	$0.0450(8)$
H3	-0.1780	0.8269	0.0190	0.054^{*}
C4	$-0.3025(9)$	$1.0715(4)$	$0.03378(12)$	$0.0491(8)$
H4	-0.3903	1.0952	0.0010	0.059^{*}
C5	$-0.2985(9)$	$1.1968(4)$	$0.07165(12)$	$0.0489(9)$
H5	-0.3837	1.3038	0.0639	0.059^{*}
C6	$-0.1693(9)$	$1.1655(4)$	$0.12114(11)$	$0.0427(7)$
H6	-0.1652	1.2504	0.1463	0.051^{*}
C7	$-0.0474(8)$	$1.0053(3)$	$0.13185(10)$	$0.0343(7)$
C8	$0.1037(9)$	$0.9367(3)$	$0.18109(9)$	$0.0335(7)$
H8A	0.3014	1.0006	0.1912	0.040^{*}
H8B	-0.0569	0.9384	0.2095	0.040^{*}
C9	$0.3350(8)$	$0.6532(3)$	$0.20346(10)$	$0.0350(7)$

Atomic displacement parameters $\left(A^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O1	$0.102(2)$	$0.0398(11)$	$0.0383(10)$	$0.0154(14)$	$-0.0116(14)$	$-0.0118(9)$
O2	$0.0734(18)$	$0.0362(11)$	$0.0340(10)$	$0.0018(12)$	$-0.0113(11)$	$0.0002(8)$
N1	$0.0453(16)$	$0.0263(10)$	$0.0289(10)$	$0.0045(11)$	$-0.0024(10)$	$-0.0006(8)$
N2	$0.081(2)$	$0.0327(13)$	$0.0404(13)$	$0.0173(15)$	$-0.0087(15)$	$0.0015(10)$
C1	$0.050(2)$	$0.0358(14)$	$0.0286(12)$	$-0.0004(15)$	$-0.0013(13)$	$-0.0047(11)$
C2	$0.0382(18)$	$0.0348(14)$	$0.0323(12)$	$0.0001(13)$	$0.0018(13)$	$0.0021(11)$
C3	$0.050(2)$	$0.0502(17)$	$0.0345(13)$	$0.0036(18)$	$-0.0019(14)$	$0.0011(13)$
C4	$0.047(2)$	$0.064(2)$	$0.0366(13)$	$0.0042(19)$	$-0.0034(14)$	$0.0140(14)$
C5	$0.047(2)$	$0.0477(18)$	$0.0518(17)$	$0.0100(17)$	$0.0017(16)$	$0.0159(15)$
C6	$0.0473(19)$	$0.0352(14)$	$0.0455(15)$	$0.0051(16)$	$0.0040(15)$	$0.0022(12)$
C7	$0.0365(18)$	$0.0344(14)$	$0.0321(12)$	$0.0019(13)$	$0.0018(12)$	$0.0016(11)$
C8	$0.0437(19)$	$0.0274(12)$	$0.0293(11)$	$0.0002(14)$	$0.0001(12)$	$-0.0027(10)$
C 9	$0.0408(18)$	$0.0314(13)$	$0.0326(12)$	$-0.0014(15)$	$0.0028(13)$	$0.0020(11)$

Geometric parameters (\AA, ${ }^{\circ}$)

$\mathrm{O} 1-\mathrm{C} 1$	$1.218(3)$
$\mathrm{O} 2-\mathrm{C} 9$	$1.224(3)$
$\mathrm{N} 1-\mathrm{C} 1$	$1.396(3)$
$\mathrm{N} 1-\mathrm{C} 9$	$1.404(3)$
$\mathrm{N} 1-\mathrm{C} 8$	$1.470(3)$
$\mathrm{N} 2-\mathrm{C} 9$	$1.332(3)$
$\mathrm{N} 2-\mathrm{H} 2 \mathrm{~A}$	$0.95(3)$
$\mathrm{N} 2-\mathrm{H} 2 \mathrm{~B}$	$0.87(3)$
$\mathrm{C} 1-\mathrm{C} 2$	$1.472(4)$
$\mathrm{C} 2-\mathrm{C} 7$	$1.383(4)$
$\mathrm{C} 2-\mathrm{C} 3$	$1.392(4)$
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 9$	$128.0(2)$
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 8$	$112.5(2)$
$\mathrm{C} 9-\mathrm{N} 1-\mathrm{C} 8$	$119.4(2)$
$\mathrm{C} 9-\mathrm{N} 2-\mathrm{H} 2 \mathrm{~A}$	$114(2)$
$\mathrm{C} 9-\mathrm{N} 2-\mathrm{H} 2 \mathrm{~B}$	$120(2)$
$\mathrm{H} 2 \mathrm{~A}-\mathrm{N} 2-\mathrm{H} 2 \mathrm{~B}$	$126(3)$
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{N} 1$	$125.4(3)$
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	$128.8(2)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	$105.8(2)$
$\mathrm{C} 7-\mathrm{C} 2-\mathrm{C} 3$	$121.4(3)$
$\mathrm{C} 7-\mathrm{C} 2-\mathrm{C} 1$	$109.5(2)$
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 1$	$129.1(2)$
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	$118.1(3)$
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3$	121.0
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3$	121.0
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$120.6(3)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{H} 4$	119.7

$\mathrm{C} 3-\mathrm{C} 4$	$1.382(4)$
$\mathrm{C} 3-\mathrm{H} 3$	0.9300
$\mathrm{C} 4-\mathrm{C} 5$	$1.385(5)$
$\mathrm{C} 4-\mathrm{H} 4$	0.9300
$\mathrm{C} 5-\mathrm{C} 6$	$1.392(4)$
$\mathrm{C} 5-\mathrm{H} 5$	0.9300
$\mathrm{C} 6-\mathrm{C} 7$	$1.379(4)$
$\mathrm{C} 6-\mathrm{H} 6$	0.9300
$\mathrm{C} 7-\mathrm{C} 8$	$1.500(4)$
$\mathrm{C} 8-\mathrm{H} 8 \mathrm{~A}$	0.9700
$\mathrm{C} 8-\mathrm{H} 8 \mathrm{~B}$	0.9700
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$121.2(3)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{H} 5$	119.4
$\mathrm{C} 6-\mathrm{C} 5-\mathrm{H} 5$	119.4
$\mathrm{C} 7-\mathrm{C} 6-\mathrm{C} 5$	$118.3(3)$
$\mathrm{C} 7-\mathrm{C} 6-\mathrm{H} 6$	120.8
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{H} 6$	120.8
$\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 2$	$120.5(2)$
$\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8$	$129.7(2)$
$\mathrm{C} 2-\mathrm{C} 7-\mathrm{C} 8$	$109.8(2)$
$\mathrm{N} 1-\mathrm{C} 8-\mathrm{C} 7$	$102.36(19)$
$\mathrm{N} 1-\mathrm{C} 8-\mathrm{H} 8 \mathrm{~A}$	111.3
$\mathrm{C} 7-\mathrm{C} 8-\mathrm{H} 8 \mathrm{~A}$	111.3
$\mathrm{~N} 1-\mathrm{C} 8-\mathrm{H} 8 \mathrm{~B}$	111.3
$\mathrm{C} 7-\mathrm{C} 8-\mathrm{H} 8 \mathrm{~B}$	111.3
$\mathrm{H} 8 \mathrm{~A}-\mathrm{C} 8-\mathrm{H} 8 \mathrm{~B}$	109.2
$\mathrm{O} 2-\mathrm{C} 9-\mathrm{N} 2$	$124.9(3)$
$\mathrm{O} 2-\mathrm{C} 9-\mathrm{N} 1$	$119.6(2)$

sup-4

supplementary materials

$\mathrm{C} 5-\mathrm{C} 4-\mathrm{H} 4$	119.7	$\mathrm{~N} 2-\mathrm{C} 9-\mathrm{N} 1$	$115.5(2)$
$\mathrm{C} 9-\mathrm{N} 1-\mathrm{C} 1-\mathrm{O} 1$	$-2.8(5)$	$\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8$	$-179.9(3)$
$\mathrm{C} 8-\mathrm{N} 1-\mathrm{C} 1-\mathrm{O} 1$	$-179.9(3)$	$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 7-\mathrm{C} 6$	$-0.9(5)$
$\mathrm{C} 9-\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	$178.1(3)$	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 7-\mathrm{C} 6$	$178.8(3)$
$\mathrm{C} 8-\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	$1.0(3)$	$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 7-\mathrm{C} 8$	$179.9(3)$
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 7$	$-179.5(3)$	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 7-\mathrm{C} 8$	$-0.4(4)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 7$	$-0.4(4)$	$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 8-\mathrm{C} 7$	$-1.2(3)$
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$0.2(6)$	$\mathrm{C} 9-\mathrm{N} 1-\mathrm{C} 8-\mathrm{C} 7$	$-178.5(2)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$179.3(3)$	$\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8-\mathrm{N} 1$	$-178.1(3)$
$\mathrm{C} 7-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$0.2(5)$	$\mathrm{C} 2-\mathrm{C} 7-\mathrm{C} 8-\mathrm{N} 1$	$0.9(3)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$-179.5(3)$	$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 9-\mathrm{O} 2$	$-179.3(3)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$0.3(5)$	$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 9-\mathrm{C} 2$	$-2.4(4)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$\mathrm{C} 8-\mathrm{N} 1-\mathrm{C} 9-\mathrm{N} 2$	$0.6(5)$	
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7$	$-0.1(5)$		$177.5(3)$
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 2$	$-0.6(5)$		

Hydrogen-bond geometry ($\left.\AA,{ }^{\circ}\right)$

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 2 — \mathrm{H} 2 \mathrm{~A} \cdots \mathrm{O} 1$	$0.95(3)$	$1.91(3)$	$2.710(3)$	$140(2)$
$\mathrm{N} 2 — \mathrm{H} 2 \mathrm{~B} \cdots \mathrm{O} 2^{\mathrm{i}}$	$0.88(3)$	$2.08(3)$	$2.943(3)$	$167(3)$
$\mathrm{C} 8 — \mathrm{H} 8 \mathrm{~A} \cdots{ }^{\mathrm{ii}} \mathrm{O}^{\mathrm{ii}}$	0.97	2.57	$3.447(4)$	151

Symmetry codes: (i) $-x+1, y-1 / 2,-z+1 / 2$; (ii) $-x+1, y+1 / 2,-z+1 / 2$.
supplementary materials

Fig. 1

Fig. 2

