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Abstract: Glucocorticoid excess escalates osteoclastic resorption, accelerating bone mass loss and
microarchitecture damage, which ramps up osteoporosis development. MicroRNA-29a (miR-29a)
regulates osteoblast and chondrocyte function; however, the action of miR-29a to osteoclastic
activity in the glucocorticoid-induced osteoporotic bone remains elusive. In this study, we showed
that transgenic mice overexpressing an miR-29a precursor driven by phosphoglycerate kinase
exhibited a minor response to glucocorticoid-mediated bone mineral density loss, cortical bone
porosity and overproduction of serum resorption markers C-teleopeptide of type I collagen and
tartrate-resistant acid phosphatase 5b levels. miR-29a overexpression compromised trabecular bone
erosion and excessive osteoclast number histopathology in glucocorticoid-treated skeletal tissue.
Ex vivo, the glucocorticoid-provoked osteoblast formation and osteoclastogenic markers (NFATc1,
MMP9, V-ATPase, carbonic anhydrase II and cathepsin K) along with F-actin ring development and
pit formation of primary bone-marrow macrophages were downregulated in miR-29a transgenic
mice. Mechanistically, tumor necrosis factor superfamily member 13b (TNFSF13b) participated in the
glucocorticoid-induced osteoclast formation. miR-29a decreased the suppressor of cytokine signaling 2
(SOCS2) enrichment in the TNFSF13b promoter and downregulated the cytokine production. In vitro,
forced miR-29a expression and SOCS2 knockdown attenuated the glucocorticoid-induced TNFSF13b
expression in osteoblasts. miR-29a wards off glucocorticoid-mediated excessive bone resorption by
repressing the TNFSF13b modulation of osteoclastic activity. This study sheds new light onto the
immune-regulatory actions of miR-29a protection against glucocorticoid-mediated osteoporosis.
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1. Introduction

Glucocorticoid overmedication dysregulates bone cell activity, accelerating bone mass loss and
structure deterioration, which increases the development of osteoporotic diseases [1]. Osteoclast

Int. J. Mol. Sci. 2019, 20, 5141; doi:10.3390/ijms20205141 www.mdpi.com/journal/ijms

http://www.mdpi.com/journal/ijms
http://www.mdpi.com
http://www.mdpi.com/1422-0067/20/20/5141?type=check_update&version=1
http://dx.doi.org/10.3390/ijms20205141
http://www.mdpi.com/journal/ijms


Int. J. Mol. Sci. 2019, 20, 5141 2 of 14

overdevelopment that progressively erodes bone microstructure [2] and weakens biomechanical
properties of skeletal tissues [3] is a notable pathological feature of glucocorticoid-induced osteoporosis.
Increasing studies have shown the involvement of intracellular pathways, like vanilloid receptor,
cannabinoid receptor [4] and circadian rhythm [5], in glucocorticoid-mediated osteoclast activation.

On the other hand, glucocorticoids also facilitate osteogenic cells and bone marrow cells to
produce osteoclastogenesis-promoting factors, like tumor necrosis factor superfamily (TNFSF) member
receptor activator NF-κB ligand (RANKL), which is indispensable in osteoclast differentiation and
activation [6]. Several TNFSF members are also involved in the RANKL-independent osteoclast
differentiation program. Of them, CD137 promotes osteoclast migration and differentiation in breast
cancer-induced bone metastasis [7]. Mice deficient in TNFSF14 show increased bone mass together
with suppressed osteoclastic resorption [8]. TNFSF13b promotes the shifting of human monocytes
into osteoclastic cells [9], whereas blocking TNFSF13b reverses multiple myeloma-mediated osteoclast
formation [10].

MicroRNA belong to non-coding small RNA, disrupting mRNA targets and regulating tissue
development, remodeling and malignancy [11]. Many microRNAs alter osteoclast survival,
differentiation and maturation under osteoporotic and arthritic conditions. For example, miR-27a
mediates the estrogen-induced loss of osteoclast differentiation and bone resorption capacity of
bone-marrow macrophages [12]. miR-31a-5p accelerates osteoclast formation in an age-mediated
osteoporotic skeleton [13]. miR-124 downregulates osteoclastic resorption in arthritic joints in rats
upon adjuvant injection [14]. miR-34 inhibits osteoclast activation in the development of osteoporosis
and osteolytic bone metastasis [15]. Moreover, the miR-29 family regulates myogenesis of muscle stem
cells [16], chondrogenic differentiation of mesenchymal stem cells [17] and fibrosis matrix formation in
inflamed tissue [18]. miR-29 signaling also modulates immune cell activation in multiple sclerosis [19],
the host immune response [20] and inflammatory reaction in colitis [21]. We previously revealed that
glucocorticoid induced bone loss and marrow adipose overdevelopment along with decreased miR-29a
expression [22]. The biological function of miR-29a in osteoclast behavior in glucocorticoid-treated
bone tissue is not well understood.

This study aimed to investigate whether osteoclast differentiation or bone resorption in the
glucocorticoid-induced osteoporotic skeleton was changed in miR-29a transgenic mice (miR-29aTg)
and tested whether cytokine TNFSF13b mediated the miR-29a regulation of glucocorticoid-provoked
osteoclast formation.

2. Results

2.1. miR-29 Overexpression Compromised Glucocorticoid-Induced Bone Loss

We utilized miR-29aTg mice to test whether increasing miR-29a transcripts in trabecular bone,
as evident from in situ hybridization (Figure 1A), altered bone mass or osteoclastic resorption in skeletal
tissue upon glucocorticoid treatment. Bone resorption markers C-teleopeptide of type I collagen
(CTX-1) and tartrate-resistant acid phosphatase 5b (TRAP5b) levels in sera were significantly increased
in wild-type (WT) mice upon 5 mg/kg/day methylprednisolone treatment for 28 days, whereas they
were significantly downregulated in glucocorticoid-treated miR-29aTg mice (Tg) (Figure 1B). Of note,
glucocorticoid-treated WT mice exhibited severely poor trabecular bone microstructure (Figure 1C)
along with significantly decreased bone mineral density and increased cortical bone porosity (Figure 1D).
Well-woven trabecular bone architecture together with minor bone loss and porosity occurred in
glucocorticoid-treated miR-29aTg mice.
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Figure 1. Analysis of bone mass, microstructure and resorption markers in bone tissue in WT mice 
and miR-29aTg mice. Strong miR-29a transcripts in miR-29aTg bone tissue (A); scale bar, 10 μm. miR-
29a overexpression downregulated serum TRAP5b and CTX-1 levels (B). Glucocorticoid-treated WT 
mice showed sparse trabecular bone, whereas abundant trabecular microstructure remained in 
glucocorticoid-treated miR-29aTg mice (C); scale bar, 5 mm. miR-29a overexpression improved bone 
mineral density (D) and cortical bone porosity (E) in glucocorticoid-treated skeleton. Data are 
expressed as the mean ± standard errors calculated from 6 mice. Asterisks * indicate significant 
differences from the WT + Veh group and hashtags # indicate significant differences from the WT + 
GC group (p < 0.05). WT, wild-type mice; Tg, miR-29aTg mice; Veh, vehicle; GC, glucocorticoid. 
TRAP5b, tartrate-resistant acid phosphatase 5b; CTX-1, C-telopeptide of type I collagen; BMD, bone 
mineral density. 

2.2. miR-29 Repressed the Glucocorticoid-Induced Osteoclastic Erosion Histopathology 

In addition, bone tissue in glucocorticoid-treated WT mice showed severe trabecular loss and 
increased osteoclast formation histopathology as evident from TRAP (tartrate-resistant acid 
phosphatase) staining, whereas specimens from glucocorticoid-treated miR-29aTg mice displayed 
abundant trabecular bone together with mild osteoclast distribution (Figure 2A). Consistently, 
glucocorticoid significantly increased trabecular separation (Tb.Sp; Figure 2B), osteoclast number 
(Oc.N; Figure 2C), erosion area (Figure 2D) and eroded surface (ES.BS%; Figure 2E) in WT mice. miR-
29a overexpression reversed the bone resorption histomorphology in glucocorticoid-treated skeleton. 

 

Figure 1. Analysis of bone mass, microstructure and resorption markers in bone tissue in WT mice
and miR-29aTg mice. Strong miR-29a transcripts in miR-29aTg bone tissue (A); scale bar, 10 µm.
miR-29a overexpression downregulated serum TRAP5b and CTX-1 levels (B). Glucocorticoid-treated
WT mice showed sparse trabecular bone, whereas abundant trabecular microstructure remained in
glucocorticoid-treated miR-29aTg mice (C); scale bar, 5 mm. miR-29a overexpression improved bone
mineral density (D) and cortical bone porosity (E) in glucocorticoid-treated skeleton. Data are expressed
as the mean ± standard errors calculated from 6 mice. Asterisks * indicate significant differences from
the WT + Veh group and hashtags # indicate significant differences from the WT + GC group (p < 0.05).
WT, wild-type mice; Tg, miR-29aTg mice; Veh, vehicle; GC, glucocorticoid. TRAP5b, tartrate-resistant
acid phosphatase 5b; CTX-1, C-telopeptide of type I collagen; BMD, bone mineral density.

2.2. miR-29 Repressed the Glucocorticoid-Induced Osteoclastic Erosion Histopathology

In addition, bone tissue in glucocorticoid-treated WT mice showed severe trabecular loss
and increased osteoclast formation histopathology as evident from TRAP (tartrate-resistant acid
phosphatase) staining, whereas specimens from glucocorticoid-treated miR-29aTg mice displayed
abundant trabecular bone together with mild osteoclast distribution (Figure 2A). Consistently,
glucocorticoid significantly increased trabecular separation (Tb.Sp; Figure 2B), osteoclast number (Oc.N;
Figure 2C), erosion area (Figure 2D) and eroded surface (ES.BS%; Figure 2E) in WT mice. miR-29a
overexpression reversed the bone resorption histomorphology in glucocorticoid-treated skeleton.

2.3. miR-29a Inhibited Osteoclast Differentiation and Resorption Capacity

The miR-29a improvement of bone erosion in glucocorticoid-treated bone tissue prompted
us to isolate primary bone-marrow macrophages for characterizing osteoclast activity in WT
mice and miR-29a mice. Numerous enlarged osteoclasts positive for TRAP staining formed in
glucocorticoid-treated WT mice; these phenomena were improved in the glucocorticoid-treated
miR-29aTg group (Figure 3A). Glucocorticoid significantly increased osteoclast number and area
(Figure 3B) and also upregulated osteoclastogenic markers NFATc1, cathepsin K (Figure 3C),
mature osteoclast markers carbonic anhydrase II and vacuolar H+-ATPase expression (Figure 3D)
in the WT group. miR-29a overexpression significantly downregulated osteoclast formation and
osteoclast marker expression of bone-marrow macrophages below the baseline and also improved the
glucocorticoid-upregulated osteoclast differentiation.
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Figure 2. Histological analysis of trabecular bone and osteoclast distribution. Severe trabecular bone
loss and increased TRAP-stained osteoclasts existed in glucocorticoid-treated WT bone tissue, whereas
well-connected bone histology but few osteoclasts remained in glucocorticoid-treated miR-29aTg bone
tissue (A); Scale bar, 30 µm (upper panels); 10 µm (lower panel). The glucocorticoid-mediated increases
in Tb.Sp (B), Oc.N (C), erosion area (D) and ES.BS% (E) were significantly improved in miR-29aTg
mice. Data are expressed as the mean ± standard errors calculated from 6 mice. Asterisks * indicate
significant differences from the WT-Veh group and hashtags # indicate significant differences from the
WT-GC group (p < 0.05). WT, wild-type mice; Tg, miR-29aTg mice; Veh, vehicle; GC, glucocorticoid;
Tb.Sp, trabecular separation; Oc.N, osteoclast number; ES.BS, eroded surface.
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In addition, osteoclasts in glucocorticoid-treated wild type (WT) mice showed strongly 
fluorescent F-actin ring morphology (Figure 4A) along with significant increases in F-actin rings 
(Figure 4B) and matrix metallopeptidase 9 (MMP9) expression (Figure 4C). miR-29a overexpression 
significantly repressed these reactions in osteoclasts from glucocorticoid-treated skeleton. Moreover, 
osteoclast precursor cells were incubated onto the bone biomimetic surface to characterize pit 

Figure 3. Analysis of osteoclast differentiation of primary bone-marrow macrophages. Increased and
enlarged osteoclasts positive for TRAP staining occurred in glucocorticoid-treated WT mice, whereas
few osteoclasts formed in miR-29aTg mice (A) scale bar, 8 µm. miR-29a overexpression repressed the
glucocorticoid-induced increases in osteoclast number and area (B) and also reduced osteoclastogenic
markers NFATc1, cathepsin K (C), and osteoclast maturation markers carbonic anhydrase II and
V-ATPase expression (D). Data are expressed as the mean ± standard errors calculated from 6 mice.
Asterisks * indicate significant differences from the WT + Veh group and hashtags # indicate significant
differences from the WT + Veh group (p < 0.05). WT, wild-type mice; Tg, miR-29aTg mice; Veh, vehicle;
GC, glucocorticoid, Oc, osteoclasts; Oc.Ar, osteoclast area; NFATc1, nuclear factor of activated T-cells-c1;
Ca II, carbonic anhydrase II; V-ATPase, vacuolar H+-ATPase.
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In addition, osteoclasts in glucocorticoid-treated wild type (WT) mice showed strongly fluorescent
F-actin ring morphology (Figure 4A) along with significant increases in F-actin rings (Figure 4B)
and matrix metallopeptidase 9 (MMP9) expression (Figure 4C). miR-29a overexpression significantly
repressed these reactions in osteoclasts from glucocorticoid-treated skeleton. Moreover, osteoclast
precursor cells were incubated onto the bone biomimetic surface to characterize pit formation
(Figure 4D). Osteoclasts from glucocorticoid-treated WT mice eroded larger area of pits as compared
with vehicle-treated WT mice. This activity was significantly downregulated in glucocorticoid-treated
miR-29aTg mice (Figure 4E). Gain of miR-29 signaling significantly reduced osteoclastic resorption
capacity below the baseline.
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Osteoclasts in glucocorticoid-treated WT mice showed strongly fluorescent F-actin ring morphology
(A) (scale bar, 20 µm) and increases in F-actin ring number (B), MMP9 expression (C) and pit
formation (D, E); (black scale bar, 7 mm; yellow scale bar, 30 µm). These effects were compromised in
glucocorticoid-treated miR-29aTg mice. Data are expressed as the mean ± standard errors calculated
from 6 mice. Asterisks * indicate significant differences from the WT + Veh group and hashtags #
indicate significant differences from the WT + GC group (p < 0.05). WT, wild-type mice; Tg, miR-29aTg
mice; Veh, vehicle; GC, glucocorticoid; MMP9, matrix metalloproteinase 9.

2.4. TNFSF13b-Mediated miR-29a Regulation of Osoteoclast Formation

Bioinformatics reveal that TNFSF13b is one of putative targets of miR-29 (www.microrna.org).
This cytokine is shown to promote monocyte differentiation toward osteoclastic lineages [9,10]. Of note,
osteoblasts adjacent to trabecular bone in glucocorticoid-treated WT mice exhibited strong TNFSF13b
immunostaining, whereas bone cells in glucocorticoid-treated bone tissue displayed weak TNFSF13b
immunoreactivity (Figure 5A). Consistent with the histomorphometric analysis (Figure 5B), serum
TNFSF13b levels were significantly increased in WT mice upon glucocorticoid treatment. miR-29a
overexpression attenuated the glucocorticoid-augmented TNFSF13b levels (Figure 5C).

We tested whether TNFSF13b participated in the miR-29a reduction of osteoclastogenic
activities in glucocorticoid-treated skeleton. TNFSF13b antibody or TNFSF13b protein were
added to bone-marrow macrophages from WT mice and miR-29aTg mice with glucocorticoid
treatment. Of interest, blocking TNFSF13b significantly decreased osteoclast formation of macrophage
cultures from glucocorticoid-treated WT mice (Figure 5D). On the contrary, co-incubation with
TNFSF13b protein significantly increased osteoclast differentiation of bone-marrow macrophages
from glucocorticoid-treated miR-29aTg mice (Figure 5D), which is suggestive of the involvement of
TNFSF13b in miR-29a regulation of osteoclast differentiation.

2.5. SOCS2 Controlled the miR-29a Inhibition of TNFSF13b Signaling

Bioinformatics searches (www.cbil.upenn/cgi-bin/tess/tess) revealed that SOCS2 is a putative
transcription factor for TNFSF13b transcription. miR-29a overexpression significantly attenuated the
glucocorticoid-induced increases in SOCS2 levels in bone tissue (Figure 6A). In addition, glucocorticoid
significantly increased the SOCS2 enrichment in the TNFSF13b promoter as evident from chromatin
immunoprecipitation (ChIP)-PCR analysis (Figure 6B) along with a significant increase in TNFSF13b
mRNA transcription (Figure 6C) in WT bone tissue. These effects were significantly compromised
in miR-29aTg skeletal tissue. SOCS2 monoclonal antibodies used in ChIP experiments exhibited

www.microrna.org
www.cbil.upenn/cgi-bin/tess/tess
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prominent enrichment in the TNFSF13b proximal promoter region as compared to IgG, which is
suggestive of high specificity to the promoter region of interest.
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Figure 5. Analysis of TNFSF13b immunohistochemistry and action in osteoclast formation. Bone
cells in glucocorticoid-treated WT mice showed strong TNFSF13b immunostaining, but expressed
weak immunoreaction in glucocorticoid-treated miR-29aTg mice (A); scale bar, 10 µm. miR-29a
overexpression attenuated the glucocorticoid-induced increases in TNFSF13b immunostaining (B)
and serum TNFSF13b levels (C). TNFSF13b antibody blockade attenuated the glucocorticoid-induced
osteoclast formation of bone-marrow macrophages from WT mice, whereas TNFSF13b protein increased
osteoclast formation of bone-marrow macrophages from glucocorticoid-treated miR-29aTg mice (D);
scale bar, 8 µm. Data are expressed as the mean ± standard errors calculated from 6 mice. Asterisks *
indicate significant differences from the WT + Veh group, hashtags # indicate significant differences
from the WT + GC group and plus + indicate significant difference the Tg + GC group (p < 0.05). WT,
wild-type mice; Tg, miR-29aTg mice; Veh, vehicle; GC, glucocorticoid; TNFSF13b, tumor necrosis factor
superfamily 13b; Ab, antibody.
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Figure 6. Analysis of SOCS2 immunoblotting and ChIP-PCR of SOCS2 enrichment in TNFSF13b.
miR-29a overexpression attenuated the glucocorticoid-induced increase in SOCS2 protein (A), the SOCS2
enrichment in the TNFSF13b promoter region (B), and TNFSF13b mRNA expression (C). Data are
expressed as the mean ± standard errors calculated from 3–6 mice. Asterisks * indicate significant
differences from the WT + Veh group and hashtags # indicate significant differences from the WT +

GC group (p < 0.05). Veh, vehicle; GC, glucocorticoid; SOCS2, suppressor of cytokine signaling 2;
Ab, antibody.

Consistent with the analysis of the in vivo model, glucocorticoid and miR-29a knockdown
significantly decreased miR-29a expression in osteoblast cultures (Figure 7A). Gain of miR-29a
signaling significantly attenuated the glucocorticoid-provoked TNFSF13b expression (Figure 7B).
Moreover, glucocorticoid significantly increased SOCS2 expression. Loss of SOCS2 function (Figure 7C)
downregulated TNFSF13b expression in osteoblast cultures upon glucocorticoid stress (Figure 7D).
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miR-29a-AS, miR-29a antisense oligonucleotide; RNAi, RNA interference.

3. Discussion

Physiological levels of glucocorticoids are essential to maintain the contact of osteoclastic cells
with the mineralized matrix, harmonizing the bone turnover reaction beneficial for bone mass
homeostasis [6,23]. Glucocorticoid excess increases osteoclast survival [24] and resorption activity [25],
overwhelmingly shattering bone mass and structure. While accumulating evidence has revealed the
microRNA signaling regulation of osteoclast differentiation and bone erosion in degenerative and
metastatic conditions [26,27], little is known of the role microRNAs may play in osteoclast overgrowth in
the development of glucocorticoid-induced osteoporosis. Collective analysis in this study revealed that
miR-29a downregulated the glucocorticoid-augmented osteoclastic resorption, fending off osteoporotic
skeleton development. Decreased cytokine TNFSF13b signaling in bone microenvironment contributed
to the miR-29a repression of osteoclast function. This study offers a new epigenetic insight into how the
microRNA pathway controls osteoclast behavior, delaying the development of glucocorticoid-induced
bone loss. Robust analysis is also the first indication to highlight the contribution of TNFSF13b
signaling to this osteoporotic disorder.

In this study, treatment with a high dose of methylprednisolone deteriorated bone mass along
with significant increases in skeletal porosity and serum bone resorption markers, like TRAP5b and
CTX-1. Our investigations are in agreement with other groups’ studies showing that glucocorticoid
administration increased serum TRAP5b levels [28] and cortical bone loss [29]. Furthermore,
miR-29a overexpression attenuated the glucocorticoid-induced osteoblast dysfunction and marrow
adipose deposition [22], which is indicative that miR-29a signaling may alter osteoclast behavior in
glucocorticoid-treated bone tissue. These findings reasoned us to employ miR-29aTg mice to understand
whether miR-29a affected the osteoclastic resorption reaction in the glucocorticoid excess-stressed
bone microenvironment.

Of note, a plethora of glucocorticoid-induced excessive bone resorption signs, like resorption
marker overproduction, bone cortical porosity and trabecular bone erosion histopathology,
were significantly downregulated in miR-29aTg mice, which is suggestive of miR-29a signaling
suppression of bone remodeling in glucocorticoid-treated skeletal tissue. The analysis of decreased
osteoclast distribution in miR-29aTg bone tissue underpinned the investigations of its protective
effects on bone mass homeostasis. In addition, miR-29a overexpression reversed the glucocorticoid
upregulation of osteoclast differentiation capacity, like osteoclast formation, maturation and pit
formation. The investigations of osteoclast differentiation of bone-marrow macrophages were consistent
with the in vivo findings. However, the effect of the miR-29 family members on osteoclastogenic
lineage specification or osteoclast maturation remains uncertain. For example, knocking down miR-29a,
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b or c decreases osteoclast differentiation capacity of RAW264.7 monocytic cells, whereas survival
and F-actin ring formation were not significantly affected in mature osteoclasts [30]. Treatment with
miR-29a mimic promotes osteoclast survival rather than differentiation; however, the miR-29a inhibitor
downregulates lipopolysaccharide-induced osteoclast growth [31]. On the contrary, forced miR-29b
expression inhibits osteoclast markers nuclear factor of activated T-cell, cytoplasmic 1 (NFATc1) and
matrix metallopep (MMP9) expression and also reduces collagen degradation and pit formation of
osteoclastic cultures in a multiple myeloma-mediated osteolysis model [32]. This study uncovered that
miR-29a overexpression suppressed osteoclast formation in glucocorticoid excess-treated skeleton. We
speculated that the miR-29 action to osteoclast formation may depend on osteoporotic disease and
osteoclastogenic progenitor cell types. The repressed osteoclastic resorption in glucocorticoid-treated
miR-29aTg bone tissue further explains the complex nature of glucocorticoid-induced osteoporosis.

The miR-29a hinderance of osteoclast activity promoted us to pinpoint what cytokine contributed
to this reaction. TNFSF members, like RANKL, TNFSF13b and TNFSF14, etc., regulate differentiation,
maturation and activation of osteoclastogenic cells in the development of osteoporosis caused by
estrogen loss, arthritis or bone metastasis [33,34]. A decrease in RANKL rather than osteoprotegerin
(OPG) expression occurs in the miR-29a regulation of glucocorticoid excess-treated skeletons [22].
TNFSF13b is shown to promote osteoclast differentiation of human monocytic cultures in the absence of
RANKL [9]. Of note, this study uncovered the involvement of TNFSF13b in the glucocorticoid-provoked
osteoclast activities, as significant increases in TNFSF13b secretion and immunostaining occurred in
glucocorticoid-treated mice. TNFSF13b antibody blockade mitigated the glucocorticoid upregulation
of osteoclast formation of bone-marrow macrophages. Adding TNFSF13b protein to miR-29aTg
bone-marrow macrophages weakened the miR-29a inhibition of osteoclast formation. Intriguing
analysis sheds a new light on the TNFSF action in the development of glucocorticoid-induced
bone damage.

Furthermore, SOCS2 is a master transcription factor regulating polarization and lineage
commitment of macrophages [35]. Mice deficient in SOCS2 show increased bone growth and
widened growth plate [36] and display an amplified response to growth hormone promotion of bone
development [37]. This immune regulator is a putative transcription factor for TNFSF13b transcription
(www.cbil.upenn/cgi-bin/tess/tess). Collective analysis confirmed that miR-29a overexpression
attenuated the glucocorticoid upregulation of SOCS2 levels and the SOCS2 occupancy in TNFSF13b
promoter, which increased TNFSF13b expression. In vitro, knockdown of SOCS2 downregulated
the glucocorticoid-mediated TNFSF13b expression in osteoblasts. The miR-29 family members are
emerging immune regulators for immune disorders [18,19], atherosclerotic diseases [38], and malignant
tumor formation [39,40]. This study reveals a new immune-regulatory mechanistic by which miR-29a
delays osteoclastic resorption in glucocorticoid-treated bone tissue. We do not exclude the possibility
that other TNFSF members may be involved in the miR-29a protection from glucocorticoid aggravation
of osteoclastic resorption and bone loss. Serine/threonine kinase Pim together with NFκB pathways is
shown to regulate TNFSF13b-mediated survival of multiple myeloma cells and osteoclasts [41].
The molecular events underlying TNFSF13b modulation of glucocorticoid-mediated osteoclast
formation and the effect of a TNFSF13b inhibitor, like Belimumab, on the glucocorticoid-induced
excessive osteoclastic resorption warrants investigation in the future.

Taken together, miR-29 signaling represses the glucocorticoid-induced excessive osteoclast
formation and bone resorption, slowing the development of osteoporotic skeleton. miR-29a improves
the glucocorticoid-induced osteoclast overdevelopment by reducing SOCS2 and TNFSF13b signaling
(Figure 8). Profound analyses convey a new epigenetic insight into microRNA shielding from
glucocorticoid-induced excessive bone remodeling and bone loss.

www.cbil.upenn/cgi-bin/tess/tess
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4. Materials and Methods

4.1. miR-29a Transgenic Mice

Protocols for animal breeding, experimentation and care were reviewed and approved
by the Institutional Animal Use and Care Committee in March, 2011, Kaohsiung
Chang Gung Memorial Hospital in September, 2012 (Affidavit No. 2011030701 and
No.2012091003). (Friend leukemia virus B; FVB) mice overexpressing miR-29a precursor
(FVB/TNar-Tg-29a/PGK; miR-29aTg) driven by the phosphoglycerate kinase (PGK) promoter
were bred, as previously described [22]. The genotype of each animal was confirmed using
customized primers (forward: 5′-GAGGATCCCCTCAAGGATACCAAGGGATGAAT-3′; reverse,
5′-CTTCTAGAAGGAGTGTTTCTAGGTATCCGTCA-3′) along with PCR analysis [22].

4.2. Glucocorticoid-Induced Osteoporosis

Male wild-type mice (WT) and miR-29aTg mice (Tg; 12 weeks old) were intraperitoneally
given 5 mg/kg/day methylprednisolone or vehicle for 28 days. Upon euthanasia, peripheral blood
was harvested via an intra-cardiac puncture, and tibia and femurs were dissected for µCT and
histological assessment.

4.3. Quantification of Serum Bone Resorption Markers

Designated ELISA kits were utilized to quantify tartrate-resistant acid phosphate 5b (TRAP5b;
Biomedical Technologies Inc., Stoughton, MA, USA), C-teleopeptide of type I collagen (CTX-I; Nordic
Bioscience Diagnostics, Herlev, Denmark) and TNFSF13b (R & D Systems, Minneapolis, MN, USA)
levels in sera, according to the manufacturers’ manuals.

4.4. Assay of Bone Mass and Microstructure

µCT analysis of bone mineral density, trabecular microstructure and cortical bone porosity was
performed using a Skyscan 1176 µCT system (Bruker, Kontich, Belgium). Specimens were subjected
to 50-kev, 500-µA, and 69-ms radiography and followed by reconstructing 200 slices of radiographs
(isotropic 9-µm voxel each slice) into 3D images using SKYSCAN® CT-Analyzer software (Bruker,
Kontich, Belgium). Trabecular bone mineral density (mg/cm3) and cortical bone porosity (%) were
quantified according to the manufacturer’s instructions.
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4.5. In Situ Hybridization and Histomorphometry

Customized miR-29a probes conjugated with digoxigenin (Applied Biosystems, Carlsbad, CA,
USA) along with IsHyb In Situ Hybridization kits (Biochain Institute, Inc., Newark, CA, USA) were
utilized to probe miR-29a transcripts in bone tissue, as previously described [22]. Specimens were
subjected to hematoxylin and eosin staining and tartrate-resistant acid phosphatase histochemical
staining. Osteoclast morphology was microscopically evaluated, as previously described [42].
Three fields in each section and 12 sections from 6 mice were randomly selected for histomorphometry
using a Ziess microscope (ZIESS, Munchen, Germany) and Image-Pro® Plus image-analysis software
(Media Cybernetics Inc., Rockville, MD, USA). Trabecular separation (%), osteoclast number
(Oc.No/mm), erosion area (µm2), and erosion surface (ES.BS%) were calculated [43].

4.6. Ex Vivo Osteoclast Differentiation and F-Actin Ring Immunofluorescence Labeling

Primary bone-marrow macrophages in tibiae and femurs were isolated, as previously described [44].
In brief, nucleated cells in bone marrow were isolated upon lysis of red blood cells using RBC Lysis
buffer (Sigma-Aldrich Co., St Louis, MO, USA) and incubated in α-MEM with 10% fetal bovine
serum and 20 ng/mL M-CSF (R&D Systems, Minneapolis, MN, USA) for 1 day. The floating cells
were harvested upon incubation. Then, 105/well macrophages (24-well plates) were incubated in
osteoclastogenic medium containing α-MEM, 10% fetal bovine serum, 20 ng/mL M-CSF and 20 ng/mL
RANKL (R&D Systems, Minneapolis, MN, USA) for 7 days. In a subset of the experiment, 105/well
macrophages were incubated in a mixture of osteoclastogenic medium containing 20 ng/mL TNFSF13b
monoclonal antibody, IgG or recombinant TNFSF13b (R&D Systems, Minneapolis, MN, USA). After
incubation, cell cultures were subjected to TRAP cytochemical staining (Sigma-Aldrich Co., St Louis,
MO, USA). F-actin ring formation in osteoclasts was probed using F-actin antibody conjugated with
Alexa Fluor® 488 Phalloidin (Life Technologies, Grand Island, NY, USA) and DAPI-Fluoromount G
(Southern Biotech, Birmingham, AL, USA). The number and area of multinuclear cells positive for
TRAP stain and fluorescence F-actin rings in 3 fields of each well and 18 wells from 6 animals were
counted using a Zeiss inverted microscope and image-analysis software.

4.7. Pit Formation

In total, 105 primary bone-marrow macrophages were seeded onto an Osteo Assay Stripwell Plate
(Corning, Lowell, MA, USA), which was coated with a bone biomimetic synthetic surface, followed
by incubating in osteoclastogenic medium for 7 days, according to the manufacturer’s instructions.
Culture wells in the absence of primary cells were used as a blank control group. After removal of cell
cultures, each well was rinsed with deionized water and then stained by von Kossa staining. Pits that
were negative for von Kossa staining on the bone biomimetic synthetic surface were subjected to
microscopy [45]. Areas of pits in 3 fields of each well and 18 wells from 6 mice were counted. Percentile
pit formation was calculated as areas of pits/areas of microscopic field × 100%.

4.8. Quantitative RT-PCR

Total RNA in macrophage cultures and bone tissue was isolated using
QIAzol reagent (Qiagene, Valencia, CA, USA). Upon reverse transcription of 1 µg
total RNA, mRNA expression was detected using primers for NFATc1 (forward:
5′-GAAGGTGTACTCCTCGGGTGG-3′; reverse: 5′-GATACCTGGCTCGGTAACACCAC-3′),
V-ATPase (forward: 5′-AGAAAGCCAAGTGCCTACTCC-3′; reverse:
5′-AAAGGGAAGGGTTTCTTTTGG-3′), MMP9 (forward: 5′-GGGAAGGCTCTGCTGTTCA-3′;
reverse: 5′-CGGTTGAAGCAAAGAAGGAG-3′), cathepsin K (forward:
5′-CCTGCGGCATTACCAACAT-3′; reverse: 5′-GCTGCAGGACTCCAATGTCT-3′), TNFSF13b
(forward: 5′-TTCCATGGCTTCTCAGCTTT-3′; reverse: 5′-CGTCCCCAAAGACGTGACT-3′), and actin
(forward: 5′-GACGGCCAGGTCATCACTAT-3′; reverse: 5′-CTTCTGCATCCTGTCAGCAA-3′).
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Equation 2−∆∆Ct, where ∆∆Ct = ∆∆Ctglucocorticoid − ∆Ctvehicle and ∆∆Ct = Ctgene − Ctactin was adopted
to calculated the relative expression of each gene.

4.9. Immunoblotting

Protein lysates in bone tissue was extracted using PRO-PREP™ Extraction Kits (iNtRON
Biotechnology, Sungnam, Korea), according to the manufacturer’s instruction. SOCS2 and actin
in bone tissue proteins were probed using Western blotting protocols along with SOCS2 and actin
antibodies (Cell Signaling Technology, Danvers, MA, USA) and horseradish peroxidase-conjugated
IgG that was visualized by chemiluminescence agents.

4.10. Chromatin Immuneprecipitation (ChIP)-PCR

Bone tissue extracts were immunoprecipitated with SOCS2 monoclonal antibodies or IgG
(Millipore, Billerica, MA, USA). For isolating chromatin, the immunocomplexes were subjected
to sonication, elution and Proteinase K digestion using Megan ChIP A/G kits (Millipore, Billerica, MA,
USA), according to the manufacturer’s instructions. Chromatin was probed by Cy3-labeled primers
(forward: 5′-CGTCCTTTGGTCTTGCACTT-3′; reverse: 5′-GGATTGTGGGTTCAG GGTTA-3′) for
TNFSF13b proximal promoter region (NCBI Accession: NM_033622) using PCR protocols. Enrichment
of SOCS2 in designated promoter regions was calculated as % input as previously described [46].

4.11. Transfection

For transfection, 1 nM miR-29a precursor, 1 nM miR-29a antisense oligonucleotide or 1 nM
scramble control (Applied Biosystems-Ambio Inc., Austin, TX, USA) were mixed with Lipofectamine
2000 (Invitrogen; Thermo Fisher Scientific, Inc., Waltham, MA, USA), according to the manufacturer’s
instructions. MC3T3-E1 osteoblasts (5 × 105 cells/well, 6-well plates) were transfected with the mixtures
followed by incubating in DMEM with 10% fetal bovine serum with or without 1 µM dexamethasone
for 24 h, as previously described [22]. In a subset experiment, cell cultures were transfected with 1 µg
SOCS2 RNAi and incubated in 1 µM dexamethasone for 24 h. Total RNA in cell cultures was isolated
for RT-qPCR analysis of miR-29a, SOCS2 and TNFSF13b expression.

4.12. Statistical Analysis

Data were expressed as means ± standard errors. Differences among miR-29a transgenic mice
and wild-type mice with glucocorticoid or vehicle treatment were analyzed by a parametric ANOVA
test and a Bonferroni post-hoc test. A p value of <0.05 was considered statistically significant.
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