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Abstract

Preconditioning is defined as a range of stimuli that allow cells to withstand subsequent anaerobic and other deleterious
conditions. While cell protection under preconditioning is well established, this paper investigates the influence of
neuroprotective preconditioning drugs, 4-aminopyridine and bicuculline (4-AP/bic), on synaptic communication across a
broad network of in vitro rat cortical neurons. Using a permutation test, we evaluated cross-correlations of extracellular
spiking activity across all pairs of recording electrodes on a 64-channel multielectrode array. The resulting functional
connectivity maps were analyzed in terms of their graph-theoretic properties. A small-world effect was found, characterized
by a functional network with high clustering coefficient and short average path length. Twenty-four hours after exposure to
4-AP/bic, small-world properties were comparable to control cultures that were not treated with the drug. Four hours
following drug washout, however, the density of functional connections increased, while path length decreased and
clustering coefficient increased. These alterations in functional connectivity were maintained at four days post-washout,
suggesting that 4-AP/bic preconditioning leads to long-term effects on functional networks of cortical neurons. Because of
their influence on communication efficiency in neuronal networks, alterations in small-world properties hold implications for
information processing in brain systems. The observed relationship between density, path length, and clustering coefficient
is captured by a phenomenological model where connections are added randomly within a spatially-embedded network.
Taken together, results provide information regarding functional consequences of drug therapies that are overlooked in
traditional viability studies and present the first investigation of functional networks under neuroprotective
preconditioning.
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Introduction

Neurons represent the cellular building blocks of the brain and

their complex intercellular mechanisms of communication provide

a foundation for higher-order functional networks to emerge. One

challenge in developing pharmacological therapies for the brain is

to design experimental models that retain key features of network

function. Experimental procedures based on ischemic precondi-

tioning have uncovered effective strategies to prevent neuronal

death by activation of an endogenous stress response prior to an

ischemic stroke [1,2]. One drug combination has recently been

shown effective in preventing neuronal demise through precondi-

tioning. It combines 4-aminopyridine (4-AP), a selective voltage-

gated potassium channel blocker, and bicuculline (bic), a GABAA

receptor antagonist [3].

While previous work has shown that 4-AP/bic provides in vitro

cell viability under combined oxygen and glucose deprivation, its

effects on communication within synaptic networks have yet to be

examined. This question arises in light of recent work representing

functional brain networks (i.e., maps of the statistical interactions

between neurons) as a highly complex system that can be

understood by applying principles of graph theory [4]. Various

neurophysiological impairments are accompanied by a breakdown

in graph-theoretic properties [5]. Does short-term exposure to 4-

AP/bic, a potential neuroprotective measure for stroke, cause

long-term changes in the functional organization of cultured

cortical networks?

Here, we employ multi-electrode arrays to record from

networks of cultured cortical neurons. In this preparation,

dissociated neurons are plated over a grid of electrodes that

record extracellular field potentials. Multi-electrode arrays record

neuronal activity at a spatial resolution that is a compromise

between microscale (i.e., single synapses) and macroscale (on the

order of millions of neurons, as in neuroimaging) approaches [6].

The spatiotemporal patterns of bursting activity revealed by multi-

electrode arrays provide a glimpse of the underlying functional

connectivity in the neuronal network [7,8]. Highly non-random

graph-theoretic properties have been characterized in functional

networks of dissociated neurons, including a small-world organi-

zation [9,10]. In these networks, functional interactions are

dominated by weak pairwise correlations that allow neurons to

communicate with few intermediate relay steps.

To characterize how ischemic preconditioning affects the small-

world organization of in vitro cortical cultures, we reconstructed

functional connectivity using a permutation test before and after 4-

AP/bic exposure. We examined functional networks in terms of

their graph-theoretic properties, and devised a phenomenological

model that offers a link between these properties in spatially-
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embedded networks. Our results uncover specific aspects of

functional connectivity that undergo long-term alterations as a

result of preconditioning, supporting the perspective that graph

theory can provide useful markers of pharmacological impacts on

neuronal circuits.

Materials and Methods

Tissue Culture and Recording
The protocol for preparing the primary neuronal cultures was

approved by the Institute for Biological Sciences Animal Care

Committee (National Research Council Canada). Here, we

provide an overview of methods, and refer elsewhere for further

details [3].

Cell cultures were recorded using 64 electrodes placed in an

868 array (ALA Scientific, Germany) (Fig. 1A). Each multi-

electrode array was coated with a thin layer of poly-ethylinimine, a

cationic polymer that facilitates cell adhesion to the glass plate.

Dissociated primary cortical neurons were prepared from 18 day

prenatal Sprague Dawley rats. A 1% solution of penicillin in

streptomycin was added to the suspended cells and the mixture

was filtered through a 40 mm cell strainer. 1000 ml of the 1.5 M

cell solution was then added to each multi-electrode array to cover

the electrode surface and was placed on a stand inside a covered

petri dish containing 10 mL of water. The cultures were kept in a

37uC incubator with a 5% carbon dioxide/95% air atmosphere.

To control the growth of microglia, mitotic inhibitor (20 ml of

FUDR/UDR) was added to each culture at 4 days in vitro (DIV). A

50% media change was performed once a week with essential

growth media. To maintain an osmolality range of 300 to 320

mOsmol, sterile water was added daily to each multi-electrode

array. Each culture was inspected daily under microscope to

ensure culture quality. Only cell cultures that exhibited a dense,

homogenous monolayer of healthy neurons were kept for further

manipulations.

Pharmacology
Three experimental conditions were employed. In the precondi-

tioning group, cultures were exposed to 500 mM 4-AP and 50 mM

bicuculline dissolved in 0.3% dimethyl siloxane (DMSO) in culture

media. In the DMSO group, the above solution was replaced with a

0.3% solution of DMSO. The non-DMSO group represents

treatment-free cultures. A total of 15 cultures were employed

and divided equally between the three conditions outlined. Unless

otherwise stated, the ‘‘control’’ condition described in Results

refers to the DMSO group.

Previous studies have demonstrated that cultures display

frequent activity one week after plating, synchronized bursting

activity at DIV 14 and achieve network maturity by DIV 21

[11,12]. Because our measure of functional connectivity is based

on synchronized spiking activity (see below), we began with a

baseline recording of initial (pre-drug administration) activity at

DIV 14. Cultures were exposed to 4-AP/bic at DIV 15 and a

second recording was obtained 24 h post exposure (DIV 16).

Drugs were removed after 48 hours of exposure (DIV 17) in

accordance with the timecourse of drug exposure required for

effective preconditioning [3]. A total media exchange was

performed in order to remove the treatment. A third recording

was obtained 4 h after drug washout (DIV 17) and a final

recording 4 days later (DIV 21).

Recordings
Recordings were performed using Multi Channel System

(MCS) software for microelectrode arrays. Arrays were mounted

on the recording platform and capped with a sterile vented

tissue culture lid to maintain sterility. Prior to each recording,

arrays were given a 20 minute incubation period on the

platform to equilibrate within an incubator maintained at 37uC
with 5% carbon dioxide. Each recording was carried out for

20 min duration. Recording parameters were as follows: 1100.0

amplifier gain, input voltage range of 22048 to +2048 mV,

sampling frequency of 5000 Hz. Low frequency shifts in the raw

signal were removed using a high-pass filter with a cut-off

frequency of 200 Hz.

Spike Detection
Extracellular spike detection was performed using MCS

software, with a threshold of 3 S.D. below the mean of the

filtered signal at each electrode (Fig. 1B). The resulting spike data

from MCS were then converted into Matlab files for offline

analysis.

Functional connectivity. Electrodes whose activity was

outside of 3 S.D. from the mean spike rate of the population

were removed from further data analysis. For each remaining

electrode, spike data were downsampled by separating the data

into non-overlapping bins of 10 ms, then taking the maximum

value (0 or 1) within each bin. Functional connectivity was

calculated as pairwise cross-correlations on downsampled spike

data [13,14]. Slight alterations in the size of the bins did not

drastically alter the results of this calculation. The cross-correlation

between each pair of electrodes was calculated as follows:

CCij~
E i{E ið Þ½ � j{E jð Þ½ �f gffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E i{E ið Þ½ �2
n o

E j{E jð Þ½ �2
n or , ð1Þ

where i and j are the time-series of two given electrodes having

means E if g and E jf g respectively. This calculation yields a

64664 matrix of cross-correlations that are independent of firing

rates [15].

Two electrodes were considered functionally connected if their

pairwise cross-correlation exceeded a threshold that was calculated

using a permutation test defined as follows. In a first step, the

timings of extracellular spikes were randomly rearranged for each

neuron independently across its entire recording time. For each

neuron, spike trains were converted to a binary vector (‘‘1’’ if a

spike was emitted, ‘‘0’’ otherwise). This vector was then shuffled

randomly by taking each spike and the inter-spike interval

immediately following it, and moving it to a different location

on the vector. This method of shuffling preserves the first-order

statistics of both spike rates and interspike intervals. In a second

step, the cross-correlations of shuffled spikes were computed to

produce an estimate of chance correlations. Extracellular spikes

were shuffled 100 times independently for every recording.

The greatest cross-correlation value found across all 100 runs of

the permutation test was employed as threshold, above which a

pair of electrodes was said to be functionally connected. Functional

connectivity obtained by the permutation test was represented as

an N6N adjacency matrix where N is the number of recording

electrodes (Fig. 1D). In this matrix, diagonal entries (i.e., self-

connections) were set to zero. Non-diagonal entries were set to

either 1 (indicating above-threshold cross-correlation) or zero. An

illustration of binary functional connections on a multi-electrode

array is shown in Fig. 1E; only edges remaining after the

permutation analysis are shown.

Altered Network Communication
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Graph Analysis
The adjacency matrix (obtained by the above-described

permutation test) served as input to graph-theoretic analyses. In

these analyses, we consider four different measures, namely the

degree of each node, its clustering coefficient, its average path

length, and the overall density of the network. The degree of a node

refers to the total number of connections between that node and

others in the network. For instance, node 1 in Fig. 2A has a degree

of 3 because it connects to a total of 3 other nodes. Path length refers

to the smallest number of intermediate nodes connecting a given

pair of nodes in the network. For instance, the shortest path length

linking nodes 1 and 3 in Fig. 2A is 1 because there is a single node

separating them (node 2). Adding a direct link between nodes 1

and 3 (Fig. 2B, dashed black line) reduces the path length to zero.

Clustering coefficient refers to the number of connections between

neighbours of a node over the total possible number of

connections. Here, the term ‘neighbours’ refers to pairs of nodes

that are directly connected to each other (or in other words, have a

path length of zero). For instance, node 2 (Fig. 2A) has a total of 4

neighbours, with a possible maximum of 6 connections between

them (excluding bidirectional and self-connections). Because none

of these neighbours are connected to each other, the clustering

coefficient of node 2 is zero. Adding a link between nodes 1 and 3

(both neighbours of node 2) increases clustering to 1/6 = 0.17

(Fig. 2B). Formally, the clustering coefficient Ci of a given node i is

computed by dividing the number of connections between its

neighbours, ni, over the total number of possible connections,

ki(ki21)/2, where ki is the degree of node i. Thus, for each node,

the clustering coefficient is mathematically expressed as:

Ci~
2ni

ki ki{1ð Þ : ð2Þ

The average clustering coefficient over all nodes i is denoted C.

Finally, we computed a measure of density, defined as the

percentage of edges in a given functional network given all

possible edges that could be present. Here, we define a sparse

network as a network with less than 20% of all possible links (the

justification for this criterion will become apparent in computa-

tional simulations below). For instance, the network of Fig. 2A has

18 nodes and therefore a capacity to accommodate up to 153 links.

Figure 1. Experimental procedure for reconstructing functional networks of cultured cortical neurons. A. Rat cortical neurons plated on
a 64 electrode microelectrode array (MEA) (only a subset of electrodes shown). Electrodes are spaced 200 mm apart and record the extracellular
activity of nearby neurons. B. Example of extracellular spikes measured over a subset of 15 electrodes simultaneously. Red: spikes. Blue: background
activity. C. Histograms of mean firing rates per channel (top) and cross-correlations between pairs of channels (bottom), taken over all DMSO cultures
recorded at DIV 14 (N = 5). D. Representative matrix of pairwise cross-correlations obtained across all recording electrodes. The diagonal (activity at
each channel compared to itself) is set to zero. E. Graph obtained by the permutation test (see Experimental Procedures). Circles correspond to
electrodes on the MEA. Lines show above-chance cross-correlations. Blue: active electrodes; white: inactive electrodes (extracellular spike rate less
than 3 S.D. below that of the population); yellow: active electrodes with no above-chance correlation to other electrodes. A–D: obtained with a DMSO
control culture (DIV 14).
doi:10.1371/journal.pone.0054478.g001
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Given that this network has only 21 links, and hence a density of

21/1536100 = 13.73%, it is considered sparse.

For the purposes of the current work, we draw a distinction

between two types of networks, namely random and small-world

[16]. In a random network, all nodes have roughly the same degree,

resulting in an overall binomial degree distribution. In small-world

networks, the average clustering coefficient across nodes is markedly

higher than in a random network with an equivalent distribution

of degrees; the average path length, on the other hand, is

comparable.

Networks may be designed such that the probability of a

connection between two given nodes is highest when nodes are

nearby in space, and lowest when nodes are distant. Networks

wired in this way are termed spatially-embedded to reflect the

influence of spatial distances on connectivity [17,18]. For instance,

the network of Fig. 2A is connected such that a majority of

connections link together nearby nodes. In recordings of cortical

networks, spatial distances reflect the physical proximity of

electrodes on the multi-electrode array. Adding local connections

in this network (Fig. 2B, dashed lines) yields a network with higher

density, as evidenced by the increased number of links. The

resulting network also shows higher clustering, as shown by the

increased number of ‘‘closed triangles’’ between triplets of nodes

(yellow shading) which highlight neighbours of a node that are also

neighbours of each other. Finally, the resulting network has

shorter path lengths, given the fewer number of intermediate links

between nodes (e.g., the dashed line between nodes 1 and 3 in

Fig. 2B reduced the path length between those two nodes). These

effects will be examined in the Results section below.

Statistical testing was performed using the Wilcoxon rank-sum

test with adjusted Bonferroni correction for multiple planned

comparisons. This analysis yields a family-wise Type I error rate of

0.15 [19] and results in a critical p value of 0.0375. This test is

employed to compare spike rates and network measures (density,

clustering, and path length) across experimental conditions, and

was chosen over parametric testing because distributions of spike

rate violated the assumption of normality. In order to apply this

test, we pooled together data from arrays within the same

experimental condition (DIVs 14, 16, 17, and 21). The use of

pooling is justified by the limited amount of variation across arrays

(e.g., spike rates, Fig. 1C). The phi coefficient – a Pearson’s r

estimate for binary data – was employed to examine the degree to

which a given network’s pairwise connections correlated between

experimental conditions [20]. The phi coefficient can be

interpreted as a measure of pairwise wiring stability, calculated as:

q~
ad{bcffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

azbð Þ czdð Þ azcð Þ bzdð Þ
p , ð3Þ

where a is the number of pairs of electrodes that remained

connected, b are the pairs that gained connections, c are the pairs

that lost connections and d are the pairs that remained

unconnected between two recordings. We computed Eq.3 for

each culture, and obtained values of a, b, c, d by comparing DIV

14 to each later DIV (16, 17, and 21). This analysis yielded a

separate value of phi coefficient and a test of statistical significance

for each culture and each of DIVs 16, 17 and 21. Statistical

significance was assessed using a chi-square test [21]:

x2~Nq2, ð4Þ

where N = a+b+c+d and degrees of freedom are n-1 (given n

number of observations). We corrected for multiple comparisons

using a Dunn-Bonferroni correction that accounted for the

number of cultures and the three later DIVs under consideration.

In Results below, we report the mean value of Q 2 across cultures

(denoted q̂q2), indicative of the proportion of shared variance

between DIV 14 and a later time point. We also report the

maximum value of phi coefficient across cultures (denoted Q max).

All graph measures were computed using the Brain Connectivity

Toolbox [22]. Additional custom software in the Matlab language

served as an interface between experimental data and the toolbox.

Results

Reversible Effects of Preconditioning on Spike Rate
At DIV 14 (prior to experimental manipulations), mean spike

rates per channel were typically low (,1 Hz) and followed a

similar distribution across cultures (see Fig. 1C for a distribution

taken from each DMSO recording at DIV 14, N = 5). Cultures

exhibited brief periods of weakly synchronized activity interspersed

by periods of relative quiescence (Fig. 3A). Due to violations in the

assumptions of normality, the Wilcoxon rank-sum test for

nonparametric data was used. Mean spike rates of the treated

and control cultures were comparable at baseline (DMSO control

vs. treated cultures, p..21; non-DMSO control vs. treated

cultures, p..42). Recordings obtained 24 h after exposure to 4-

AP/bic (DIV 16) show markedly increased synchronization

compared to both DMSO and non-DMSO controls, accompanied

Figure 2. Adding connections between neighbouring nodes in a network. A. In this network, a majority of connections link nodes that are
close together in space. B. New connections are added (dashed lines), resulting in a network with higher density, higher clustering, and shorter path
lengths. The addition of connections between adjacent nodes thus alters the graph-theoretic properties of the network. A–B: yellow areas highlight
triplets of nodes forming closed triangles, showing neighbours of a node that are neighbours of each other (clustering coefficient).
doi:10.1371/journal.pone.0054478.g002
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by a surge in firing rates (Fig. 3B) (DMSO control vs. treatment,

p,.008; non-DMSO control vs. treatment, p,.008). At DIV 17

(4 h post washout of 4-AP/bic), rates of activity for the treated

cultures dropped below both DMSO and non-DMSO controls

(Fig. 3C) (DMSO control vs. treatment, p,.02; non-DMSO

control vs. treatment, p,.008). Finally, at DIV 21 (4 days post-

washout of 4-AP/bic), the activity rates of treated cultures

returned to levels comparable to both DMSO and non-DMSO

controls (DMSO control vs. treatment, p..69; non-DMSO

control vs. treatment, p..84) (Fig. 3D).

In summary, consistent with previous work, application of 4-

AP/bic led to reversible effects on network activity rates [3]. In the

next three sections, we consider whether graph-theoretic measures

of functional connectivity, known to play a role in network

communication, are also affected in a reversible fashion.

Pairwise Cross-correlations Depend on Physical Distance
and Follow a Lognormal Distribution

In control (DMSO) cultures, cross-correlations between the

timeseries of activity at pairs of electrodes were typically low and

exhibited a similar distribution across cultures (see Fig. 1C for a

distribution taken from each DMSO recording at DIV 14, N = 5).

The mean spike cross-correlogram indicates a clear peak at a time

lag of 0 ms (Fig. 4A) (similar results were obtained for non-DMSO

cultures). Based on this result, we chose to estimate functional

connectivity based on cross-correlations with 0 ms time lag; slight

changes to this time lag did not drastically alter the resulting

functional networks. The distribution of cross-correlations taken

over all pairs of electrodes is well-fitted by a lognormal distribution

(Fig. 4B). Unlike a Gaussian distribution, the lognormal distribu-

tion is asymmetric and decays much slower for large values [23].

While there were minor alterations in the parametric fit of the

Figure 3. Representative rasters showing the timing of extracellular spikes across control conditions (DMSO and non-DMSO) and
with 4-AP/bic exposure. In control cultures, activity begins to synchronize at DIV 14 (A); synchronization is maintained for the duration of the
experiment (DIV 21). Application of 4-AP/bic induces hypersynchronization (B). Drug washout leads to a downregulation in activity (C), followed by
recovery (D). Rightmost column are mean firing rates (* = p,.05). Vertical bars: SEM.
doi:10.1371/journal.pone.0054478.g003
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lognormal distribution across DIVs of the control cultures, a

similar overall profile was observed.

Cross-correlations decreased exponentially as a function of

distance between pairs of electrodes (Fig. 4C). This result provides

supportive evidence for a spatially-embedded model of functional

connectivity where the probability of a functional connection is

dependent upon the physical distance between nodes (where a

node represents an electrode on the multi-electrode array). We

elaborate on such a model below. Distance-dependent correlations

may reflect a decrease in the probability of synaptic connections as

a function of physical distance between populations of neurons in

the vicinity of each electrode [24]. Next, we consider how cross-

correlations may be altered during and following 4-AP/bic

treatment.

Global Network Configuration Remains Stable Following
Application of 4-AP/bic

Using the permutation test described in Materials and Methods,

we converted pairwise cross-correlations to a binary network of

connections between electrodes. Then, using the phi (Q) coeffi-

cient, we examined whether application of 4-AP/bic resulted in

alterations (addition or deletion) of binary edges. In the DMSO

control cultures, baseline functional connectivity (at DIV 14) was

robustly correlated with later time-points at DIV 16 (q̂q2 = .32, Q

max = .72), DIV 17 (q̂q2 = .27, Q max = .63), and DIV 21 (q̂q2 = .13, Q

max = .55) (all three phi coefficients were statistically significant at

p,.04 after Dunn-Bonferroni correction). A similar result was

obtained for non-DMSO control cultures, where functional

connectivity obtained at DIV 14 was correlated with that obtained

at DIV 16 (q̂q2 = .35, Q max = .79), DIV 17 (q̂q2 = .20; Q max = .58)

and DIV 21 (q̂q2 = .14, Q max = .61) (all three were statistically

significant, p,.01). These results indicate that pairs of electrodes

that are connected in earlier recordings tend to remain connected

in later recordings, thus preserving stable functional connectivity

over the course of in vitro development.

In cultures treated with 4-AP/bic, baseline functional connec-

tivity (DIV 14) was correlated with connectivity obtained at 24 h

after exposure (DIV 16; q̂q2 = .2, p,.01; Q max = .77) but was no

longer correlated with connectivity obtained at 4 h washout (DIV

17; q̂q2 = .002, p..42; Q max = .45), in part because of depressed

levels of activity (Fig. 3C). Baseline functional connectivity was

weakly (but significantly) correlated with connectivity at 4 days

washout (DIV 21; q̂q2 = .04, p,.01; Q max = .59), suggesting that

effects of 4-AP/bic on functional connectivity were partly

reversible.

The transient nature of drug-induced changes in functional

connectivity is supported by examination of the overall distribution

Figure 4. Baseline properties of functional connectivity in cortical networks. A. Representative cross-correlogram in a DMSO culture at
baseline (DIV 14). The mean cross-correlation across all pairs of recording electrodes is highest at 0 ms time-lag. B. The distribution of pairwise cross-
correlations (gray dots) is fitted by a lognormal distribution (solid line). Adjusted r2 = .93. C. Relationship between cross-correlation and physical
distances between electrodes on the MEA. Grey dots: individual data points of correlation between pairs of electrodes. Solid line: fitted exponential
function. Dotted lines: 99% confidence intervals. Adjusted r2 = .85. B–C are taken over all DMSO cultures from DIV 14 (N = 5).
doi:10.1371/journal.pone.0054478.g004
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of cross-correlations over time. In DMSO controls, the distribution

of cross-correlations follows a lognormal distribution (see above); a

similar distribution is observed at all time-points of recording

(Fig. 5A). In preconditioned cultures, a marked departure from a

lognormal distribution is observed at 4 h post washout (Fig. 5B,

solid black line), largely due to depressed levels of activity following

removal of 4-AP/bic (see Fig. 3C). This effect is transient, and the

deviation from a lognormal distribution observed at 4 h post

washout is no longer present 4 days post washout (DIV 21).

Taken together, the above results indicate that 4-AP/bic alters

functional connectivity, but that these drug-induced changes are

transient. The above analyses did not, however, consider more

subtle aspects of functional networks that may be altered under 4-

AP/bic. As illustrated by previous work [16], only a small number

of rewired connections are required to transform a structured

network into a small-world network, and this transition is

undetectable at the local level. We address this issue in the next

section by considering whether global measures of path length and

clustering coefficient, associated with small-world networks, are

altered as a result of preconditioning treatment with 4-AP/bic.

Alterations in Small-world Properties of Functional
Connectivity by 4-AP/bic

First, we aimed to determine whether baseline functional

networks in the preconditioning group could be described as

having small-world connectivity. We began by calculating the

average path length (Lreal = 1.81) and clustering coefficient

(Creal = .67) of functional networks obtained by the permutation

test (see Materials and Methods). These averages are taken over all

DMSO cultures of DIV 14 (N = 5). Then, we randomized the

connectivity of functional networks while maintaining intact the

overall degree sequence [25] using Matlab code from the Brain

Connectivity Toolbox [22]. We obtained a total of 100

randomized networks and, for each, calculated path length and

clustering coefficient. When compared with these randomized

networks, baseline functional networks of the preconditioning

group were similar in terms of their average path length

(Lrandom = 1.71, z(293) = 1.903, p..06) but had markedly higher

clustering coefficients (Crandom = .39, z(293) = 11.167, p,5.9085E-

29). These results are consistent with a small-world effect [9,10];

comparable results were found for DMSO and non-DMSO

cultures.

Next, we compared functional networks of the preconditioning

group after exposure to 4-AP/bic with those of control DMSO

cultures recorded at the same time-point (DIV 14). Both groups

had statistically comparable values of average path length and

clustering coefficient (Table 1 top row, Wilcoxon rank-sum test).

Following washout of the drug (4 days post washout, DIV 21), the

clustering of preconditioned cultures increased while their path

length decreased compared to control cultures (Table 1, bottom

row), showing a lasting effect of 4-AP/bic on the small-world

organization of functional networks. This effect was accompanied

by an increase in the density of functional connections compared

to control cultures. Density was statistically higher in precondi-

tioned cultures compared to controls at 4 days post washout.

While the above results describe alterations in preconditioned

cultures compared to controls, we also examined within-group

alterations between functional connectivity at baseline and 4 days

post washout in preconditioned cultures. Results mirror those

obtained above: functional networks of preconditioned cultures at

4 days post washout had higher density, higher clustering, and

lower path length than networks of the same cultures taken at

baseline (Fig. 5C–E). In control cultures (DMSO and non-

DMSO), no statistically reliable changes were found between

measures of functional networks taken at baseline versus 4 days

post washout.

Figure 5. Alterations in functional networks exposed to 4-AP/bic. A–B: Cumulative distribution of cross-correlations for DMSO controls and
4-AP/bic networks in each recording session. Pink: prior to drug exposure (DIV 14); Green: 24 h after exposure (DIV 16); Black: 4 h washout (DIV 17);
Blue: 4 days post washout (DIV 21). With the exception of the recording obtained 4 hours following washout of 4-AP/bic, all networks show a
comparable distribution of cross-correlations. C–E: Alterations in network density (C), clustering (D), and path length (E) preceding exposure to 4-AP/
bic (gray bars) vs. 4 days post washout (white bars). Vertical bars = SEM. * = p,.01 after Dunn-Bonferroni correction (Wilcoxon rank-sum test).
doi:10.1371/journal.pone.0054478.g005
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Taken together, results suggest that cultures treated with 4-AP/

bic sustain lasting alterations in small-world functional connectiv-

ity. In order to account for changes in functional connectivity that

impact path length, clustering, and density, the next section

describes a spatially-embedded model where functional connec-

tions are added at random with a probability that is dependent on

the physical distance between nodes. We show with this model that

the above results suggest an increased randomization in the

functional connectivity of 4-AP/bic networks compared to control

networks.

Spatially-embedded Model of Network Connectivity
We devised a simplified model of functional connectivity to

account for alterations in small-world properties as a result of 4-

AP/bic. The goal of this model is not to capture exact empirical

values but rather to provide a framework for capturing changes in

small-world functional connectivity as a network undergoes

changes in density.

The starting point for this model is a set of N = 100 disconnected

nodes (where no two nodes are connected to each other;

simulations with N = 64 and N = 128 did not lead to qualitatively

different results). These simulated nodes were positioned on a two-

dimensional plane, thus accounting for spatial distances between

nodes. We then gradually added connections between pairs of

nodes, one link at a time. Nodes that were near each other had a

greater probability of establishing new edges than nodes farther

from each other. This was implemented in two steps. First, we

drew a candidate connection between pairs of nodes selected with

replacement from a uniform random distribution. Then, we

computed the probability of maintaining that candidate connec-

tion in place by using a 2D Gaussian probability distribution that

favoured the establishment of connections over short spatial

distances (Fig. 6A). The above steps were repeated until a target

density of connections was reached. This density was initially set to

10%, meaning that 10% of all possible pairwise connections were

present (Fig. 6B, left panel). The target density was then gradually

increased until it reached 80%, and at each increment of 1% we

computed clustering and path length over the entire network.

In different simulations, we altered the width (s) of the 2D

Gaussian distribution relating the probability of connections to

spatial distances. To draw a parallel with experiments, we consider

that inter-electrode distances on the array are 200 mm (Fig. 1A)

and that mean cross-correlations approach zero as inter-electrode

distances increase beyond ,1800 mm (Fig. 4C). By comparison, in

the model, the probability of establishing a connection given a

Gaussian function with s= 2 approaches zero after ,15 arbitrary

distance units, corresponding to roughly the same ratio as

experiments. All connections were stored in an NxN matrix of

binary values (where ‘‘1’’ and ‘‘0’’ denote the presence and

absence of a connection, respectively).

The relationship between clustering and density follows a U-

shaped function (Fig. 6C). Clustering decreases as density increases

from 10–15%, then gradually increases as density increases from

15–80%. Path length, on the other hand, decreases monotonically

as density increases (Fig. 6D). The relationship between density

and small-world properties provides a simple mechanistic expla-

nation for the effect of 4-AP/bic on clustering and path length. In

drug-treated cultures, network density increases from 48.75% at

baseline to 79.59% at 4 days post-washout (DIV 21) (Fig. 5C). This

increase is accompanied by an increase in clustering (Fig. 5D) and

a decrease in path length (Fig. 5E). The model captures all these

results in a unified fashion. In the model, an increase in density

from ,50% to ,80% (values comparable to baseline and 4 days

post washout cultures, respectively) leads to an increase in

clustering (Fig. 6C) accompanied by a decrease in path length

(Fig. 6D), in line with experimental findings. These results are

straightforward to explain: a higher density of connections

increases the incidence of shared connections amongst neighbours

(leading to increased clustering) and decreases the number of

intermediate steps to connect any pair of connected nodes in the

network (leading to decreased path length). Similar results relating

density, clustering and path length were found across various

spatial-embedding functions (Fig. 6C–D).

In addition to capturing experimental findings, the model

provides a testable prediction about network properties at low

densities of functional connectivity. The model proposes that an

increase from 10% to 20% density is accompanied by a decrease in

clustering and a decrease in path length (Fig. 6C–D). This prediction

is linked to the spatial embedding of connections in the model; an

identical model without spatial embedding (i.e., where the spatial

distance between neurons does not affect their probability of

establishing a connection) does not yield a U-shape function

relating density and clustering (Fig. 6C–D, insets).

We examined whether a U-shaped relation between density and

clustering emerged from our experimental data. In a first series of

analyses, we began with a DMSO functional network at DIV 14

(,50% density, Fig. 5C). We then gradually added connections

between pairs of electrodes following a distance-dependent

probability (Fig. 6A, s= 2). Each time a connection was added,

we computed the small-world properties of the network (clustering

coefficient and path length). A second series of analyses was

designed to examine the relation between low connection densities

and small-world properties. In these analyses, we began with a

DMSO functional network at DIV 14 and gradually pruned

connections, again following a distance-dependent probability

with s= 2. The growing and pruning analyses were repeated with

all DMSO functional networks at DIV 14 (N = 5), and average

clustering coefficients and path lengths were computed. The

overall relation between density and clustering followed the

characteristic U-shaped function found in computational simula-

tions (Fig. 6E). We compared this relation with analyses that added

and deleted connections but did not follow a distance-dependent

probability. In this case, clustering increased monotonically with

density (Fig. 6E, inset), suggesting that the characteristic U-shaped

relation between clustering and density relies on distance-

dependent connectivity. Path length did not yield a U-shape

relation with density; this result was found both with and without

distance-dependent connectivity (Fig. 6F). Overall, analyses of

cortical functional networks corroborate the spatially-embedded

model, and suggest that a U-shaped relation between density and

clustering may be a property of a broad class of networks where

Table 1. Alterations in graph measures with 4-AP/bic relative
to DMSO controls at the same DIV.

Clustering
Coefficient Path Length Density

4h wash-in (DIV 14) = = =

4 day washout (DIV
21)

UP DOWN UP

Note. Table shows the direction of statistically reliable differences between
drug-treated cultures vs. DMSO controls (Wilcoxon rank-sum test, statistical
criterion of p,.01 after Dunn-Bonferroni correction). Equal signs ‘‘ = ’’ indicate
no statistically reliable differences.
doi:10.1371/journal.pone.0054478.t001
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connection probabilities depend on spatial distances amongst

nodes.

Discussion

We investigated the effect of a preconditioning drug treatment

(4-AP/bic) on cortical neurons by combining multi-site recordings

with analyses based on graph-theoretic measures of functional

connectivity. Our results show alterations in the small-world

properties of cultured neurons and represent, to our knowledge,

the first demonstration of functional network organization under a

neuroprotective preconditioning paradigm. Our results highlight

the lasting consequences of 4-AP/bic on three measures of

functional connectivity (path length, clustering coefficient, and

density), despite the fact that rates of activity at individual

electrodes return to baseline levels within 4 days post treatment.

Drug-induced alterations in path length, clustering, and density

were captured by a simplified model of connectivity with random

wiring and spatial embedding. In this model, density was gradually

increased, with nodes that were near each other having a greater

probability of establishing new edges than nodes that were farther

apart. Consistent with multi-electrode array data obtained from

preconditioned cultures, an increase in density in the model was

accompanied by an increase in clustering and a decrease in path

length. The model suggests that the addition of new edges as a

Figure 6. Spatially-embedded model of functional connectivity reproducing 4-AP/bic-induced alterations. A. Gaussian probability
density function of the relationship between physical distance (arbitrary units) and the probability of two nodes being connected in the model. Inset:
three different Gaussian functions are shown, with different values of standard deviation (s). B. Connectivity maps for three different versions of the
model where the density of connections is either 10%, 20%, or 30% of the total possible number of connections. The model was composed of 100
nodes. Binary ([0,1]) connections between nodes are shown in white. All three examples were generated with s= 6. C–D: Using a spatially-embedded
model of connectivity (see Main Text), we computed mean values of clustering coefficient (C) and path length (D) obtained with different
percentages of connection densities ranging from a sparse model (10% density) up to a densely connected model (70% density). Different lines show
models with values of s= 12, 10, 8, 6, 4, 2 (from top to bottom) controlling the standard deviation of spatial embedding. Measures of clustering and
path length were normalized by random networks that preserved degree sequence [25]. Note the U-shaped relation between clustering and density,
whereas path length decreases monotonically as density increases. Inset: same as C-D, but obtained from a model with no spatial embedding. E–F:
DMSO networks at baseline (DIV 14) exhibit a similar U-shaped relation between clustering coefficient and density (E) as the spatially-embedded
model (s= 2), while path length (F) decreases monotonically with density. Solid black lines: mean clustering coefficient and path length taken over
DMSO baseline networks. Vertical dashed line: Mean density of original DMSO networks (without growing or pruning). Shaded areas: SEM.
Inset = clustering and path length in analyses with no spatial embedding of the growing and pruning processes.
doi:10.1371/journal.pone.0054478.g006
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result of 4-AP/bic follows a random process influenced by spatial

distance. The presence of spatial embedding is in keeping with the

distance-dependent strength of pairwise cross-correlations consis-

tently found in cultures (Fig. 4C).

Simulations of network growth in a spatially-embedded model

led to the prediction of a U-shaped relation between connection

density and clustering coefficient, such that increasing connections

from an initially low density (0–10%) led to a decrease in clustering

followed by an eventual increase as density rose beyond 20%. This

U-shaped relation was specific to spatially-embedded simulations,

and did not emerge from networks whose growth was not

constrained by spatial distance. We tested the prediction of a U-

shaped relation between density and clustering by randomly

pruning and growing DMSO networks obtained at DIV 14. When

pruning and growing was performed according to a distance-

dependent function, analyses of cortical networks yielded the

characteristic U-shaped function observed in simulations. The

effect was not produced when pruning and growing was

performed without a distance-dependent function.

A U-shaped relation between density and clustering leads to the

non-trivial finding that adding connections to spatially-embedded

networks that are sparse (i.e., where the initial density is less than

20%) may lower the clustering coefficient, resulting in a network

where pairs of connected nodes are less likely to share common

neighbours. This finding is contrasted with the more standard

notion that, in non-spatial networks, adding connections increases

the probability that pairs of nodes will share common neighbours,

thus increasing the clustering coefficient of the network and

decreasing its path length [26].

Changes in the density of functional connections in drug-treated

networks cannot at present be mapped directly to potential

changes in synaptic connectivity or synaptic efficacies. Patch-

clamp experiments show that the probability of a physical

connection as well as the strength of a connection both follow a

distance-dependent function [27]. The distance-dependent nature

of synaptic connections, efficacies, and functional interactions

place limiting constraints on the type of functional and anatomical

connectivity that a network can exhibit. Furthermore, as illustrated

both in our current simulations and analyses of cortical networks,

distance-dependent networks exhibit characteristic alterations in

clustering coefficient and path length as a result of the addition or

deletion of connections.

In recent multielectrode recordings performed in macaques, two

factors were identified as playing a prominent role in estimations

of the small-world properties of functional networks on multielec-

trode arrays [28]. The first of these factors was the distance-

dependent nature of functional connections on the array, as shown

in our work. Accordingly, a small-world effect can emerge from

networks without the need for explicit rewiring (in contrast to the

original account of small-world networks) [16]. Distance-depen-

dent connectivity allows for the formation of densely connected

neighbours at the proximal scale, resulting in high clustering

coefficient. In addition, distance-dependent connectivity allows for

the formation of a few long-range connections, leading to a low

path length.

A second factor contributing to a small-world effect is a bias

caused by the non-homogeneous sampling of neurons under

multielectrode recordings. This factor, however, is unlikely to

account for our findings of drug-induced changes in small-world

properties, given that any sampling bias would affect functional

networks under all conditions [28].

4-AP/bic likely achieves neuroprotection by activation of an

endogenous stress response. On the one hand, 4-AP elevates the

concentration of positively charged potassium ions inside the

postsynaptic terminal, which in turn increases the duration of

neuronal spike discharges. On the other hand, bicuculline

attenuates inhibitory signals in the neural network, increasing

the probability of propagating action potentials. One possibility is

that 4-AP/bic induces homeostatic plasticity that regulates overall

levels of activity. Consistent with this idea, chronic exposure to

bicuculline results in overuse hyposensitivity by downward

synaptic scaling [29]. Still unknown, however, are the long-term

effects of synaptic scaling on the emergent organization of

functional networks.

Our work opens the door to questions on the relationship

between functional connectivity and neuroprotection provided by

preconditioning. Are there certain patterns of functional connec-

tivity that promote neuroprotection in the face of ischemic injury?

And are these patterns of functional connectivity maintained after

an insult? Addressing these important questions will require

further work that combines neuroprotection, ischemic injury, and

graph analysis.

The study of functional connectivity on multi-electrode arrays

has been expanding steadily in recent years. In one study, authors

proposed a model of neuronal injury based on elevated glutamate

levels. Four days following glutamate exposure, functional

networks underwent a transition from small-world to random

organization, characterized by a drop in clustering coefficient and

a Gaussian degree distribution [10]. However, this analysis was

performed on cultures in which some neurons died, whereas the

current study examined a neuroprotective phenotype. In other

studies, neurons were electrically stimulated in order to induce

plasticity, and functional networks were shown to undergo

pathway-specific changes consistent with potentiation and depres-

sion [30,31]. Despite these advances, many questions remain

unanswered. Perhaps most importantly, we have a poor grasp of

the relation between measures of functional connectivity and the

underlying synaptic architecture of in vitro networks. Progress in

this area will allow us to draw links between synaptic plasticity and

its impact on functional connectivity at the scale of neuronal

circuits.

The ubiquity of small-world properties in multiple spatial scales

and algorithms for reconstructing functional connectivity suggests

that these properties constitute an adaptive organization in brain

circuits. There is, however, no consensus as to why they are so

prevalent. One hypothesis is that small-world networks allow for

rapid information processing because of their short path length

[5,24]. Another possibility is that these properties have no defined

role, but simply represent the byproduct of competitive processes

in development [32]. Regardless of their ultimate functional

purpose, it is widely accepted that loss of small-world organization

results in disruptive changes at both the neural [10] and cognitive

[5] levels. Understanding the impact of drug interventions on

functional networks is a crucial step towards the design of efficient

strategies for maintaining intact neural processes that are central

to cognitive and behavioral outcomes.
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