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DeepFHR: intelligent prediction of fetal
Acidemia using fetal heart rate signals
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Abstract

Background: Fetal heart rate (FHR) monitoring is a screening tool used by obstetricians to evaluate the fetal state.
Because of the complexity and non-linearity, a visual interpretation of FHR signals using common guidelines usually
results in significant subjective inter-observer and intra-observer variability. Objective: Therefore, computer aided
diagnosis (CAD) systems based on advanced artificial intelligence (AI) technology have recently been developed to
assist obstetricians in making objective medical decisions.

Methods: In this work, we present an 8-layer deep convolutional neural network (CNN) framework to automatically
predict fetal acidemia. After signal preprocessing, the input 2-dimensional (2D) images are obtained using the
continuous wavelet transform (CWT), which provides a better way to observe and capture the hidden characteristic
information of the FHR signals in both the time and frequency domains. Unlike the conventional machine learning
(ML) approaches, this work does not require the execution of complex feature engineering, i.e., feature extraction
and selection. In fact, 2D CNN model can self-learn useful features from the input data with the prerequisite of not
losing informative features, representing the tremendous advantage of deep learning (DL) over ML.

Results: Based on the test open-access database (CTU-UHB), after comprehensive experimentation, we achieved
better classification performance using the optimal CNN configuration compared to other state-of-the-art methods:
the averaged ten-fold cross-validation of the accuracy, sensitivity, specificity, quality index defined as the geometric
mean of the sensitivity and specificity, and the area under the curve yielded results of 98.34, 98.22, 94.87, 96.53 and
97.82%, respectively

Conclusions: Once the proposed CNN model is successfully trained, the corresponding CAD system can be served
as an effective tool to predict fetal asphyxia objectively and accurately.

Keywords: Fetal acidemia, Computer aided diagnosis system, Continuous wavelet transform, Convolutional neural
network, Fetal heart rate

Background
Fetal distress caused by hypoxia can lead to various ab-
normalities that can be divided into life-threatening and
non-life-threatening events during the process of child-
birth. Since the brain of a neonate is easily influenced by
oxygen supply, a lack of oxygen can cause serious dam-
age to the brain and even death [1]. Hence, to detect

fetal acidemia early, we need a powerful technique that
can monitor the fetal state in real time, and once an ab-
normal situation occurs, alert obstetricians to intervene
in a timely manner before there is permanent damage to
the fetus.
In clinical practice, cardiotocography (CTG) involves

the continuous recording of the fetal heart rate (FHR)
and uterine contraction (UC) signals and is routinely
adopted by doctors to monitor and assess the fetal state
during pregnancy and delivery [2, 3]. Unfortunately, due
to the complexity of fetal physiological dynamics, which
are regulated by neurological feedback loops, the visual
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analysis of FHR signals using common guidelines usually
leads to high intra-observer and inter-observer disagree-
ment among experts [4, 5]. In practice, obstetricians per-
form multiple subjective evaluations and thereby
minimize diagnostic error. However, the main issue of
the aforementioned process is the inability to be quanti-
tatively realized, and obstetricians make decisions based
on their individual experience [6, 7]. Consequently, the
incidence rate of unnecessary cesarean sections (CSs)
caused by subjective error is increasing and has become
the main driving force in the search for a more objective
analysis of the FHR signal [8].
In recent decades, to overcome the inherent defects of

visual interpretation of FHR signals, many researchers
have attempted to design reliable computer-aided diag-
nosis (CAD) systems consisting of automatic signal pro-
cessing and evaluation [9]. Many advanced
developments in the biomedical engineering field have
been extensively used in FHR signals, such as frequency
domain analysis [10], nonlinear features (entropy, com-
plexity, etc.) arising from the domain of adult heart rate
variability (HRV) analysis [11, 12], and others [13].
Furthermore, over the past several years, the existing

CAD systems have been implemented with the applica-
tion of machine learning (ML) algorithms to automatic-
ally classify pathological fetal events from normal events.
Table 7 summarizes the related state-of-the-art work fo-
cusing on the above aim. Notably, earlier efforts on
FHR-based CAD systems employed the conventional
ML approaches and followed the same procedure: (i.)
signal preprocessing (i.e., denoising), (ii.) feature extrac-
tion, (iii.) feature selection, and (iv.) final classification.
These methods based on predictive learning classifiers
mostly relied on complex hand-crafted features. For
example, Czabanski et al. [14] designed an expert sys-
tem to predict neonatal acidemia using a two-stage
analysis based on weighted fuzzy scoring (WFS) and
least square support vector machine (LS-SVM) and
obtained performance with an accuracy (Acc) and
quality index (QI) of 92.0 and 88.0%, respectively.
Fanelli et al. [15] introduced a new nonlinear param-
eter based on the phase-rectified signal average
(PRSA) for the quantitative assessment of fetal well-
being and achieved an area under the curve (AUC) of
75% using the univariate analysis method. Comert
et al. [16] applied an artificial neural network (ANN)
and performed a classification with an Acc, sensitivity
(Se), and specificity (Sp) of 92.40, 95.89 and 74.75%,
respectively. Obviously, the feature engineering has
dominated over conventional methods involving the
difficult process of informative feature extraction and
optimal feature selection, which is time-consuming,
and may result in loss of physiological information re-
garding the fetus during the overall procedure.

Traditional ML methods usually exist the concept of the
“black box“where even their designers cannot provide
explanations/justifications explain why the artificial
intelligence (AI) can accomplish the specific decision.
Holzinger focused on the explainable AI, which made
more re-traceable, explainable and reliable decisions [17].
In this study, we propose a deep convolutional neural

network (CNN) framework aimed at FHR classification.
Compared to the previously mentioned traditional
methods, the CNN-based approach is completely data-
driven and does not need to explicitly define the essen-
tial steps, namely, feature extraction and selection and
classification [18]. Actually, these steps are all incorpo-
rated into the CNN model by means of self-learning in-
formative features from the input data. CNNs have
already yielded great achievements in image classifica-
tion since they consider the spatial structure of the input
data and avoid the curse of dimensionality [19]. Due to
the attractive advantages, CNNs are extensively utilized
in the medical field for the purpose of designing screen-
ing tools that automatically assist clinicians. For ex-
ample, Acharya et al. designed the CNN structure to
diagnosis coronary artery disease using an electrocardio-
gram (ECG) signal and achieved high accuracy of 95.11%
[20]. In addition, Li et al. applied the 1-dimensional (1D)
CNN to classify FHR signals and obtained the Acc of
93.24% [21]. Additionally, Comert et al. also proposed a
novel approach to detect fetal hypoxia based on a deep
CNN with transfer learning using the FHR signal and
short term Fourier transform (STFT) [22].
Notably, a traditional CNN model requires 2D images

as input, but most biomedical signals only have a 1D
structure. Therefore, after signal preprocessing, we apply
the continuous wavelet transform (CWT) to pure FHR
signals and obtain 2D time-frequency images, which can
reflect the local hidden characteristic information of the
FHR signals in both the time and frequency domains
[23]. We evaluate our proposed algorithm on the freely
open-access database, which is available from physionet.
org [24, 25]. Figure 1 shows the entire framework pro-
posed in this work.
In summary, automatic processing and further

classification of FHR signals are indispensable com-
ponents of CAD systems that satisfy the primary
goal of this study, which is to facilitate the intense
work of obstetricians and to assist them in making
appropriate medical decisions to better protect the
health of pregnant women and fetuses. The remain-
der of the paper is organized as follows: Section 2
introduces the database and gives a detailed descrip-
tion of the overall methodology of our proposed
system; Section 3 depicts the corresponding experi-
mental results and presents the discussion, including
a comparative analysis with existing approaches; and
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Section 4 concludes the entire work and proposes
directions for future work.

Methods
Database description
The data used in this work originated from CTU-UHB,
a freely open-access database of a subset with 552 intra-
partum CTG recordings that were acquired between
2009 and 2012 in the obstetrics ward of the University
Hospital in Brno, Czech Republic [25]. Though these
three sets of 102, 412 and 35 records were acquired by
means of a scalp electrode, ultrasound probe and both
techniques, respectively, expert evaluation of the CTG
data based on annotation of the signals were made by 9
expert obstetricians (following FIGO guidelines used in
the Czech Republic) including heterogeneous/confidence
for each signal. All FHR traces were sampled at 4 Hz
[46]. The main parameters and their respective distribu-
tions are depicted in Table 1.

In this study, the umbilical artery pH value measured
after delivery, an objective biochemical marker, was se-
lected as the gold standard to separate the fetal state into
normal and pathological classes. And the pH threshold
was set to 7.15 after careful consideration [26]. A pH
below 7.15 was agreed as pathological and a pH greater
than or equal to 7.15 was classified as normal; thus, the
database contained 447 normal and 105 abnormal FHR
recording.

Signal preprocessing
Preprocessing is an indispensable step in most biomed-
ical signal processing applications and affect not only
the values of extracted features but also the final classifi-
cation performance. In clinical practice, the FHR signal
has two typical acquisition methods: the CTG signal re-
corded externally by Doppler ultrasound (US) probe
placed on the abdomen of pregnant women and the fetal
electrocardiogram (FECG) signal measured internally by

Fig. 1 An overview of our proposed CAD system for intelligent prediction of fetal acidemia

Table 1 An overview of the available information in the open access CTU-UHB CTG database

Information Mean Min Max

Maternal age (MA, year) 29.6 18 46

Gestational age (GA, week) 40.0 37 43

pH 7.23 6.85 7.47

Base deficit in extracelluar fluid (BDecf, mmol/L) 4.60 −3.40 26.11

pCO2 7.07 0.70 12.30

Base excess (BE) −6.38 −26.80 −0.20

Apgar 1 min 8.3 1 10

Apgar 5 min 9.1 4 10

Gravidity 1.4 1 11

Parity 0.4 0 7

Diabetes No = 515, Yes = 37

Birth weight (BW, g) 3401 1970 4750

Infant sex Male = 286, Female = 266

Delivery type Vaginal = 506, Cesarean section = 46
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an electrode attached to the fetal scalp [9]. From this
point of view, the FHR signal might be “contaminated”
by noise due to many factors, such as the movement of
mother and fetus, displacement of the transducer and
external clinical environment.
The noise of FHR signal usually manifests itself as

artifact (or spiky) and missing (the period where the
value of FHR is zeroed). Therefore, the primary goal of
the preprocessing step is to reduce the two kinds of
noise. First, a spline interpolation is used to fill the gap
where the FHR value equals to 0 for no more than 15 s,
otherwise long gaps (> 15 s) are removed directly. Sec-
ond, a interpolation is again used between the first sam-
ple of the two adjacent points where the difference is
higher than 25 bpm (beat per minute, the unit of FHR
signal) and still the first of the new stable section which
is defined as a time series of five adjacent samples with
the differences among them less than 10 bpm. Finally,
cubic spline interpolation is applied to replace the ex-
treme (not physiological) values (< 50 bpm and > 200
bpm). Although the noise removal scheme is simple and
more advanced techniques have recently been put for-
ward, this preprocessing algorithm is effective and estab-
lished necessary before any further analysis. Figure 2
shows the original noisy signal and preprocessed signal
to be further analyzed (20mins in length).

Continuous wavelet transform
Wavelet transform (WT), a widely used tool in the ad-
vanced field of signal processing, represents an effective
method for multi-resolution analysis consisting of both
time and frequency orientations [27]. As a type of WT,
the CWT was originally proposed as an improved

approach to address the issue of resolution [28]. The
CWT has several outstanding merits, such as the reliable
and flexible capacity to extract general and fine-grained
feature information from the input signal; hence, this
transform has been extensively employed in biomedical
engineering to analyze non-stationary and nonlinear sig-
nals over the last decades [29]. The CWT is defined as
the summation of the overall signal spectrum multiplied
by the compressed and translated mother wavelet, which
can be expressed mathematically by the following equa-
tions [23]:

CWT τ; sð Þ ¼ ψ τ; sð Þ ¼
Z ∞

−∞
f tð Þφ�

τ ; f tð Þ∈L2 Rð Þ ð1Þ

φτ;s tð Þ ¼ 1ffiffiffiffiffiffiffij s jp φ
t−τ
s

� �
; τ; s∈R; s≠0 ð2Þ

Z ∞

−∞
φ tð Þdt ¼ 0 ð3Þ

where, f(t) is input signal, φ(t) is wavelet basis, and ψ(τ,s)
is wavelet coefficient, which is a function of two vari-
ables, τ and s, accounting for the translation and scaling
factors, respectively. The former determines the degree
to which the wavelet is compressed or stretched, while
the latter reflects temporal and spatial information and
represents the translation diameter of time shifting.
Instead of using traditional morphological analysis

(baseline estimation, detection of acceleration and decel-
eration pattern, etc.), the primary reason for applying
the CWT in this work is that the CWT provides a better
way to observe and capture the local hidden characteris-
tic information of the FHR signal in both the time and

Fig. 2 Signal preprocessing of No.1001 FHR recording (internal database number)
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frequency domains simultaneously. Although the heart
rate contained in a preprocessed FHR signal may not
be estimated or lost in the time domain during the
image transformation, Warmerdam et al. [30] still
demonstrated that the CWT allowed clinicians to as-
sess the reliability of spectral analysis of FHR record-
ings that were contaminated by artifacts: the mapping
of the signals into a time-scale space and better vis-
ible localization of the frequency components in the
analyzed signals.
In addition, Comert et al. also proposed a prognos-

tic model using CWT to obtain 2D time-frequency
image and achieved better performance in classifying
the fetal state than time domain analysis [31]. How-
ever, they employed the conventional ML method:
feature extraction (image-based time-frequency fea-
tures, IBTF), feature selection (genetic algorithm, GA)
and final classification (LS-SVM). Obviously, this ap-
proach was much more complex and obtained unsat-
isfactory result with the Se and Sp of 63.45 and
65.88%, respectively.

Figure 3 shows the preprocessed FHR signals and cor-
responding time-frequency images of a normal fetus and
a pathological fetus using the CWT with the mother
wavelet of db2 and a wavelet scale of 24. After careful
consideration, two mother wavelets of db and sym with
an order of 2 and three wavelet scales of 4, 5 and 6 were
determined to enrich the database. Thus, the final data-
set contained 3312 time-frequency images, including
2682 and 630 images for the normal (N) and patho-
logical (P) fetal classes, respectively.

Convolutional neural network
Serving as a typical type of DL, a CNN structure is
composed of more hidden layers and neurons than
the traditional multilayer perceptron (MLP) or ANN.
Furthermore, the CNN algorithm is actually a type of
supervised learning that can self-learn and self-
organize based on the input data and corresponding
output labels [18]. It eliminates the dependency on
hand-crafted features and directly learns useful fea-
tures from data. CNNs have already been successfully

Fig. 3 The FHR signals (left) and corresponding time-frequency images (right) of the normal (top) and pathological (bottom) classes using the
CWT with the mother wavelet of db2 and a wavelet scale of 24
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applied in many areas over the last decades, including
face recognition, object localization, and image classi-
fication [19, 32, 33]. Due to the effectiveness of this
approach, CNNs are extensively utilized in the med-
ical field to design screening tools to assist clinicians
[20–22].
The primary difference compared to traditional ML

approaches is that a CNN can directly ignore the re-
quirement for feature extraction and selection tech-
niques. Hence, for most physiological signals, using
CNNs can avoid the loss of valuable information and
reduce the burden of computation in extracting and
selecting the best features during the training process
for accurate classification of pathological conditions.
And a CNN significantly reduces the number of pa-
rameters that the neural networks need for training
by means of receptive fields and weight sharing. The
above attractive advantages were the main reasons
why we chose a CNN for objective prediction of fetal
acidemia.
CNN is a combination of both feature extractor

and classifier, and Fig. 4 illustrates the 8-layer deep
2D CNN architecture for this work consisting of the
input layer, the convolution-activation-normalization-
pooling layers, the fully-connected-dropout layers
and the final classification layer. From input to out-
put, the relationships between one layer and another
layer are established through different computational
neural nodes, and the input information is trans-
ferred layer by layer. The continuous convolution-
pooling structure decodes, interprets, converges, and
maps the characteristic information of the original
data to the hidden feature space [34]. Next, a fully-
connected layer executes the classification task ac-
cording to the extracted features. The output shape
gives the spatial size details of the output feature
maps of each layer and the parameter represents the
total number of weights including biases [35]. De-
tailed descriptions of the layers used in the CNN
model are given below.

Image input layer (layer 1)
In this paper, the continuous wavelet transform is used
to convert the original 1D time series into a 2D image as
the input layer of the CNN. Simultaneously, in order to
avoid overfitting, we applied the data augmentation
technique of the CNN architecture in the input layer. A
random crop method was employed for image trans-
formation, which enriches the image dataset and im-
prove the generalization ability of the model.

Convolution layer (layer 2)
A CNN is a form of deep neural network (DNN) with
special convolution structure, which can reduce the
amount of memory occupied by the deep network and
the number of parameters in the network. In the convo-
lution layer, a feature map in which hidden layers are
connected to each other is used to extract pixel-level ab-
stracted image features via convolution operations of
one or more convolution kernels (also referred to as a
filter) [36]. Each convolution kernel applies a sliding
window mechanism to traverse the entire feature map,
and thereby gathers and fuses the information of each
small area to complete the representation of a partial
feature of the input image. In a CNN, the filter parame-
ters used in each convolution layer are ordinarily con-
sistent for two reasons: (i.) sharing allows the image
content to be unaffected by location; and (ii.) this
consistency can dramatically reduce the optimization pa-
rameters. The mechanism of parameter sharing is a very
important and attractive property of the CNN algorithm.

Activation layer (layer 3)
The result of the convolution layer is then mapped
through an activation function (AF) to form the feature
mapping relationship. The AF is generally used between
the layers of a neural network [37], which performs a
mapping transformation of the input data and provides
the nonlinear modeling capability of the network. Dur-
ing the process, element-by-element calculations do not
change the size of the original data. In this CNN model,

Fig. 4 The CNN architecture proposed in this work. Note: L = layer; FM = output feature map or number of neurons (width ×height ×depth)
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the rectified linear unit (ReLU) is selected due to the fol-
lowing advantages compared to other linear functions:
(i.) faster convergence speed; and (ii.) only one threshold
is required to obtain the activation value without having
to complete complex computations.

Normalization layer (layer 4)
The batch normalization (BN) layer is to standardize the
input data of each layer during the training process of
the neural network, so that the gradient becomes larger,
avoiding the problem of gradient disappearance and
greatly accelerating the training speed [18].

Pooling layer (layer 5)
In general, the CNN model inserts a pooling layer (also
named a sub-sampling layer) periodically between con-
secutive convolution layers [18]. Since the image features
that are useful in one region may be equally applicable
in another area, the pooling layer incorporates semantic-
ally similar features. The pooling operation reduces the
eigenvectors of the convolution output and the number
of parameters, so pooling can lower the model complex-
ity and speed up the computation while preventing over-
fitting. Similar to the convolution layer, the pooling
operation performs feature mapping for each sub-region
on the input feature map in steps of stride. Max pooling,
average pooling and randomized pooling are the most
common pooling methods. The former operation calcu-
lates the maximum value of the image area as the pooled
result, which is used for this CNN model.

Fully-connected layer (layer 6)
The fully-connected layer is located at the end of the
network structure and is a traditional MLP network
[38]. The final output of this network layer is high-level
features of the input images, which are then statistically
calculated according to a classifier, and the probability of
the corresponding class label for the input image is also
computed. After several rounds of convolution and pool-
ing processing, the input image information can be
assumed to have been abstracted into more information-
intensive features. The convolution layer and pooling
layer can be considered the necessary approaches to
automatic image feature extraction. And when the fea-
ture transformation is completed, the fully-connected
layer is used to execute the final classification task.

Dropout layer (layer 7)
For classification, we usually attempt to avoid the occur-
rence of the overfitting, where the trained model obtains
high accuracy on the training data, yet the generalization
error on the test data is relatively large. In other words,
overfitting refers to certain situation in which a defined
model can memorize the random noise in the training

data but is not able to learn the general trend of the
training data. Many factors can lead to overfitting and
the following specific solutions are available and pro-
posed in this work [39]:
(a.) Regularization: Regularization is a powerful ap-

proach to solve an ill-posed problem to prevent overfit-
ting by introducing additional information. L2
regularization is applied to add a regularizer to the cost
function for this work.
(b.) Dropout technique: The dropout layer is usually

arranged after the fully-connected layer. During the
training process, several neural units are temporarily
dropped from the network with a certain probability.

Classification layer (layer 8)
Finally, the classification layer is used to separate output
classes using softmax function, namely, normal and
pathological.
In our experiment, Table 2 presents the detailed pa-

rameters for each layer of the proposed CNN model,
which were proved that there was not much effect on
classification performance after careful observation.

Performance evaluation
To evaluate performance, we adopted the Se, Sp, and
Acc indicators, which were calculated from the common
binary confusion matrix. In addition, an imbalanced
dataset (the ratio of positive to negative was approxi-
mately 4:1 in this work) can negatively affect the overall
performance of any classifiers; thus, a quality index (QI)
defined as the geometric mean of the Se and Sp, and the
area under the receiver operating characteristic (ROC)
curve (AUC) were also applied to alleviate this issue.

Acc ¼ TP þ TN
TP þ FP þ FN þ TN

ð4Þ

Se ¼ TP
TP þ FN

ð5Þ

Sp ¼ TN
FP þ TN

ð6Þ

QI ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Se � Sp

p
ð7Þ

where TP, FP, FN and TN represent true positive, false
positive, false negative, and true negative respectively. In
this work, the normal fetal state (N) is considered posi-
tive, and the pathological fetal state (P) is negative.

Results
Experimental setup
The current work designed a novel CAD system that
combined the CWT and 2D CNN to assess fetal state.
The proposed methodology was implemented in
MATLAB 2017a (Natick, MA USA) software, and the
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CNN model was trained on a PC workstation with two
Intel Core 3.70 GHz (i3–4710) processors and 4 GB of
RAM.
In this study, ten-fold cross-validation was applied in

the performance evaluation to obtain more reliable re-
sults. The total images were randomly separated into 10
segments and 90% (2414 N and 567 P) formed the train-
ing set while the remainder (10%, 268 N and 63 P) was
used to test the performance of our proposed system.
The process was repeated 10 times and the final results
were averaged.
Then, the 2D images were considered as input for the

CNN classifier. Figure 4 presents the structure of the de-
signed CNN model consisting of 8 layers proposed in
this paper. After careful experimentation, we set the
hyperparameters of each layer and the training options
as detailed in Tables 2 and 3, which did not have much
effect on the classification performance.

Experiment one: optimization of the CNN parameters
When CNN training began, the internal status of the
neural network was not visible to the researchers due to
its black-box property. During the procedure, we re-
quired several indexes to observe and ascertain the train-
ing performance, such as the training loss and Acc. As

shown in Fig. 5, the performance improved with the
training iteration: Acc increased and loss decreased.
In CNN training, tuning the parameters is an indis-

pensable step and plays an important role in
optimization. After comprehensive experimentation, ex-
cept the parameters defined in Tables 2 and 3, we dis-
covered that the size of the convolution kernel, number
of filters, maximum number of epochs, and size of the
mini-batch could influence the classification perform-
ance. And the relevant experimental results can be sum-
marized regarding the following two aspects.
First, the parameters of the size of the convolution

kernel (Para1) and the number of filters (Para2) greatly
influenced image classification performance. For Layer 2,

Table 3 The detailed training settings of the proposed CNN
model

Parameter Value/Approach

Backpropagation algorithm Stochastic gradient descent

Momentum 0.9

Initial learning rate 0.01

Learning rate drop Factor 0.1

Period 10 epochs

L2 regularizer factor 1 × 10–4

Table 2 The detailed parameter settings for each layer of the proposed CNN model

Layer Type Parameter/Method Value/Approach

1 Image input layer Data augmentation Random crop

Data normalization Zero center

2 Convolution layer Stride [1]

Padding 0

Learning rate of the weight 1

Learning rate of the bias 1

L2 regularization for the weight 1

L2 regularization for the bias 1

3 Activation layer Method ReLU

4 Normalization layer Alpha 1 × 10−3

Beta 0.75

K 2

5 Pooling Layer Method Max pooling

Pool size 2 × 2

Stride [2]

Padding 0

6 Fully-connected layer Learning rate of the weight 1

Learning rate of the bias 1

L2 regularization for the weight 1

L2 regularization for the bias 1

7 Dropout layer Probability 0.5

8 Classification layer Softmax Cross-entropy
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both of these parameters determined the size of the out-
put feature map in width, height, and depth. Given
Para3 = 20 and Para4 = 50, the effects of Para1 and Para2
were initially investigated. In the current work, Para1
was 1 × 1, 3 × 3, 5 × 5, and 7 × 7, and Para2 was in the
range of 1 to 20 and was increased by 1, as demon-
strated in Fig. 6. We could draw two conclusions based
on observing the figure:
(a.) The relationship between six indicators and Para2

was generally positive, regardless of Para1, indicating
that the performance improved with an increase in
Para2 with a cost in computation time;
(b.) No clear relationship was found between the mea-

surements and Para1, but we still discovered that
Para1 = 5 × 5 performed better and the corresponding
training time was relatively shorter than that for the
other settings.
Hence, after careful observation, Para1 was set to 5 ×

5, and Para2 was set to 15 (indicated by the black arrow
in Fig. 6), which were selected for Layer 2.
Second, given Para1 = 5 × 5 and Para2 = 15, the train-

ing options of the CNN model were then experimented,
including the maximum number of epochs (Para3) and
the size of the mini-batch (Para4). These two parameters
were known to have different degrees of influence on
the performance of CNNs. In this paper, the values of
Para3 and Para4 were in the ranges of 10 to 30 and 10
to 100, respectively, with both increased by 10, as
depicted in Fig. 7. The following conclusions could be
drawn from the figure:
(a.) The relationships between six indicators and Para4

were generally negative, regardless of Para3, signifying

that the performance worsened and the training time
was decreased with an increase in Para4;
(b.) The performance using Para3 = 20 was nearly

similar to that with Para3 = 30 and better than that with
Para3 = 10, but the training time for the former was
much shorter than that for the latter.
Therefore, we determined that the optimum parame-

ters (indicated by the black arrow in Fig. 7) were Para3 =
20 and Para4 = 50.
Finally, we also investigated the influence of difference

layers. It can be observed from Table 4 that the relation-
ship between the layers of CNN model and performance
is not positive. Thus, we selected the 5-layer (i.e., 8-layer
including the ReLU layer, normalization layer, and drop-
out layer) CNN architecture for higher Acc and less
training time, as demonstrated in Fig. 4.

Experiment two: test of the CNN model
According to experiment one with the input image size
of 28 × 28 × 3 RGB three channels, we confirmed four
parameters of the 8-layer CNN model to achieve optimal
performance: Para1 = 5 × 5, Para2 = 15, Para3 = 20 and
Para4 = 50. We then tested the performance of our pro-
posed algorithm using different image resolutions with
the same optimization method. The original image size
(420 × 560 × 3) was reduced to 16 × 16 × 3, 28 × 28 × 3,
36 × 36 × 3, and 64 × 64 × 3, which constituted four dis-
tinct datasets, denoted as Set1, Set2, Set3, and Set4.
Table 5 clearly shows that with a higher resolution, the
five measurements all increase significantly. The ROC
curve presents in Fig. 8 further confirms this finding. In
summary, when the size of the input images was 64 ×

Fig. 5 The training Acc (top) and loss (bottom) change with iteration during the CNN training process
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64 × 3, the proposed CNN model achieved the best clas-
sification performance (Acc = 98.34%, Se = 98.22%, Sp =
94.87%, QI = 96.53%, and AUC = 97.82%). Unfortunately,
this performance increased came at a large cost in terms
of computation power (Time = 1775s).

Discussion
In this work, a novel CAD system based on the CWT
and 2D CNN was proposed to assist obstetricians in
making objective decisions regarding fetal status. We ex-
perimentally obtained better performance by tuning sev-
eral parameters of the CNN model. According to Figs. 6
and 7 and Table 4, the optimal parameters were clearly
fixed after full consideration. Furthermore, Table 5
shows that the overall classification performance im-
proves with higher image resolution using the same
training settings, yet the greatest disadvantage is that
longer training times are required.
During the experiment, four different methods to obtain

the 2D image as the input layer are tested in total, Table 6
gives a detail overview of performance. Unfortunately, we
discovered that both Hilbert-Huang Transform (HHT)
and Gabor Transformation could only achieved the accur-
acy below 80%. Although Short Term Fourier Trans-
form(STFT) has achieved a relatively good result, its

accuracy is still not good enough compared with CWT.
According to our current research and analysis, it may be
that CWT solves the resolution problem of STFT well
and achieves multi-resolution feature analysis, which is
more conducive to feature self-learning of CNN.
Table 7 provides a summary of the different ap-

proaches proposed by researchers during the last de-
cades for automated assessment of fetal well-being
using FHR signals. Unfortunately, not all of these
studies were performed using the same database (pri-
vate or public); thus, comparisons among the studies
are difficult. Nevertheless, Table 7 still demonstrates
that the previous studies have all used identical strat-
egies: signal preprocessing, feature extraction, feature
selection and final classification. However, our pro-
posed algorithm does not perform the feature extrac-
tion and selection stages; all the feature engineering
steps are embedded in our CNN model for signal
classification, representing the unique advantage of
DL compared with conventional ML methods. Experi-
ments using different means of feature extraction or
selection are not required; in other words, we do not
need to extract and select an optimum set of inform-
ative features. We can draw several conclusions from
Table 7:

Fig. 6 Comparison of the averaged classification performances using different kernel sizes and numbers of filters across ten folds. From left top to
right top: Acc, Se, and Sp; from left bottom to right bottom: QI, AUC, and time
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(a.) Compared with [30], based on the same database
(CTU-UHB) and image transformation method (CWT),
our approach performs much better (Se = 98.22 and
63.45%, Sp = 94.87 and 65.88%), which further highlights
the superiority of CNN over ML.
(b.) Compared with [20], although the test database is

different, the 2D CNN model obtains higher accuracy
than 1D CNN (Acc = 98.34% and 93.24).
(c.) Compared with [21], based on the same database

and 2D CNN model, the CWT can better reflect the
characteristic information of FHR signal than STFT ac-
cording to the time-frequency image (Se = 98.22 and
56.15%, Sp = 94.87 and 96.51%, QI = 96.53 and 73.61%).

(d.) To the best of our knowledge, this CNN algorithm
achieved better classification performance in predicting
fetal state using FHR signals compared with other re-
lated works, as presented in Table 7.
In summary, the proposed system has several attract-

ive advantages: (i.) feature extraction and selection tech-
niques are not required; (ii.) the CWT is used to obtain
2D time-frequency images, which is believed to reflect
the hidden characteristics of the FHR signals in both the
time and frequency domains; (iii.) an 8-layer deep 2D
CNN is implemented and its parameters are tuned to
obtain better performance; and (iv.) this approach per-
forms best among the state-of-the-art methods.

Table 4 Comparison of the averaged classification performances of different layers of CNN model across ten folds

Layers Type Performance

Acc (%) Se (%) Sp (%) QI (%) AUC (%) Training Time (second)

5 I – C – P – F – O 92.13 93.45 91.22 92.33 92.34 140.5

6 I – C – P – C – F - O 91.88 92.55 89.74 91.13 91.15 162.3

7 I – C – P – C – P – F - O 91.21 92.13 89.25 90.68 90.69 178.8

8 I – C – P – C – P – F – F – O 90.76 91.71 88.67 90.18 90.19 201.3

9 I – C – P – C – P – C – F – F - O 91.34 92.34 89.56 90.94 90.95 225.4

10 I – C – P – C – P – C – P – F – F - O 90.82 91.88 89.11 90.48 90.50 248.2

Note: The best performance is indicated in bold. I = image input layer, C = convolution + ReLU + normalization layer, P = max pooling layer, F = fully-connected +
dropout layer, O = classification output layer

Fig. 7 Comparison of the averaged classification performances using different max epochs and mini-batch sizes across ten-folds. From left top to
right top: Acc, Se, and Sp; from left bottom to right bottom: QI, AUC, and time
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Nevertheless, the proposed system has some draw-
backs: (i.) the training of the CNN model requires a very
large amount of diverse data; and (ii.) the algorithm is
computationally intensive in learning useful features
from the input images.
In fact, if this classification algorithm can accurately

discriminate between normal and pathological classes,
then the long training time will be secondary in medical
fields. Once the CAD system designed by the proposed
algorithm is successfully trained, the system can imme-
diately distinguish an unknown fetal state. Fortunately,
some solutions are available to overcome the drawbacks
of our proposed system. We can enrich the dataset using
image transformation, such as rotation, cropping and
whitening, etc. Then, training CNN models integrated
with a graphics processing unit (GPU) will help signifi-
cantly decrease training time and power consumption
since one of the important properties of the CNN algo-
rithm is its concurrency.

Conclusions
The accurate diagnosis of fetal acidemia caused by
hypoxia can allow obstetricians to intervene in a
timely manner and take appropriate action to prevent
permanent damage to the fetus. In clinical practice,
the FHR signal is a commonly used tool to monitor
the fetal state during labor and delivery. However, a
visual analysis of the FHR signal with the naked eye
is a challenging task for obstetricians since this type
of assessment is subjective and irreproducible. Visual
interpretation easily leads to significant inter-observer
and intra-observer variability. Therefore, implementing
a CAD system in clinical settings will guarantee the
rapid and accurate prediction of fetal distress more
objectively.
In this study, our primary contribution is to

propose a data-driven approach to automatically as-
sess the fetal state using a deep CNN. After signal
peprocessing, the input time-frequency images were
obtained using the CWT with different types of
mother wavelets and wavelet scales. After compre-
hensive experimentation focused on tuning the pa-
rameters and changing the image sizes, we achieved
the best classification performance with the optimum
configuration (8 layers, size of the convolution ker-
nel = 5 × 5, number of filters = 15, maximum number
of epochs = 20, size of the mini-batch = 50, and
image resolution = 64 × 64 × 3), and the averaged Acc,
Se, and Sp were 98.34, 98.22, and 94.87% across ten
folds, respectively. To alleviate the influence of the
class imbalance phenomenon, QI and AUC

Fig. 8 ROC curve of the proposed algorithm using different image resolutions and same optimization method

Table 5 Comparison of the averaged classification
performances of different image resolutions using the same
optimization method across ten folds

Measurement Acc
(%)

Se
(%)

Sp
(%)

QI
(%)

AUC
(%)

Time
(second)Dataset

Set1 88.47 89.12 82.33 85.66 77.28 150

Set2 94.22 96.92 86.11 91.36 92.03 317

Set3 96.44 97.02 92.04 94.50 94.66 587

Set4 98.34 98.22 94.87 96.53 97.82 1775

Note: The best performance is indicated in bold
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indicators were also applied to measure the overall
performance with values of 96.53 and 97.82%, re-
spectively. Since using features is susceptible to bias
in extracting (selecting) the features and limits the
ability of a classifier to fully learn from the data, the
CNN-based framework obviated the requirement for
feature engineering (i.e., feature extraction and

selection). Overall, the results proved the effective-
ness of our proposed CAD system, which can be in-
troduced into clinical practice and assist
obstetricians in making accurate medical decisions
objectively.
The results are promising and provide the baseline

for future research involving strategies without feature
extraction and selection and entirely relying on the
neural network model for fetal state assessment.
GPUs will be integrated into the workstation to re-
duce the complexity and speed up the training
process in terms of computation. In addition, we will
combine FHR signal with other biomedical signals
(e.g., UC) to improve the accuracy for providing more
reliable decision tool. To make the system more ex-
plainable for the obstetricians and pregnant women is
also a huge challenge.

Table 7 Summary of related works conducted for the intelligent assessment of the fetal state using FHR signals obtained from CTG
Author Database Distribution

(N/P)
Method Performance(%)

Feature extraction Feature selection Classifier

Krupa et al. 2011 [13] Private 30/60 EMD / SVM Acc:87
Se:95
Sp:70

Spilka et al.2012 [12] Private 123/94 33 Set1, Set2, Set3 PCA,IG NB,SVM,DT Se:73.4
Sp:76.3
Fm:71.5

Czabanski et al. 2012 [14] Private 146/43 7 Set1 / WFS+ LS-SVM Acc:92.0
QI:88.2

Fanelli et al. 2013 [15] Private 61/61 2 Set3 / ST AUC:75

Xu et al. 2014 [40] Private 255/255 64 Set1, Set2, Set3 GA SVM Se:83
Sp:66
AUC:74

Dash et al. 2014 [41] Private 60/23 8 Set1 / GM,NB Se: 61
Sp:82

Spilka et al. 2014 [42] CTU-UHB 175/377 33 Set1,Set2, Set3 / LCA + RF Se:72
Sp:78

Doret et al. 2015 [11] Private 30/15 12 Set2, Set3 / ST AUC:87

Comert et al. 2016 [43] CTU-UHB 60/40 18 Set1, Set2 / ANN Acc: 87.0
Se:88.7
Sp:85.1

Stylios et al. 2016 [44] CTU-UHB 508/44 54 Set1, Set2, Set3 AUC LS-SVM Se:68.5
Sp:77.7

Comert et al. 2016 [16] CTU-UHB 272/280 11 Set2, Set3 / ANN Acc: 92.40
Se:95.89
Sp:74.75

Georgoulas et al. 2017 [45] CTU-UHB 508/44 33 Set1, Set2, Set3 AUC LS-SVM Se:72.12
Sp:65.30

Comert et al. 2018 [31] CTU-UHB 439/113 IBTF GA/ LS-SVM Se:63.45
Sp:65.88

Li et al. 2018 [21] Private 3012/1461 FHR + 1D CNN Acc:93.24

Comert et al. 2018 [22] CTU-UHB 508/44 STFT+2D CNN Se:56.15
Sp:96.51
QI:73.61

Current work CTU-UHB 447/105 CWT + 2D CNN Acc:98.34
Se:98.22
Sp:94.87
QI:96.53
AUC:97.82

Note: The best performance is indicated in bold

Table 6 Average classification performance for different input
layers

Scheme Performance (Validation)

Acc (%) Se (%) Sp(%) QI(%) AUC(%)

HHT 79.50 79.71 79.29 79.52 79.63

Gabor Transformation 76.38 80.56 72.33 76.25 77.22

STFT 83.27 86.78 78.83 82.91 83.10

CWT 98.34 98.22 94.87 96.53 97.82
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