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Abstract

Fuzzy soft graphs are effective mathematical tools that are used to model the vagueness of the real world. A fuzzy soft
graph is a fusion of the fuzzy soft set and the graph model and is widely used across different fields. In this current research,
the concept of picture fuzzy soft graphs is presented by combining the theory of picture soft sets with graphs. The
introduction of this new picture fuzzy soft graphs is an emerging concept that can be rather developed into various graph
theoretical concepts. Since soft sets are most usable in real-life applications, the newly combined concepts of the picture
and fuzzy soft sets will lead to many possible applications in the fuzzy set theoretical area by adding extra fuzziness in
analyzing. The notions of picture soft graphs, strong and complete picture soft fuzzy graphs, a few types of product picture
fuzzy soft graphs, and regular, totally regular picture fuzzy soft graphs are discussed and validated using real-world
scenarios. In addition, an application of decision-making for medical diagnosis in the current COVID scenario using the

picture fuzzy soft graph has been illustrated.

Keywords Picture soft graph - Operations - Picture set - Regularity - Fuzzy graphs

1 Introduction

Fuzzy set theory (Zadeh 1965) is an emerging mathemat-
ical domain, essential to solving vagueness and incomplete
information in real-life situations. It is an extension of the
crisp set, where elements have a membership value in the
interval [0, 1]. Fuzzy sets and fuzzy logic have potential
applications in wide-ranging fields, including mathematics,
computer science, engineering, statistics, artificial
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intelligence, decision-making, image analysis, and pattern
recognition (Liu et al. 2020; Zeng et al. 2019; Zhang et al.
2020; Zou et al. 2020; Meng et al. 2020).

Atanassov (1983) extended the fuzzy set to a set that
gives membership and non-membership grades for each
element. The set where the sum of both these values lies
between 0 and 1 is known as an intuitionistic fuzzy set.
Neutrosophic sets presented in Smarandache (1998) is a
generalization of the theory of fuzzy and intuitionistic
fuzzy sets (Zadeh 1965; Atanassov and Gargov 1989) and
deal with inconsistent information. The Neutrosophic set is
characterized by elements with truth, indeterminacy, and
false membership functions that fall within the real unit
interval. The concept of a single-valued neutrosophic set,
which is a set with elements possessing three membership
functions lying in the interval [0, 1], was proposed by
Wang et al. (2010).

Molodtsov (1999) developed a novel mathematical
concept known as the soft set theory for solving uncer-
tainties. Soft sets have been applied in different domains,
such as operation research, Riemann integration, mea-
surement and probability theory. Many researchers have
further improved on the soft set theory, notably, the oper-
ations on soft sets in Ali et al. (2009), the concept of
bijective soft sets and the concepts of relations and
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functions in soft set theory (Babitha and Sunil 2010). Maji
et al. (2001a) proposed a combination of soft and fuzzy
sets and also combined soft set with intuitionistic and
neutrosophic sets in Maji (2013), Maji et al. (2001b). The
combined concept of the soft and fuzzy set was studied as
fuzzy soft sets which led to the development of soft rela-
tion, fuzzy soft relation, and the algebraic structure of soft
set theory as in Roy and Maji (2007), Ali (2011), Som
(2006).

In recent days, the concept of interval-valued fuzzy
priority for decision-making using Intuitionistic fuzzy soft
sets in Mohanty (2021), a soft-set in the type-2 environ-
ment by Paik and Mondal (2021), fuzzy soft sets have been
advanced to hypersoft set, plithogenic hypersoft sets and
applied in decision-making by Smarandache (2018), Yolcu
and Ozturk (2021), the symmetric cross-entropy of hesitant
fuzzy soft sets considering the relative entropy in Suo et al.
(2021), topological space on fuzzy bipolar soft sets, fuzzy
bipolar soft point and fuzzy bipolar soft interior and closure
points were defined in Dizman and Ozturk (2021).

Cuong and Kreinovich (2013) and Cuong (2014) intro-
duced the picture fuzzy set, which was developed from
fuzzy and intuitionistic sets and is distinguished by posi-
tive, negative and neutral membership functions. Similarity
measures have also been proposed in picture fuzzy envi-
ronments and used in decision making, clustering and
pattern recognition (Singh and Ganie 2021). The Pic-
ture fuzzy distance measures, based on direct functions,
have been applied in decision making (Ganie and Singh
2021). Researchers have studied in-depth the usage of
picture fuzzy sets and developed new concepts as in Son
(2016), Wei (2018). Picture fuzzy soft sets have been
advanced to concepts as generalized picture fuzzy soft sets
as an extension of the picture fuzzy soft sets in Khan et al.
(2019), b-picture fuzzy soft sets (bPFSS) and generalized
b-picture fuzzy soft sets in (GbPFSS) based on the bijective
soft sets and their basic properties in Khan et al. (2020).

Graphs are visual representations of objects and their
relationships. Real-world problems cause uncertainties in
the relationships between objects. Thus, the simple graph
model becomes a fuzzy graph model. Akram et al., intro-
duced the concept of fuzzy soft graphs, studied the oper-
ations on fuzzy graphs and many other graph-theoretical
concepts (Akram 2011, 2013; Akram and Nawaz 2015a, b).
The concept of soft sets has been introduced into intu-
itionistic graphs in Shahzadi and Akram (2017) and
merged as intuitionistic fuzzy soft graphs along with the
concepts of strong, complete and complement of intu-
itionistic fuzzy soft graphs. Akram and Shahzadi (2017)
introduced neutrosophic soft graphs and also developed the
concepts of complete, strong and complement graphs.
Kauffman (1973) presented the concept of fuzzy graphs
using Zadeh’s fuzzy relation. Rosenfeld (1975) defined and
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developed many fundamental graph-theoretical ideas like
cycles, bridges, and connectedness. Operations on fuzzy
graphs along with their properties and the concept of reg-
ular fuzzy graphs were proposed in Moderson and Nair
(2012). Zuo et al. (2019) advanced the concept of the fuzzy
graph to picture fuzzy graphs by blending the fuzzy graphs
and picture fuzzy sets. Parvathi and Karunambigai (2006)
proposed the intuitionistic fuzzy graph which was subse-
quently extended to the intuitionistic fuzzy hypergraph and
its possible applications have been explored in Akram and
Dudek (2013).

Broumi et al. (2016) proposed single-valued neutro-
sophic graphs with examples and properties. The properties
of degree, size, and regular single-valued neutrosophic
graphs were also examined by Naz et al. (2017). They later
progressed into bipolar single-valued neutrosophic graphs,
and strong and regular bipolar single-valued neutrosophic
graphs (Naz et al. 2018). The recent conceptual develop-
ments in picture fuzzy graphs are the shortest path algo-
rithm, newly defined using the picture fuzzy digraphs
(Mani et al. 2021), domination in picture fuzzy graphs
(MohamedIsmayil and AshaBoslley 2019), using compe-
tition in graphs on picture fuzzy environment with appli-
cations in the medical field (Das and Ghorai 2020) and a
genus of graphs in the picture fuzzy environment (Das
et al. 2021). In recent, many researchers are working on the
development of the picture sets in Garg and Kaur (2021),
Garg et al. (2021), Bibin et al. (2020), Khalil et al. (2019),
Riaz et al. (2021), Akram et al. (2020, 2021), Akram and
Habib (2019). The introduction of this new Picture fuzzy
soft graphs is an emerging new concept that can be rather
developed into various graph theoretical concepts. to con-
tribute to the theoretical aspect of fuzzy graph theory, thus
we have introduced this picture fuzzy soft graph and
explored its properties and established related theorems.
Since soft sets are most usable in real-life applications, the
newly combined concepts of the picture and fuzzy soft sets
will lead to many possible applications in the fuzzy set
theoretical area by adding extra fuzziness in analyzing. As
a practical application, we have developed a model using
this defined graph and applied it in decision making.

In this research, the picture soft set and fuzzy graphs are
combined to form a unique mathematical model called
picture fuzzy soft graphs. A few significant notions of
picture fuzzy soft graphs are also discussed briefly. The
paper is structured as follows: Sect. 2 reviews the funda-
mental concepts and terminologies used in fuzzy graph
theory. Section 3 proposes the concept of picture fuzzy soft
graphs and Sect. 4 illustrates a model for the application of
these picture fuzzy soft graphs.
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2 Preliminaries

The elementary concepts which are necessary for the
results are discussed.

Definition 1 (Cuong and Kreinovich 2013) Let Y be a non-
void set. A picture fuzzy set (PFS) P of Y characterized by
positive (PM), neutral (NM) and negative membership
(NEM) functions denoted by pp, yp and op, respectively,
are given by pp : Y to [0, 1], yp : Y to [0, 1] and op : ¥ to
[0, 1] such that 0 < up(c) + yp(c) + op(c) < 1.

Definition 2 (Cuong and Kreinovich 2013) A PFS O is a
subset of another PFS T if V ye€ Y, uy(y)<pur(y),

70(y) <vr(y) and oo(y) <or(y).

Definition 3 (Cuong and Kreinovich 2013) The comple-
ment of PFS O over Y is O°={<y00(y),
1L =70(»), o(y) > :y €Y}

Definition 4 (Cuong and Kreinovich 2013) The union of

two PFS O and T is a PFS denoted by O U T, where the
PM, NM and NEM functions are defined as

tour(y) =max{uo(y), ur(y)}
Your(y) =max{yo(y), 77 (»)}
oour(y) =min{oo(y),or(y)} Vy € Y.

Definition 5 (Cuong and Kreinovich 2013) The intersec-
tion of two picture fuzzy subsets O & T is also a PFS
denoted by O N T, where the PM, NM and NEM functions
are defined as

tonr(y) =min{po(y), pr(y)}
Yorr(y) =min{yo(y), 77 (y)}
gonr(y) =max{co(y),or(y)}Vy €Y.

Definition 6 (Zuo et al. 2019) A picture fuzzy graph is
G = (V,E) with V. = {v;,v,...v, } such that pp, yp and op,
respectively, are given by u; : V to [0, 1], y; : V to [0, 1]
and o :V to [0, 1] which denote PM, NM and NEM
functions, respectively, and 0 < u, (a) + y,(a) + al( )<1.
VaeV, ECVxXxV with g, : VxV—[0,1], y,:V x
V —[0,1] and 65 : V x V — [0, 1] such that

fo(ab) < min{y, (a), uy (b) }

72(ab) < min{y,(a), 7,(b)}
02(ab) < max{oz(a),o1(b)}Vab € E.

Considering the vagueness in modeling and soft comput-
ing, soft set theory was introduced by Molodstov.

Let V be the universe and P be all possible parameters
related to objects in V. The duo (V, P) is called a soft
universe and P(V), the power set.

Definition 7 (Shahzadi and Akram 2017) A duo (F, O) is
soft over V, when O C P, and F is a set-valued function
F:0 — P(V). A soft set over V is a parametrized family
of subsets of V.

Definition 8 (Shahzadi and Akram 2017) Let V be the
universe and P the set of parameters with O C P. The
collection of all PFS of V is P(V). The collection (S, O) is
named as the picture fuzzy soft set (PFSS) over V, where S
is a mapping given by S : O — P(V).

Definition 9 (Yang et al. 2015) Let (S, O) & (K, T) be
PESS over U. (S, O) is named as picture fuzzy soft subset
of (K, NifOCT&

Is(o) (k) < g (o) ()
Vs()( ) < Vk(0) (k)
(0)(k) > ok)(k)Voc Oand k € V.

Definition 10 (Yang et al. 2015) Let (S, O) and (K, T) be
PFSS over V. The union of (S, O) & (K, B) is a PFSS
(H,D) = (S,0)U (K, T), where D= 0O UT and PM, NM,
NEM of (H, D) are defined by

tsay(w) if a € O—T;

M (a) (w) = :uK(a)(W) ifaeT - 0;
max{:uS(a)(W)a #K(a>(W)} ifaeoONT
Vs@w) if a € O —T;

Y (W) =4 Tk(a) (w) ifaeT-0;
max {7y (W), 7@ (W)} ifacoONT
os@)(w) ifa€ O—T;

Or(a) (W) = ok@@(w) ifaeT - 0;

min{ogq) (W), o) (W)}, ifac ONT

Similarly, the intersection of (S, O) and (K, T) is a PFSS
(H, D), in which D = ONT & the membership functions
are defined by
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Hs(p )( ) ifbeO—-T; Definition 15 Let G| = (F],Kl,O) and G, = (FQ,KQ,T)

:uH(b)(t) ={ g (1) if be T — 0 be two PFSG of G* then G is picture fuzzy soft sub graph

(s (1), iy (0} iE b€ ONT (PFSSG) of G, if O C T and S(0) is a partial sub graph of

minys(e) (1), K hoe S2(0) Vo € 0.

p (1) =4 Tk (1) if b € T — 0; Example 16 Consider G* = (V,E) such that V=

/H(h) - K(b) {V17VQ,V37V4} & E= {V1V27V1V3,V1V4,V2V47V3V4}. Let
min{yq) (1), 7k (1)} if b€ ONT O = {ey, e, } be the parameters & (F, O) be a PFSS over V
osw)(t) if b€ O—T; with F : O — P(V) defined by

O'H(b)(t) = G[((b)(t) ifbeT— 0,

max{o*s(b)(t), O’K(b)(t)} ifbeonT

Definition 11 (Yang et al. 2015) Let (S, D) & (G, C) be
PFSS over V. The Cartesian product of (S, D) & (G, C) is
(S,D) x (G,C) = (H,D x C). The PM, NM, NEM func-
tions of (H,D x C) are

H(pxc) (k) =min{ g, (k), ug (k) }
VH(DxC) (k) =m1n{ys (k)7“ ( )}
H(DxC) (k) Zmax{ffs(o)(k)7 0G(1) (k)}

Definition 12 (Yang et al. 2015) Let (S, O) & (K, T) be
two PFSS over V. A picture soft relation (R) from (S, O) to
(K, T) is of the form (R, C), where C C O x T and
R(g,h) C (S,0) x (K,T) V (g,H) € C.

3 Picture fuzzy soft graphs

Let V be the universe, E the set of all parameters and
P(V) be the collection of all PFSS of V. Let A be a subset of
V. The set of all picture fuzzy sets of V & E are denoted by
P(V) and P(E).

Definition 13 Let PFSG G = (G*,F,K, O) is an ordered
quadruple with G* = (V,E), O a non-void set of parame-
ters, (F, O) and (K, O) are PFSS over V and E, respec-
tively; (F(0), K(0)) for o € O is a picture fuzzy soft graph
of G when it satisfies the following conditions:

I (o) () < min{ g () (%), e o) () }
k(o) () < min{ypg) (X), V(o) (V) }
Tk (o) (xy) < max{cr() (x), o) (¥)}
such that OS:“K(())(xy) + yK(a)(xy) + O-K(o)(xy) S 1Voe
O;x,yeV.
The picture fuzzy graph (PFG) (F(0), K(0)) is repre-

sented as S(o) throughout this paper. A PFSG is a
collection of PFG. The collection of all PFSG is PS(G*).

Note 14 1ix(,)(Xy) = Yk (o) (xy) =0 & og)(xy) =1 V
xyeVxV—Eoé&O.
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F(er) = {(v1,0.5,0.2,0.1), (v2,0.4,0.3,0.2),
(v3,0.3,0.4,0.3), (v4,0.2,0.5,0.5)}

F(ez) = {(v1,.4,0.3,0.2), (v,0.3,0.4,0.1),
(v3,0.5,0.2,0.3), (v4,0.2,0.1,0.4)}

Let (K, O) be a PFSS over E with K : O — P(E) defined
by

K((Z]) :{(V1V2, 03, 0.2,0.1), (V]V3, 0.2, 0.17 02),
(V1V4,0.1,0.1,0.3)}
K(ey) ={(v1v3,0.3,0.2,0.2), (v2v4,0.2,0.1,0.3),

(v3v4,0.1,0.1,0.2)}.

Clearly S(e1) = (F(e1),K(e1)) and S(e;) = (F(ez),

Vv,(0.4,0.3,0.2) V,(0.3, 0.4,0.3)

(0.3,0.2, 0.1) (0.2,0.1,0.2)

V,(0.5, 0.2, 0.1)
(0.1, 0.1, 0.3)

V,(0.2, 0.5, 0.5)

S(e,)

V,(0.4,0.3,0.2) V,(0.5,0.2,0.3)
. (0.3,0.2,0.2) 7

(0.1, 0.1, 0.2)

(0.2, 0.1, 0.3)
@ &
V,(0.3, 0.4,0.1) V,(0.2,0.1,0.4)

S(e,)

Fig. 1 Picture fuzzy soft graph G = {S(e;),S(e2)}



Granular Computing (2022) 7:527-548

531

K(e2)) are PFSG corresponding to e; and e, respec-
tively, as shown in Fig. 1. Thus G = (S(e;),S(e2)) is a
PFSG of G*.

Definition 17 A Picture fuzzy soft path P in PFSG G =
(G*,F,K, O) is a sequence of distinct vertices x,, X1, . . ., X,
(except x, &  x;) such  that (g (xio1, %),
Vk(a) (x,-,l,xi), Ok (o) (Xi,1 ,Xi)) >0, i= 1, ...n Here n
denotes the length of the PFSP. The successive pairs are
called the edges of PFSP. For example, in Fig. 1, consider
S(ey) then v,,v; is a PFSP.

Definition 18 The diameter of a,b € V. is the length of
the longest PFSP joining a to b. The strength of P is
defined as

(/\ k(o) (Xi1, %), /\ Vk(o) (Xi-1,Xi), \/ Ok(o) (xi-1, Xi)) .
i=1 i=1 i=1

The strength of the PFSP is the weight of the weakest
edges and represented by d(P). The strength of connect-
edness between two vertices a & b is defined as the max-
imum of the strengths of all PFSP’s between a and b and
represented by PFSCONN;(a, ).

Definition 19 The PFSG G, = (G*,F,K;,T) is called a
spanning PFSSG of G = (G*,F,K, O) if
Hrco
(ii)
HE (z) (Q) ::uF(z) (Q)7
Vh) (@) =7r ) (

)
=

Definition 20 The order of a picture fuzzy soft graph is

06 - (% (Z up(e,;(u)) 5 (Z yne,,)(u)) ,

e;i€0 \ueV e;i€0 \ueV
> (St
e, €0 \ueV
The size of picture fuzzy soft graph is

S(G) = (Z (Z MK(e,-)(”V)> 5y <Z vme,.)(uv)) 7

e,€0 \uvekE ;€0 \uveE

}:(}:amww@>.

;€0 \uvek

Example 21 Consider a crisp graph G* = (V, E) such that
V = {vi,v2,v3,v4,v5} and E = {viv2,v2v3, V214,

V4vs,v1vs,vavst. Let O = {e1,ep,e3} be a parameter set

and let (F, O) be Picture fuzzy soft set over V with F :

O — P(V) defined by

F(er) = {(v1,0.4,0.3,0.3), (v2,0.2,0.2,0.3), (v3,0.2,0.1,0.1),
(v4,0.1,0.3,0.2), (vs5,0.3,0.4,0.1)}

F(ez) = {(v1,0.4,0.3,0.2), (v2,0.3,0.2,0.3), (v3,0.4,0.1,0.2),
(v4,0.1,0.1,0.2), (v5,0.2,0.4,0.1)}

F(es) = {(v1,0.3,0.4,0.2), (v,,0.3,0.2,0.1), (v3,0.3,0.4,0.1),
(v4,0.4,0.2,0.1), (v5,0.3,0.2,0.4)}.

Let (K, O) be picture fuzzy soft set over E with K : O —
P(E) defined by

K(er) = {(v1v2,0.1,0.2,0.3), (v2v3,0.2,0.1,0.2),

(v2v4,0.1,0.2,0.2),
(vavs,0.1,0.3,0.2), (v1vs,0.3,0.3,0.2),
(v3v5,0.2,0.1,0.1)}

K(e2) = {(v1v2,0.3,0.2,0.2), (v2v3,0.3,0.1,0.3),
(v2v4,0.1,0.2,0.3),
(vavs,0.1,0.1,0.2), (v1vs,0.2,0.3,0.2),
(v3v5,0.2,0.1,0.2)}

K(e3) = {(v1v2,0.3,0.2,0.2), (vv3,0.3,0.2,0.1),
(v2v4,0.2,0.2,0.1),
(v4v5,0.3,0.2,0.3), (v1vs,0.2,0.2,0.3),
(v3v5,0.3,0.2,0.3)}0.

The Picture fuzzy graphs of G are S(ey) = (F(e1),K(e1)),
Sle) = (Fle),K(e2)), and  S(es) = (F(es), K(es)
according to the parameters ej,e; and e, respectively.
Thus, G = S(ey), S(ez),S(e3) is a picture fuzzy soft graph
on O.

The order of Picture fuzzy soft graph is O(G) = ((0.4 +
02+4+02+0.1403)4+(04+03+04 +0.1+0.2)+
(03+03+03+04+03), (03+02+0.1+03+
04)+ (03+02+0.1+0.1+0.4)+(0.4+02+04+
02+02),(03403+0.1+02+0.1)+ (02403 +
02+402+0.1)+ (02+40.1+0.1+0.1+04)) = (4.2,
3.8,2.9)

The size of the Picture fuzzy soft graph S(G) is ((0.1 +
02+ 01+4+01+03+0.2)4+(03+03+0.14+0.1+
02+02)+(03+03+ 02+03+0.240.3),(02+
0.1402+03+03+0.1)+ (02+0.1+0.1+0.1+
03+0.1)+ (02+02+02+02+ 02+0.2),(0.3+
02+402+02+02+0.1)+ (02+03+03+ 02+
02+402)+ (02+0.1+0.1403+03+03)) = (3.8,
3.3,3.9)
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3.1 Regularity of picture fuzzy soft graphs

Definition 22 Let G be a Picture fuzzy soft graph of G*. G
is called a regular picture fuzzy soft graph if S(e) is a
regular picture fuzzy graph. V e € O.

Example 23 Consider a simple graph G* = (V,E) where
V= {Vl, V2, V3, V4} and E = {V1V2, VaV3, V3V4, V4V1}. Let
O = {e}, ez} be a set of parameters. Let (S, O) be a picture
fuzzy soft graph, where picture fuzzy graphs S(e;), S(ez)
corresponding to parameters e, e;, e3 & ey, receptively, are

S(el) = ({(Vl, .57 .4, .1), (Vz, .4-7 .3, .2),
(Vg, .4, .3, 2), (\147 .3, .4, 1)},
{(V1V2, .3, .3, .1), (V2V3, .3, .2, .1),

(\13\/’47 .3, .3, .1), (V4V1, .3, .2, 1)})

5(82) = ({(V] y .5, .4, .2), (Vz, .4, .3, 3),

(v3,.4,.3,.2),(v4,.3,.4,.1)},
{(Vl\/g, .3, .2, .2), (V2V3, .2, .37 .1)7

(V3V4, .3, .2, .2), (V4V1, .2, .3, 1)})

The regular picture fuzzy graph is drawn in Fig. 2.

Definition 24 Let G be a picture fuzzy soft graph of G*. G
is said to be totally regular picture fuzzy soft graph if S(e)
is a totally picture fuzzy graph for all e € O.

Example 25 Consider a simple graph G* = (V E), where
V= {al,ag,a3,a4} and £ = {alag,a2a3, a3a4,a1a3}. Let
O = {e1, e} be a set of parameters. Let G = (S,0) be a
picture fuzzy soft graphs, where S(e;) = (F(e1),K(e1))
and S(e;) = (F(e2),K(ez)) corresponding to the parame-
ters e; and e, respectively are defined as

V,(0.5,0.4,0.1) V,(05,0.4,0.2)

V,(0.4,0.3,0.2)
10 90 ‘€'0)'A
V,(0.4,0.3,0.3)
10 90 ‘€'0) A

V,(0.4,0.3,0.2) V,(0.4, 0.3, 0.2)

S(e,) S(e,)

Fig. 2 Regular Picture fuzzy soft graph G = {S(e), S(e2)}
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a, (0.4, 0.5, 0.1)

N (o,
s 03
>0,
N )

a QO a

1 (0.1, 0.1, 0.1) 2
~ - = Ry
- = —~
= 53 b
- o S ‘
S boog &
p S = o
~ ~ < =

(02, 0.1, 0.1) e

a .4, 0.1, U. a

3(0.1 %_g 4

s 0_1 “},
’ 0.1) @.b"
a,(0.3,0.4,0.1)
S(e,) S(e,)

Fig. 3 Totally regular picture fuzzy soft graph G = {S(e;),S(e2)}

S(er) = {(a1, .5, 4,.1), (a2, .5, .3,.1),
(as, 4,.4,.1),a4,.4,.3,.1)},
{(a1a2,.1,.1,.1), (aza4, .2, .2, .1),
(azaq, 2,.1,.1), (azay,.2,.1,.1)})

S(ez) = {(a1, 4, .5,.1), (a2, .3,.5,.1),
(as, 4,.4,.1),a4,.3,.4,.1)},
{(a1az,.1,.1,.1), (ara4, .2, .2, .1),
(azaq, .1, .2,.1), (azay,.1,.2,.1)})

The totally regular picture fuzzy soft graph is drawn in
Fig. 3.

Definition 26 Let G be a Picture fuzzy soft graph on V.
Then G is called as perfectly regular picture fuzzy soft
graph if S(e;) is a regular and totally regular picture fuzzy
graph for all ¢; € O.

Proposition 27 For a perfectly regular picture fuzzy soft
graph G = (F,K,0), F is a constant function.

Theorem 28 Let G be a picture fuzzy soft graph. Then G is
perfectly regular if and only if

L. Z :uK(e;)(ab) = Z :uK(e;)(bC)7

a#b c#b
D vk (@) =D vien (be),
a#b c#b
Z O (e (ab) = Z Ok(e;) (bC).
a#b c#b

2. fip(ep (@) = tg(e) (D),
VF(en (@) = Vk(e)) (),
O_F(e,»)(a) = JK(e,)(b) YabeV, e €O.

Proof Assume G is perfectly regular picture fuzzy soft
graph. So G is regular picture fuzzy soft graph. Thus, from
definition we have deg,(a) = deg,(c), deg,(a) = deg,(c),
deg,(a) = deg,(c), V a,c € V ¢; € O. Then
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Z Hi(e;) (ab) = Z Hi (e (bc)7

a#b c#b

Z YK () (ab) - Z YK (e:) (Cb)

a#b c#b

Zo,((ei) ZO’K (bc)Va,b,C €V, e € 0.
a#b c#b

Thus (1) holds. By the proposition (3.14), (2) also holds.
Conversely, suppose that G is a picture fuzzy soft graph
such that it satisfies the conditions. From (1), we have

Z Ik e (ab) = Z Ik (e;) (bC)

a#b c#b

ZVK(e,-) (Clb) :ZVK(e,-)(bC)7

a#b c#b

ZO’K(e ZO’K (be)Va,b,c €V, e €O0.

a#b c#b

deg,(a) = deg,(c) =r;, deg,(a)=deg,(c) = r;., and
deg,(a) = deg,(c) =r;, ¥ c,a € V, ¢; € O. This implies
S(e;) is a regular picture fuzzy graph. Thus, G is a regular
picture fuzzy soft graph.

From (2), p)(@) = () (€) = Xiy Vp(e) (@) = Vpey
(c) = x;, and op(,)(a) = op(,)(c) = x;’, Vec,aeV, e €O0.
Thus, F' is a constant function
deg,[c] = deg,(c) + pp(e,)(c) = ri + xi,
deg,u [d] degu(d) + :uF((J,)(d) =i+ x;.
[

degw, C] deg’(c) + VF(e)(C) =T +x;a
deg'y [d] = degy(c) + VF(e,)(d) =71+ x;'
deg,[c] = deg,(c) + 0p(,)(c) = r,’ +x:,

deg,[c] = deg,[d] = ki, deg,[c] = deg,[d] = k; and
deg,[c] = deg,[d] = k;. (ie) deg[c] = deg[d] = (ki,k;,k;) ¥
c,d €V, e €0.So S(e) is a totally regular picture fuzzy
graph.

Hence, G is totally regular picture fuzzy soft graph. This
implies G is a perfect picture fuzzy soft graph. [

Corollary 29 If G is a perfectly regular picture fuzzy soft
graph and

= (Br)(©), Vr(e0 () ar) (©)) = (riv7isr))
,VceV, e€O is a constant function in S(e;) then
O(S(e)) = V(ri,ri. ).

Theorem 30 Let G = (F,K,0) be a perfectly regular
picture fuzzy soft graph. Then size of S(e;) is S(S(e;)) =

%‘(x“x x;), where (x;,x,,x,) is the degree of a vertex in

[RAdd] (R

S(e;)) Ve €0.
3.2 Operations of picture soft graphs

Definition 31 Let G = (F1,K;,0) and G, = (F»,K,,T)
be two PFSG of G = (Vi,E|), G;=(V2,E;). The
Cartesian Product of G;, G, is a PFSG
G:Gy xG,=(F,K,0xT), where (F=F, xF,,0x
T)isaPFSSover V=V, x V,, (K=K xK;,0 xT)isa
PFSS over E = {((v,21), (,22)) : ¥y € V1,(21,22) € E2} U

{((71,2), (v2,2)) : 2 € Va, (y1,y2) € E1} and (F,K,0 x T)
are PFSG such that

) A by ) (2)
YO) A vy (2)

Y(9) V Ry (2)
V,(d,k)eOxT

1. a9, 2) = g,
VF(dk) ,2) = YFi(d

OF dk)(y7 7) = OF,\(d

V(.2 €

2. txax) ((7:21)s (,22)) =ty @) (0) A iy (215 22)
Ykar) (20 022)) = 76,0 O0) A ko) (215 22)
ok ((0:21), (0,22)) = k@) (V) V 0,0 (215 22)

Yy e Vi, (z1,20) €E,

300 Mk@n (0152), (02,2) = Bey ) (@) A ik, @) (315 32)
vk(ax) (1:2)s (02:2) = Ve (@) A Yk (@) 015 32)
ok ((V1:2), (02,2) = 0k (2) V 0k, (@) (31, 2)

Vze Vo, (y,y,) €E,

S(d, k) = Si(d) x S2(k) V (d,k) € O x T are picture
fuzzy graphs of G.

Example 32 Let O = {ej,e;} and T = {e3,e4} be the set
of parameters. Consider two PFSG’s G| = {S|(e1), Si(e2)}
and G, = {Sy(e3),S2(eq)} as in Figs. 4, 5, 6, 7.

The Cartesian product of G; and G, is

G] XG2:S,0><T, where ())(7‘2(61,63),(61,64)7
(e2,€3), (e2,€4),  S(er,e3) = Si(er) x Sa(e3), S(er, e4) =
S] (6‘1)>< 52(6‘4),5(62763) = S] (62) X 52(63) and S(e‘z,

es) = S1 (ez2) X Sa(eq) are picture fuzzy soft graphs of
G1 X G,. S(e1,e3) = Si(e1) x Sa(e3) is shown in Fig. 8. In
the similar way, the Cartesian product of S(eq,es),
S(ez,e3), S(ea, eq) can be drawn.

Theorem 33 The Cartesian product of two PFSG is a
PFSG.

Proof Let G, = (F1,K;,0), G, =
PFSG of G} =

(F2,K2,T) be two
(Vi,E1), G5 = (Va, E»), respectively. Let

@ Springer
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a(0.2, 0.2, 0.2)

b (0.3, 0.3, 0.4) €(0.4,0.2, 0.1)

S,(e,)

Fig. 4 Picture fuzzy soft graph S;(e;)

2(0.4,0.3,0.2) b (0.5, 0.2, 0.3)

0.3, 0.2, 0.2)

(0.1, 0.1, 0.2)

0.2, 0.1, 0.3)
®

d (0.3, 0.4, 0.1)

(0.2, 0.1, 0.4)
S,(e,)

Fig. 5 Picture fuzzy soft graph S;(ez)

X(0.4,0.3,0.2) Yy (0.3, 0.4, 0.3)

(0.3,0.2, 0.1) (0.2, 0.1, 0.2)

u (0.5, 0.2, 0.1)

(0.1, 0.1, 0.3)

® 2(0.2,0.5,0.5)
Sz(es)
Fig. 6 Picture fuzzy soft graph S,(e3)

G =G, X Gy, =(F,K,0 x T) be the Cartesian product of

G and G,. We claim that G = (F,K,0 x T) is a PFSG

and (570 X T) = {Fl X Fg(a,-,bj),Kl X Kz(a[,bj)} Va; €

O, bjcT fori=1tom, j=1 ton are PFSG of G.
Consider

@ Springer

X (0.4, 0.3, 0.2) v (0.3, 0.4, 0.3)
@ ®

(0.3, 0.2, 0.2)

0.2, 0.2, 0.3)

[
Z(0.2,0.3, 0.4)

S,(e)

Fig. 7 Picture fuzzy soft graph S»(es)

(0.2, 0.3, 0.5) (0.2, 0.2, 0.5) (0.2, 0.2, 0.5)

(0.2, 0.2, 0.5) 0.2, 0.2, 0.5)
>~ >
< <

N N
S 5
N o
J g
- 0.2, 0.2, 0.4) ¢ 0.2, 0.2, 0.2) ¢
< ) )
s s =
- - -
< Q-Q S Qﬂh =
N WA o Yo ~
R Q- y Q- !
= e W) e
@.
_ 0.2,0.2,04) _ 0.2,0.2,0.2) _
) a -
=) - =)
o o o
=) = <
S S S
® 0.2, 0.2, 0.4) ® 0.2,0.2,0.2) ®

(0.3, 0.3, 0.4) (02,0.2, 0.2) (0.4,0.2,0.2)

Fig. 8 Cartesian Product S(ey, e3)

b, (1 01), (h,02)
= min{ i, (o) (1), g1 (01, 02) }
fori=1tom,j=1ton
< min{ g, (o) (h), min{ g, ) (01), g, 5 (02) }}
= min{min{py, (a) (h), HEy(by) (01)},
min{#m (a;) (h), HFy (b)) (02)}}
ﬂk<1,i_b/)((h701)7 (h,02)) < min{(#ﬂ(a,») X .qu(b,))(h>01)7
(Hr (@) X Hrymy)) (1:02) },

i=1tom,j=1ton.
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VR (B 01), (1,02))
= min{yg, () (), min{yz,,)(01), 7,5 (02) } }

(@) (R)s V() (01) }

) (), 7E, () (02) }}

Koy (1,01, (1, 02))

(@) (), Oy (01,02) }

fori=1tom,j=1ton

(bj)(0‘)7GFz(bj)(02)}}

(a) (h); Oy 1) (01) }
max{ap, () (h), oF,@,)(02)}}

Kiurty ((h,01), (h,02)) < max{(oF,4) X T,

(OF (@) X Trypy)) (1, 02) },

= min{min{y,

min{7,
= max{op,

< max{aog, (4, (h), max{op,

= max{max{op,
)) (1, 01),

i=1tom,j=1ton.
Similarly,

B,y ((1150), (2, 0)) < minf (g,
))(h2;0)},
i=1tom,j=1ton.

Ty (11,0), (12,0)) < min{ (77, ) X V1o

(VFy(@) X VEay)) (12, 0) },

X :qu( ))(h1a0)7
(4r, (ar) X HEy (b

)(hlv )7

i=1ltom,j=1ton.
0K<1,,._,,.)((h1,0)’ (ha,0)) < max{(O—Fl(a') X OF (b ))(hl, 0),
(O-Fl<az> X OF (b ))(hZ’ )}7

i=1tom,j=1ton.
Therefore G = (F,K,O0 x T) is PFSG. O

Definition 34 The cross product of G; & G, is
G=G,0G, = (F,K,0xT),where (F,0 x T) is a PFSS
over V=V, xV,, (K,OxT) is a PFSS over E=

{(b1,21),((02,22)) = (y1,32) € E1, (21, 22) € Bz} and
(F,K,O0 x T) are PFSG such that

1.

iy (:2) = g @y (0) A by (2)
VFdh()’aZ) Ve @)Y A Ve (2)
aran(¥,2) = op @) V or,m)(2)
vV (y,2) eV (dh)erT
2.
w (01521), (02, 22)) = gy @) 015 92) A By (21, 22)
Ykan (1:21)s (02, 22)) = Vi, @) 01, 92) A Vi (215 22)
OK(d,h) ((ylazl)> (y27z2)) = O—Kl(d)(y17y2) v GKz(h)(Z17Z2)
Y (v1,52) € Vi, (21,22) € E,
S(d,h) = Sy(d) o Sy(h) ¥ (d,h) € O x T are PFSG of G.

Example 35 Let O = {e1,e;} and T = {e3,e4} be the set
of parameters. Consider two PFSG’s G| = {S;(e}), Si(e2)}
and G, = {S>(e3),S2(e4)} as in Figs. 4, 5, 6, 7.

The Cross product of Gy and G, is G; X G, = S§,0 x T,
where O XT = (el e3),(er,es),(e2,€3),(e2,e4),S(e1,
e3) = Si(e1) x Sa(es),S(er,eq) = Si(er) x Sa(es), S(e2,
63) = S] (e2)>< 52(63) and 5(62,64) = Sl (62) X 52(6’4) are
picture fuzzy soft graphs of Gy X G;. S(ey,e3) = Si(e1) X
S>(e3) is shown in Fig. 9. In the similar way the cross
product of S(ey,eq), S(ea,e3), S(ea,e4) can be drawn.

Theorem 36 The cross product of two PFSG is also a
PFSG.

Proof Let G| = (F17K170) & Gy, = (F2,K27T) be PFSG
of Gj = (V1,E1) & G5 = (Va,E,), respectively. Let the
cross product be G = G| 0 G, = (F,K,0 x T). We claim
that G = (F,K,0 x T) is a PFSG and (S,0 x T) = {F, o
F>(a;, bj),Ky 0 K»(a;, b))} Va;in O, bjin Tfori = 1tom,
j=1to n are PFSG of G.

Consider

(0.2, 0.3, 0.5) 0.3,0.3,0.4)

D)

(0.1, 0.1, 0.3)

0.2,0.2, 0.5)
®

S

)

>

5]

(=}

&
(T°0°‘T0 ‘¢°0)

(0.3,0.2, 0.3) 0.3,0.3, 0.4)

(0.3, 0.2, 0.4)

(0.1, 0.1, 0.4)

(0.2, 0.2, 0.5)
[ )

(0.2, 0.2, 0.2)
(€0°C0 ‘T°0)

(0.1, 0.1, 0.3)

(0.4, 0.2, 0.1)

Fig. 9 Cross product S(ey, e3)

@ Springer



536

Granular Computing (2022) 7:527-548

B, ((c1:10), (e2,12))
= min{ g, o) (c1, €2), Higy ) (11, 12) }
fori=1tom, j=1ton
< min{min{up, o) (€1); tr, (4 (€2) }
min{ i, ) (1), ) (2) }}
) (€1); ey (1)},
mln{#m(a, (c2), HE, (b (12)}}
By, ((€1511), (€2,12)) < min{ (pp,

= min{min{y, ,,

a) © Heyp) (€1, 1),
(HF, (a;) © .qu(b,))(C% n)}
fori=1tom,j=1ton.
VR ((€1:10); (€2,12))
= min{y, (4 (€1, ¢2), Vg0 (11, 22) }
fori=1tom,j=1ton.

(@)(€1); 7F (@) (€2)}

< min{min{yp,(

min{“/pz(h (1), VFa (b, (IZ)}}
:min{min{))pI (@) ( 1) A0 )(tl)}}
{min{yr, ) (€2), Ym0 (12) }}

“K<a,..h.>((cl7f1)7 (c2,12)) < min{ (7, (4 © Vr, ) (€15 11),
VFy(a;) © V(b )(Czﬁz)}
fori=1tom,j=1ton.
Tk ((€1,11), (€2, 12))
= max{ ok, (4,)(C1,¢2), Ok, ) (11, 12) }
fori=1tom,j=1ton.
< max{max{c, (q)(c1), 0F,(4)(c2)},
max{ar,,)(t1), or,0,) (12) } }
y(€1), 0r,0) (1)},
max{cr, () (c2), 0r, ) (t2) } }

Tk ((€1,11), (€2, 12)) < Max{(0F,(a) © O, 1)) (c1, 11),

= max{max{oz, (4

OFy(a) © OFy(b) (€2, 12) }

fori=1tom,j=1ton.
Hence, G = (F,K,0 x T) is a PFSG. O

Definition 37 The lexicographic product of G; & G, is
G=G (G, = (F,K,0xT),where (F,0 x T) is PFSS
over V=V, xV,,(K,O0xT) is a PFSS over E=
{((thl)v ((C7 h2)) rceVy, (hlth) € EZ} U{((Clahl)v
((Cz,hz)) : (Cl,hl) cE, (Cz,hz) S E2} and (F,K,O X T)
are PFSG such that

@ Springer

pa) (€3 1) = 1, () (€) A gy (h)
/F(pq (e, h) = p, ) (€) A VEy) ()
)V Oryq)(h)

€O xT.

OF(pg)(Ch) = 0F () (c
V(c,h) € V,(p,q) €

2 Mg (€ h1),(c,h2)) = tp, ) (€) A biyq) (11 ha)

Vk(pg) ((€,h1), (¢, 12)) = VE, () (€) A Viy(q) (1 ha)

Ok (pg) ((€,1), (¢, h2)) = ap, () (c) V 0k,(g)(h1, hr)
VeV, (h,h)€E,.

Lk (pg) ((c1,h1), (€2, h2))
= Uk, (p) (€1, €2) N pgy () (B1, )

Tk(pg) ((€1,71), (c2,12))
= 7k, () (€1, €2) A Vi (g) (11, 112)

Tk (pag) ((€1,), (c2,2))
= 0, (p)(c1,¢2) V 0, () (h1, 1y)
Y(e1,¢) € E|, (h1,hy) € E,.

Example 38 Consider the graphs G; and G, from example
1. The lexico product of S(ey, e3) is given in Fig. 10. In the
similar way, the lexico product of S(ej,es), S(ez,es3),
S(ez, e4) can be drawn.

Theorem 39 The lexicographic product of two PFSG is a
PFSG.

Proof G, = (F,K;,0) and G, = (F3, K3, T) be PFSG of
Gi = (Vi,E1) and Gj = (Va,E;), respectively. Let
G (OG,=(F,K,0xT), be composition of G; and Gj.

We claim that Gy (O G, =G = (F,K,0 x T) is a PFSG
nd (5,05 T) - 1 () O Flly), Kol O Kate}
a; € 0,bjeTfori=1tom, j=1tonare PFG of G. Let
g € Vi and (wy,w;) € E;, we have

:uK(a/._b/.) ((q7 wi )a (qa WZ))
= min{up, (a;)(Q)v :qu(b_,-)(WlaWZ)}

fori=1tom, j=1ton.
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(0.1, 0.1, 0.4)

(0.3,0.2, 0.4)

(0.1, 0.1, 0.4)

(0.2,0.2,0.5)

0.2, 0.2,0.2)

(0.1, 0.1, 0.3)

(0.4, 0.2, 0.1)

(0.1, 0.1, 0.3)

Fig. 10 Lexico product S(ey,e3)

By, (@ W1), (g5 2))
< min{uFl (a)) (9), min{/in(h,) (w1, HEy () (w2)}}
= min{min{u, 4,)(9), Kr,m) (W1)},
min{ i, (o) (9)s ey ) (W2)
= min{(Kr, o) X tr, ) (4, W1),
(HEy(a) % HEy () (g5 w2) }
By, (@ w1), (g5 w2))
< min{up(g, ) (4 W1)s B, (4 W2)
VRiyay (@ W1); (4 w2))
= min{yr, (4 (@), Vi, (6;) (W1, W2) }

fori=1tom, j=1ton.

(€0°C0°C0)

Ky ((g:w1), (g, w2)) < min{min{y, ,(q),

min{yg, ;) (W1), 75, ,) (W2) } 1}
= min{min{yp, (a)) (q), YFa(by) (w1)},
min{yg, (4)(9); Vry () (W2) 1}

= min{ (Y, (@) X VE0))(@W1)s (VP (a) X VEy(5y)) (@ W2)}

“K(ﬂi_bj> ((Q7 wi )7 (q7 WZ))
< min{pp(q, 4,) (9, W), (a6 (4 W2)}
O-K(ai.b/-) ((qa wi )7 (q7 Wz))

= max{oFl(a;)(q)a UKz(bj)(Wth)}

fori=1tom, j=1ton.

O-K(a’-_bj) ((Q7 Wl)7 (Q7 W2)) < maX{GFl (a;) (Q)v

max{ag, ) (W1), 0, (p,) (W2) } }
= min{max{op, (4)(q), 0, (W1)},

max{or,(4,)(q), OF; () (W2) }}

= max{(O—Fl(a,v) X O-Fz(bj))(qawl)> (Gma,) X Upz(b,a)(q,wz)}

O-K(a,-.bj) ((q7 W1)7 (q7 WZ))

< max{Gr(q,5)(q W1); O (a5, (4 W2) }-

Consider

/'tK<a,--b,-) ((Cl ) hl )a (C27 hZ))

= min{ i, (4 (€1, €2); Uy ) (1, 12) }

fori=1tom, j=1ton

< min{min{up, ) (€1), tr, 4 (€2) }
min{ g, ) (h1), e, ) (2) }

= min{min{p, () (c1), tp, ) (h1) },
min{ g, o) (€2); Upy i) (h2) }}

#K@,.b/) ((Cla hl)7 (CZa hZ))
< min{pp(, 1) (€1, 1), Bea, ) (€2, h2) }
fori=1tom,j=1ton.

’yk(ui‘bj) ((Cl ) h1)7 (CZ; h2))

= min{yg, ) (c1,€2), Vi, () (11, 12) }

fori=1tom,j=1ton
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< min{min{y, ,

; (C ), VF](a‘)(CZ>}>

min{yg, ) (A1), V) (h2) }}
= mm{mln{yFl (@ (€1)s Vm, ) (h1) }H
{min{yp, o) (c2), 75, () (h2) }}

VR ((€1:11), (€2, h2))

< min{yp(a) (€1, 1) Pr(as) (€2:12) }
fori=1tom,j=1ton.
K g0y (€15 1), (€2, h2))

< min{ (7, (q) © Vry0)) (€1, 1),

(VEs(a) © VEa(v)) (€2, 2) }

fori=1tom,j=1ton
TK ((c1,m), (c2,h2))

= max{ o, (4,)(c1,€2), Ok, p) (1, h2) }
fori=1tom,j=1ton

< max{max{oF, (4 (cl) OF (a)(c2)}
max{cr, ) (M), or, @) (h2) } }
(Cl) o,y (M)},
max{6r, (4,)(c2), oF, 1) (h2) }}
K gy (€15 1), (€2, h2))
< max{Gr(g, p)(C1,), tp(ap) (2, 12) }

= max{max{og, (4

fori=1tom,j=1ton.
Hence, the claim. O

Definition 40 The complement of PFSG G = (F, K, O) is
represented by G° = (F¢, K, 0°) and is defined as

1. 0°=0.

2. Fe(e) = F(e).

30 pige(e) (s V) = ppey () A bp(e) (V) = Hgey (U5 V).
4 Vg (u,v) = ( ) A Ve (V) = Vi(ey (U5 V).
5. Oge(e) (U, V) = Oppey (U) V ey (V) — Ok (e) (1, ).

Example 41 Consider a graph G* = (V,E), where V =
{al,ag,a3,a4} and E = {alaz,a2a3,a3a4}. Let O = {61}
and let (F, O), (K, O) be the picture fuzzy soft sets over V,
E correspondingly and functions F: O — P(V), K: O —
P(E) be given by
F(el) = {(a] , .4, .3, 2), (az, .3, .47 3),
(as,.2,.3,.4),(as,.3,.2,.3)}
K(el) = {(alag, .3, .27 .2), (613614, .1, .1, .3)7
(a2a3, .2, .2, 3)}

@ Springer

The PFSG G = {S(e;)} is shown in Fig. 11. The comple-
ment of PFSG is in Fig. 12.

Definition 42 The strong product of G;,G;, is a PFSG
G=GiRG, = (F,K,0xT), where (F,O0xT) is a
PFESSover V=1V, x V,, (K,O xT)isaPFSS over E =
{((kabl)v ((k»bZ)) tkeVy, (blab2) € E2}U {((k1>b)>
(kz,b)) b eV, (kl,kz) € El} @] {((kl,bl),

(k27b2)) : (k17k2) € ky, (bl,bz) S Ez} and (F,K7O X
T) are PFSG such that

1.
L5 (hg) (ks D) = Wy (k) A pipy () (D)
VF(h,g) (k7 b) = VF (h) (k) A sz(g) (b)
OF(h,g) (k,b) = JF](h)(k) V Or,(g) ()
Y (k,b) € V,(h,g) €eOXT
2.

Hi(ng) ((kb1), (K, b2)) = pip, ) (K) A pgy () (b1, B2)

VK(h.g) ((k bi1), (k,b2)) = VR (n ( ) A VFa(g (blabz)

k(g ((k:b1), (k,02)) = 0,y (k) V Opy () (b1, br)
V ke Vi, (b,by) €E,.

3. Mkng ((k1,D), (k2, b)) = i, () (D) A pip, oy (K1, ky)
Vk(ng) ((k1,D), (k2, D)) = Vpy(6)(B) A vp, iy (K1, Kk2)
) = O-Fz(g)(b) \ UFl(h)(klakZ)

a (0.4,0.3,0.2)
[

(03,0.4,0.3) a,

(0.3,0.2,0.2)

(0.2, 0.2, 0.3)

(0.1,0.1, 0.3)
@
(0.3,0.2,0.3) a,

a,(0.2, 0.3, 0.4)
S(e,) = (F(e,), K(e,))

Fig. 11 Picture fuzzy soft graph G = {S(e1)}
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(0.4,03,02) a,(03,0.4,0.3)

(0,0.1,0.1)

o
o

(0.2, 0.3, 0.4)
(£°0 “T°0 ‘€°0)

(0.1, 0.1, 0.1)

(02,03,04)a, a,(03,02,03)

8(ey) = (F(e,), K(ey)

Fig. 12 Complement picture fuzzy soft graph G° = {S°(e;)}

4. fig(ng ((ki,b1), (ka,b2))
= pig, () (k1, k2) A gy () (b1, by)

Vk(ng) ((k1,b1), (ka, b2))
=k, (k1 k2) A Vg g) (b1, b2)

Ok (ng) ((k1,01), (k2,b2))
= ok, n (k1,k2) V 0k, (5) (b1, )
Y (ki,k2) € Ev, (b1, by) € E,.

S(h,g) = S1(h)X)S2(g) V (h,g) € O x T are PFSG of G.

Example 43 Consider the graphs G, and G, from example
1. The strong product of S(ey, e3) is given in Fig. 13. In the
similar way the strong product of S(ej,es), S(ez,es3),
S(ez, e4) can be drawn.

Theorem 44 The strong product of two PFSG is also a
PFSG.

Proof G, = (F1,Ki,0) and G> = (F», K>, T) be PFSG of
G; = (V1,E|) and Gj=(V2,E,), respectively. Let
G1(X)G, = (F,K,0 x T), be composition of G; and G,.
We claim that G;(X)G> = G = (F,K,0 x T) is a PFSG
and (S, O x T) = {Fl (Cli)®F2(bj)7K1 (ai)®K2(a,»)} N
a; € 0,bjeTfori=1tom, j=1tonare PFG of G. Let
h eV and (g1,82) € E,, we have

K, (s 81), (B, £2))
= min{:uF] (ai) (h)7 luFZ(bj> (gl ’ 82)}

fori=1tom, j=1ton.

(s. 5z. 5z.)

@ ‘T )

(s ‘¢ T)

Fig. 13 Strong product G = {S(e;,e3)}

B, (B 81), (s 82))
< min{up, (o) (h), min{ug, ) (81), tr, ) (82) 1}
= min{min{ s, () (1), ttr, ) (81) },
min{ g, o) (h); Ur, 5, (82) 1
= min{(Kp, o) X Hr,p) (hs 81);
(HEy (@) X ) (s 82)}ﬂl<(a[,,,/)((h781)7 (h, &2))
< min{ g, ) (h, 81), M, (h, 82)}
Vs (B 81), (1, 82))
= min{yp, (a;) (h), VK (by) (g1,82)}

fori=1tom, j=1ton.

@ Springer
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VK (B 81), (1, 82)) < min{min{yp, ) (),
min{yr, 4, (81), Ve (82) 1 1}
= min{min{y, (4, (1), 7k, (81)},
min{yz, ) (h), V5, (82) }}
= min{(Vr, o) X V) (h: 81);
(V@) X VRa) (s 82) itk (s 81), (By 82))
,b,)(/% gl)n“F(a,-,b/)(hagZ)}
Ky (1, 81), (h, 82))
= max{or, () (h), o, (81,82)}

S min{:uF(a,w

fori=1tom, j=1ton.
o (B, 81), (1, 82)) < max{oF, (a) (h),
maX{JFv )(81), 0y 5)(82) 1}
= min{max{op, 4, (1), or,(1)(81)},
max{or, () (h), o) (82)}}
= max{(6r,(4) X OF, 1)) (h; 81),
(0r,(@) X Or,mp)(h, 82) ok, (1 81), (B, g2))
< max{op(, ) (1 81), OF(a,p,) (h; 82)}-

Similarly, for any w € V, and (¢1,42) € E;, we have

Hi,, (a1, W), (42, W)
(qh ),uF(ul )(q27 )}
VK(H;-”_/)((qI’ )a(qZ’ )

< min{VF (ai,b)) (q1,w), VF(ai b)) (q2,w)}
Kia; b)) ((qh ) (QLW))

< mln{aF(ai,bj) (CIlv W)7 OF(a;,bj) (QZ7 W)}

< min{sr(,

Consider
By, (€1, 11); (€2, R2))

= min{j, () (€1, €2), Miyp) (M1, 12) }
fori=1tom, j=1ton.

< min{min{,upl : (C )s #F.(a,)(cz)}7
mln{:qu (hl) HFy (b, (hZ)}}
= min{min{sup, () (1), tr,,) (h1)},
min{ i, (4)(€2) Kry ) (hz)}}
B, (€1, (€2, h2))
< minf{ g, ) (€1, 1), B, ) (€2, h2) }

fori=1tom,j=1ton.
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VR ((€1:11), (€2, h2))
= min{yg, (4, (c1,€2), 7,6 (1, 12) }
fori=1tom,j=1ton.
< min{min{yz (a:) (C )s VFy(an (€2) 1
min{VFz(bj)(h) VFa (b (hz)}}
:min{min{yﬂ (a)) ( 1), VFa (b, (hl)}}v
{min{yp, o) (c2), 7p, () (h2) } }
VK (€1, 1), (€2, R2))
< min{yp(, 5 (€1, 1), Vr(a, ) (€2, h2) }
fori=1tom,j=1ton.
Ky (€15 1), (€2, h2))
< min{ (Y, () © Vr,(6)) (€1 11)s VEy (@) © VEsry) (€20 12) }

fori=1tom,j=1to n.
OK i) ((c1,h1), (c2,h2))

= max{ok, (4,)(c1,¢2), Oy, >(h1,h2)}
fori=1tom,j=1ton.

< max{max{o, (4)(c1), OF,(4)(c2)},
max{aﬁ y(h1), 0,0, >(h2)}}
= max{max{og,4,)(c1), O )(hl)}
max{op, 4)(c2), 0F, ) (h2) } }
OK g0y (€1, 1), (€2, h2))
< max{op(q,b) (1, M), Ko, ) (2, 12) }

fori=1tom,j=1ton.
Hence, G = (F,K,0 x T) is a PFSG. O

Definition 45 The composition of G;, and G, is
G =G[Gy] = (F,K,0 x T), where (F,0 x T) is a PFSS
over V=V, xV, (K,O0xT) is a PFSS over
E = {((W,dl), ((W,dz)) w eV, (dl,dz) S EQ}U
{((Wl,d), (Wz,d)) :d eV, (Wl,Wg) S El}U
{((W],dl), (Wz,dz)) : (W],Wz) S E],d] 75 dz} and
(F,K,O x T) are PFSG such that
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(0.2, 0.1, 0.2)

@ ®
(0.4, 0.3, 0.2) (0.3, 0.2, 0.1)
Gl
(0.2, 0.2, 0.1)
@ ®
(0.3, 0.2, 0.2) (0.2, 0.3, 0.2)
G2

Fig. 14 Picture fuzzy soft graph G, and G,

5 M) (w,d1), (w,d2)) = pip, iy (W) A pigy (o) (d1, ds)
Vk(rg) (W d1), (W, d2)) = v, (W) A gy ) (d1, da)
kg ((W,d1), (W, d2)) = op, ) (W) V 0k, () (d1, d)

VweVi,(si,s,) €E,.

> ik (1), (92,d)) = i) (d) A gy o (w1, w2)
VK (t,9) (w1, d), (w2, d)) = VFy(g ( ) A VF,(;)(Wth)
Ok (g) (W1,d), (W2,d)) = 0p,(4)(d) V 0, (1) (W1, W)

VdeV,, (w,w)€E,.
" ik (), (w2, 2)
= Hi, (1) (W1, W2) A iy () (d1) A gy ) (d2)
Vk(g) ((U1,d1), (W2,d2))
= 7k, () (W1, W2) A Vg ) (d1) A iy 1) (d2)
Ok(g) (W1,d1), (W2,d2))
= 0k, () (W1, W2) V Gpy () (d1) V gy 1) (d2)
Y (wi,wa) € Ey,dy # dy.
S(t,g) = S1(t) [S2(g)] forall (¢,g) € O x T are PFSG of G.

Example 46 The PFSG G, and G is given in Fig. 14. The
composition of G; and G, is drawn in Fig. 15.

Theorem 47 If G, and G, are PFSG, then G,[G,] is a
PFSG.

Proof Let G; = (F],K170) and G, = (F2,K27T) be
PFSG of G} = (Vi,E;) and G; = (Va, E;), respectively.
Let G1[G,] = (F,K,O x T) be the composition of G, and
G,. We claim that G1[G,] = G = (F,K,0 x T) is a PFSG
and (S, O x T) = {Fl (a,')[Fz(bj)],K] (ai)[Kz(a,-)]} v a; €
O,b;cT fori=1tom, j=1ton are PFG of G. Let
g € Vi and (wy,w;) € E;, we have

0.3, 0.2, 0.2) 0.2,0.3, 0.2)

0.2,0.2, 0.2)

%c
V.

0.2, 0.2, 0.2)
(0 °T0°C0)

0.2,0.2, 0.1)

0.2,0.2, 0.2) 0.3,0.2, 0.2)

Fig. 15 Composition of G; and G,

By, (@ W1), (g5 W2))
= min{uir, (4)(q), ) (W1, w2) }
fori=1tom,j=1ton
By, (@ W1), (g w2)) < mindpep, o) (),
min{ i, ) (W1, Hpy () (W2) }
(a;) (CI) HEy b )( wi)},
min{ig, 4, (q), Hey ) (W2) 1
= min{ (Up, 4 X Hr, ) (2 W1)s
(1r, (a) X :qu(b-))(Qa WZ)}MK(,,,.J,.) ((gsw1), (g w2))
< min{upg, 4 (4, W1)s B, (4 W2)
VK (@ 91), (q, w2))

= min{y,

= min{min{ s,

(@) (@) Vis (b)) (W1, w2) }
fori=1tom, j=1ton.
VK ((g,w1), (¢, w2)) < min{min{yp, (a,v)(Q)v
1) Vka) (W2) 11}
(al)(q)v /F2<h,)(W1)}7
(a,-)(CI)aVFz(h,)(WZ)}}
= min{(?ﬂ(a,) X VFz(b,-))(% wi),
(VFl(a,.) X VFz(b,»))(QaWZ)}/‘K([,i_,,/)((CI7W1)7 (g,w2))

min{VFz(b (w
= min{min{yp,

min{yp,

< min{upg, ) (4 W1)s B, (@ W2)

O-K(ui.b/-) ((qv wi )a (Qa W2)) = maX{O-Fl (ui)(Q) 0K, (b; )(Wl ) WZ)}

fori=1tom, j=1ton.

@ Springer
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Ok (@ W1), (g, w2)) < max{op, (q)(4),
max{c, ) (W1), 0r,p)(W2) } }
= min{max{or, 4, (q); Tr)(W1)},
max{cr, (4)(4); O, () (W2) } }
= max{(0r,(4) X Op,1))(q, W1),
(0Fi(a) X OF ) (@, W2) } Ok 1) (2 W1), (g, 12))
< max{0r(q,5)(q, W1), OF(a,5,) (@ W2) }-
Similarly, for any w € V, and (¢1,q2) € E;, we have
K, (@15 ), (g2, W)
< min{up(g, ) (91, W)s Ki(a, ) (@2, W)
iy (@01:). (42, ))
< min{yp(,5) (91, W), Vr(ap) (92, W)}
Koy (@1, W), (g2, W)
< min{op (a5 (91, W), OF(a,) (92, W) }-
Let (g1,w), (g2,w) € Ej, and wy # wy. Then we have

B,y (@1, W), (2, w))
= mln{.“l(] (a;) (‘11#]2) HEy (b, (Wl)a.qu b-)(WZ)}
< {min{max{u, a,)(QI) HE () (92)},
{ﬂpz(bf)(wl)7#sz,»)(WZ)}}}
= min{min{uz, ) (q1); ir, ) (W2) },
min{ /g, (o) (q2), Hy ) (W2) }}
B, (215w1), (92, 2))
< min{ gy, p) (91, W1), Ko, ) (92, W2)
YKy ((q1,w1), (92, w2))
= min{y, ) (g1, W1)s V) W15 Viy ) (W2)
< min{min{yz, 4, (q1); tr, (4 (22) }
V(b )( 1) YFy (b, (Wl) VFz(b)(WZ)}
= mm{mm{w. ) (@1); V) (1)}
mm{)’F1 (a;) (CJz) YE (b )(W2)}}
VK(L,,,,,/)((Ql,Wl),(Q2,W2))
< min{yp(, ) (91, W1), V(a8 (42: W2)
Tk (@1, W1), (g2, w2))
= max{0g, (4,)(q1,92); Tr, (b)) W1), OFy(5,) (W2) }
< max{max{o,()(q1): 0F,(a)(q2) },
OF, (b)) W1)s OFy () (W1), V) (W2) }
= max{max{cr, (4)(q1), O, () (W1)},
min{or, 4)(q2), O, (p,) (W2) } }
OK gy (21, W1), (92, W2))

< max{or(,5)(q1,W1); Or(a,5)(q2, W2) }-

@ Springer

Hence, the claim. O

Definition 48 If G, = (F1,K;,0) and G, = (F»,K,,T)
are two PFSG, the intersection of G; and G, is a PFSG
G =G, NG, = (F,K,0NT), where (F,0NT) is a PFSS
over V=V, NV, (K,ONT)isaPFSS over E = E| NE,,
and the PM, NM, NEM functions of GV r,t € V are PFSG
such that

ra)(t) ifd € O —T;
tp(a)(t) = § My (1) ifd € T = O;

tiy @) (D) N ppya) (2) ifd € ONT

VF (o) (1)ifd € O = T;
Yr@) (1) = § Vrya)()ifd € T = O;

V@) () A VR (t) ifd€ONT

oF ) (t)ifd € O = T;
O'F<d>(l) = 4 OF,(d) (t)lfd eT—-0;

or ) (t) V op,q(t) ifdeONT

,uK] o (rt)ifd € O —T;
#K(d)(rt) = 2(d) (rt)lfd eT—-0;

/lK, &) A gy (rt)ifd € ONT

k(o) (rt)ifd € O — T;
VK(d)(rt) =1 Yk (rt)lfd eT—-0;

Yk (@) (1) A V(o) (11)ifd € ONT
ok, (a)(rt)ifd € O — T;
ok, (a)(r)ifd € T — O;

(

o 1) =
K(a) (1) ok, (@) (1) V ogya) (rt)ifd € ONT

Example 49 let G| = (Fl,Kl,O) and G, = (FQ,KQ,T)
are two PFSG as in Figs. 16 and 17. The intersection of G
and G, isG =G, NGy = (F,K,0NT), where (F,ONT)
is a PESS over V=V, NV,,(K,ONT) is a PFSS over
E = E; N E,, which is given in Fig. 18.

Definition 50 A PFSG G is a complete PFSG if S(e) is a
complete PFG of G for all e € O,

t () (uv) = min{ g (), tre) (v) }
YK (e) (MV) = min{?F(e) (M), YF(e) (V)}

OK(e) (uv) = maX{O'F(e) (u), OF(e) (v)}

VYu,ve V,ecO.

Example 51 Consider the simple graph G* = (V,E),
where V = {b],b27b3,b4} and £ = {blb27b1b3,b1b47blb§7
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bybs, bybs, b3bs, bybs, byby,bibs}. Let O = {ey,ez,e3}
and (F, 0), (K, O) be the picture fuzzy soft set over V and
E correspondingly with functions F : O — P(V), K : O —
P(E) defined by
F(e1) ={(by,.5,.2,.2), (b2, 4,.3,.2),

(b3,.3,.3,.2),(bs, .6,.2,.1)}
F(ez) = {(by,.6,.2,.2),(bs,.5,.3,.1),

(bg,.4,.3,.2)}
F(e3) ={(by,.5,.2,.2),(by, 4,.3,.2),

(b3,.3,.3,.2), (by, .6,.2,.1),

(bs,.5,.3,.1)}
K(er) = {(b1bs, 4, .2,.2),(b1b3,.3,.2,.2),

(b1bs, .5, .2,.2), (D23, .3,.3,.2),

(baby, 4,.2,.2),(b3by,.3,.2,2)}
K(e2) = {(b1b3,.5,.2,.2),(b1bs, 4, 2,.2),

(b3bg, 4,.3,.2)}
K(e3) = {K(e1), (b1bs,.5,.2,.2), (b2bs, 4,.3,.2),

(b3bs, .3,.3,.2), (bybs, .5,.2,.1)}.

The complete picture fuzzy soft graph is given in Fig. 19.

Definition 52 If G1 = (Fl,Kl,O) and G2 = (Fz,Kz,T)
are two PFSG, the union of G = G; UG, = (F,K,0UT)
is a PFSG, where (F,OUT) is a PFSS over V=V, U
Vo, (K,0UT) is a PFSS over E = E; UE,, and the PM,
NM, NEM functions of G V t,r € V are defined by

X (0.4, 0.3,0.2) Yy (0.3, 0.4, 0.3)

(0.3,0.2, 0.1) 0.2, 0.1, 0.2)

u (0.5, 0.2, 0.1)

(0.1, 0.1, 0.3)

Z(0.2, 0.5, 0.5)
1

Fig. 16 G,

X(0.4,0.3,0.2) Y (0.3,0.4,0.3)
® ]

0.3, 0.2, 0.2)

0.2, 0.2, 0.3)

®
Z(0.2, 0.3, 0.4)

Fig. 17 G,

X (0.4, 0.3, 0.2)
®

(0.3, 0.2, 0.2)

0.2, 0.2, 0.3)

¥ (0.3, 0.4, 0.3) Z(0.2, 0.3, 0.5)

Fig. 18 Intersection of G; and G,

ﬂFl(w)(r)lf weOo-T;
:qu(w)<r)1f weT—0;
t o) () V gy (0)If we ONT
Ve oy (P)If W €O =T
))Fz w (r)lf we T — 0
T o) (1) V 0 (DIf weoNT
r)if we O0—-T,

HE(w) (r) =

GFIW()
Ory ) (N)if weT - 0;
TF, (w) (1) y(nif weonT

1 r /\O'F7

Lk, o) (1) V iy (1) if w € ONT
Tk, ow) (t7)if w € O = T;
Vo) (IN)If W €T — O;
w) 1)V g (tr) ifweOoNnT
ok, o) (tr)if we O —T;
ok, w)(tr)if w e T — O;

Ok, w)(tr) N Oy (tr) if weONT

Yk,

Lk, (w) (Er)if w € O = T
Iy (1) = {uKz y(tr)if we T — 0;
)(

@ Springer



544

Granular Computing (2022) 7:527-548

Example 53 Let G] = (F],K],O) and G2 = (FQ,KQ,T)
are two PFSG as in Figs. 16 and 17. The union of G, and
G, is drawn in Fig. 20.

Definition 54 A PFSG G is a strong PFSG if S(e) is a
strong PFG for all e € O.

Example 55 Let G* be a graph with V = {c|,c2,¢3,¢4}
and E = {C]CQ,C|C3,C]C4,6‘2C3702C4,C3C4} and 0=
{e1,e2,e3} let (F, O), (K, O) be picture fuzzy soft set over
V, E with functions F: O — P(V), K : O — P(E) corre-
spondingly and defined by,

(05,0.2,02) b, b, (0.4,0.3,0.2)

(0.4,0.2,0.2)

(0.3, 0.2, 0.2)
@0°‘T0 v0)

(0.3,03,0.2) b, (0.3,0.2,0.2) b, (0.6,0.2,0.1)
S(ey) = (F(ep), K(e,))
b, (0.5, 0.3, 0.1)

5,002

[\

b, (0.6,0.2,0.2) (0.4,0.2,0.2)

b, (0.4,0.3,0.2)
S(e,) = (F(e,), K(e,))

(0.5,02,02)b b, (0.4,03,0.2)

1 (0.4,0.2,0.2)

(0.3, 0.2, 02)
@0 z0 ‘v0)

(03,0.2,0.2)

(0.3,0.3,02) b, b, 0.6, 0.2,0.1)

b, (0.5,03,0.1)

S(e;) = (F(ey), K(ey)

Fig. 19 Complete picture fuzzy soft graph G = {S(e;),S(e2),S(e3)}
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x(0.4, 0.3, 0.2) (03, 0.2, 0.2) ¥(0.3, 0.4, 0.3)

(Z°0 ‘1°0 “T°0)

(0.1, 0.1, 0.3)

2(0.2, 0.5, 0.4) u(0.5, 0.2, 0.1)

Fig. 20 Union of G; and G,

F(ey) ={(c1,.2,.2,.2),(c2,.3,.3, .4),
(c3,.4,.2,.1)}

F(ex) = {(c1,.4,.2,.3),(c2,.5,.3,.2),
(c3,.4,.1,.1),(cq,.3,.3,.2)}

Fles) = {(c1,.5,.3,.2), (c2, 4.1, 1),
(c3,.3,.4,.2), (cay 4, 2,.4)}

K(ey) = {(c1¢2,.2,.2,.4),(cyc3,.2,.2,.2)}

K(e2) = {(cic3, 4,.1,.3), (c1c4, .3, .2, .3),
(c1c2, 4,.2,.3), (c2c4,.3,.3,.3)}

K(es) = {(cica, 4,.2,.4),(c1c3,.3,.3,.2),
(cacq, 4,.1,.4)}

The strong picture fuzzy soft graph is given in Fig. 21.

4 Application
4.1 Algorithm

An algorithm for decision making using the proposed
Picture fuzzy soft graphs. The notation A denote the
attributes, F and K are the mapping from A to P(V) and
P(E) and S, denote the Picture fuzzy soft graph. The
algorithm proposed for this PFSG is as follows:

Step 1: Consider the picture fuzzy soft sets (F, A) and
(K, A) according to the attributes in A.

Step 2: Draw the PFSG S, corresponding to each attri-
bute (e € A) for the considered problem.

Step 3: Calculate the resultant PFSG (S(e)) by taking
intersection of the PFSG’s S, for each attribute and the
adjacency matrix of the resultant matrix S(e).

Step 4: Calculate the score values for the S(e) using the
score function

1 + positive — 2(neutral) — negative
2
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and choice value by adding the score values of a particular
element of the universal set.

Step 5: Obtain the optimal decision by choosing the
maximum of the calculated choice values.

4.2 lllustration

The coronavirus family causes illnesses ranging from the
common cold to more severe diseases such as severe acute
respiratory syndrome (SARS) and the Middle East respi-
ratory syndrome (MERS), according to the WHO. The
pandemic is affecting different people in different ways.
While some try to adapt to working online, homeschooling
their children and ordering food via Instacart, others have
no choice but to be exposed to the virus while keeping
society functioning. We all have been affected by the
current COVID-19 pandemic. However, the impact of the
pandemic and its consequences are felt differently
depending on our status as individuals and as members of
society. Common signs of infection include fever, cough-
ing and breathing difficulties. In severe cases, it can cause
pneumonia, multiple organ failure and death. The incuba-
tion period of COVID-19 is thought to be between one and
14 days. It is contagious before symptoms appear, which is
why so many people get infected. For almost a year, the
pandemic has locked us all up, and we are still suffering
and afraid of COVID-19. For the medical team, treating all
the patients is a difficult task. An important decision-
making process in the medical team is the selection of the
sickest individual to give treatment. It may even be fatal if
something is delayed in selecting the treatment for the
patients. The main objective is to select and treat patients
who are at high risk of COVID to prevent them from
becoming more affected. For the treatment of a patient with
a high risk of a virus, we propose a decision-making
algorithm. To test the possibility of COVID-19, let us
consider a set of six patients. Since it is a difficult process
and consumes time to choose the most affected individual.
Let V = {Py,P,,P;3,P4,P5,Ps} the set of six-person be
considered as the Universal set and A = {e;, e, } be the set
of parameters that characterize the risk for patients, the
attributes e; and e; stands for the symptoms and the illness
they already have in their system. Consider the picture
fuzzy soft set (F, A) over V which describes the “impact of
the virus on patients” corresponding to the given parame-
ters. (K,A) is a picture soft set over E =
{P1Py,P\P3,P\P4,PPs,P\Ps, PyP3,P,P4,P,P5,  P,Pg,

c,(02,0.2,0.2)

¢, (0.3, 0.3, 0.4) C,(0.4,0.2,0.1)

S(e,) = (F(e,), K(e,))

(0.5,0.3,02) C,

I

(0.3,0.3,0.2) €,(0.3,03,0.2)

(0.4,0.2,0.3)

@
(0.4,0.2,03) ¢, (0.4,0.1, 0.3) €;(0.4,0.1,0.1)

S(ey) = (F(ey), K(ey)
€, (0.4,0.2,0.4)

(05,03,02) €, (0.4,02,0.4)

(0.4,0.1,0.) ¢, €, (0.3,0.4,0.2)

S(ey) = (F(ey), K(ey)

Fig. 21 Strong picture fuzzy soft graph G = {S(e;),S(e2),S(e3)}

P3Py, P3Ps, P3Pg, P4Ps, P4Ps, PsPs} describe the degree
of positive, neutral & negative of the relation between
patients corresponding to parameters e; & e;. The PFSG’s
S., & S, corresponding to attributes ‘symptoms’ & ‘ill-
ness’, respectively, in Figs. 22 and 23, respectively.
F(e;) = {P1(0.6,0.2,0.1),P»(0.5,0.2,0.3),
P5(0.3,0.4,0.3), P4(0.4,0.3,0.2),

P5(0.7,0.1,0.1), P¢(0.8,0.1,0.1) }.

K(ey) = {P1P5(.3,.2,2),P\Ps(4,2,2),
PiPs(6,.1,.1), P3Ps(.3,.1,.2),
P4Py(4,.2,.3),P4Ps(4,.1,.2),
PyPg(5,.1,.2), PyPs(.5,.1, .3),
PsPq(7,.1,.1)}.
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(0.3,0.4,03) P,

P, (0.5,0.2,0.3)

05,0.1,0.2)

(0.6, 0.1, 0.1)

(0.6, 0.2, 0.1)
o]
o
(To‘To‘Lo

(0.4,03,0.2) P, P, (0.8,0.1,0.1)

(0.4,0.1,0.2)

Fig. 22 Picture fuzzy soft graph S(e;)

F(ez) = {P1(0.8,0.1,0.1), P,(0.7,0.2,0.1),
P5(0.5,0.3,0.2), P4(0.4,0.2,0.4),
P5(0.3,0.3,0.3), P6(0.6,0.2,0.2)}.

K(ez) = {P1P»(0.7,0.1,0.1), P; P5(0.3,0.1,0.3),
P1P4(0.4,0.1,0.4), P1Ps(0.6,0.1,0.2),
P»P5(0.5,0.2,0.2), P,P4(0.4,0.2,0.3),

P3P4(0.4,0.2,0.4), P3P5(0.3,0.2,0.3),

P4Pg(0.4,0.1,0.3), P¢P5(0.3,0.1,0.3),
PsP4(0.3,0.2,0.4)}.

By taking the intersection of PFSG’s, S,, & S., we have a

resultant PFSG S(e). The adjacency matrix of resultant
PFSG is

[ (0,0,0) (0,0,.1) (0,0,.2) (4,.1,.4) (3,.1,.3) (0,0,.2) ]
(0,0,.1)  (0,0,0) (0,0,2) (4,2,3) (0,0,.3) (0,0,.2)
(0,0,2)  (0,0,2) (0,0,0) (0,0,.4) (0,0,.3) (0,0,.3)
(4,.1,4) (4,2,3) (0,0,4) (0,0,0) (0,0,.4) (4,.1,3)
(3,.1,3) (0,0,3) (0,0,3) (0,0,4) (0,0,0) (.3,.1,.3)
(0,0,2)  (0,0,2) (0,0,.3) (4,.1,3) (3,.1,.3) (0,0,0)

The score values of the resultant PFSG S(e) is computed
with score function

1 + positive — 2(neutral) — negative
2

and choice values is given in Table 1.

Py has highest risk, first treatment is given for P;. From
Table 1, it follows that the maximum choice value is P; =
2.55 and so the optimal decision is to select patient 1 that
he/she has a high risk of COVID-19.

@ Springer

P, (0.8, 0.1,0.1)

(03,03, 0.3) P, 04,0.1,0.4) p P, (0.7,0.2,0.1)

(0.3,0.1,0.3) 0.5,0.2,0.2)

(0.6,0.2,0.2) P, P,(0.5,0.3,0.2)

0.4,0.1,0.3) 0.4,0.2,0.4)

P, (0.4,0.2,0.4)

Fig. 23 Picture fuzzy soft graph S(e;)
4.3 Comparison analysis

The proposed model is better than intuitionistic fuzzy
models because of the relaxed fuzziness but not more than
neutrosophic models and the intuitionistic values can be
deduced from picture fuzzy models by just considering the
positive and negative membership values. The limitation
would be it is an advanced level but little strict criteria in
fuzziness compared to neutrosophic fuzzy soft models
because of the difference in the sum of the membership
values. The proposed method is compared to the standard
model in Akram and Shahzadi (2017) and the results are
the same though they differ in the models proposed.

5 Conclusion

Picture fuzzy set is a new concept that is a fusion of fuzzy
and intuitionistic sets symbolized by positive, negative and
neutral degrees. The introduction of this new picture fuzzy
soft graphs is an emerging new concept that can be rather
developed into various graph theoretical concepts. Our goal
was to contribute to the theoretical aspect of fuzzy graph
theory we have introduced this Picture fuzzy soft graph and
explored its properties and established related theorems.
The picture fuzzy soft graphs have been introduced by
applying the picture fuzzy soft sets to fuzzy graphs. The
PFSG have been defined along with a few of its basic
properties and some operations as strong product, lexico-
graphic, cross-product and composition of PFSG have been
defined with good examples. The order, size of PFSG,
regular, totally regular and perfectly regular picture fuzzy
soft graphs have been defined with suitable examples.
Since soft sets are most usable in real-life applications, the
newly combined concepts of the picture and fuzzy soft sets
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Table 1 The score values of S(e) with choice values

P, Py Ps3 Py Ps Ps Choice value

Py 05 045 04 0.4 0.4 0.4 2.55
P, 045 05 0.4 035 035 04 2.45
Py 04 0.4 0.5 0.3 035 035 23
P, 04 035 03 0.5 0.3 045 23
Ps 04 035 035 03 0.5 0.4 23
Ps 04 0.4 035 045 04 0.5 245

will lead to many possible applications in the fuzzy set
theoretical area by adding extra fuzziness in analyzing. As
a practical application, we have developed a model using
this defined graph and applied it in decision making. We
have also briefly discussed the application of picture soft
fuzzy graphs in decision making for medical diagnosis in
the current COVID scenario. In future this work may be
extended to the concepts as picture fuzzy irregular graphs
and planarity ideas can be explored. Furthermore, many
real-life applications can be explored by extending this
work to studies on the labelling and energy of PFSG.
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