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Abstract
Structural dynamics of calcified cartilage (CC) are poorly understood. Conventionally, 
CC structure is analyzed using histological sections. Micro-computed tomography 
(µCT) allows for three-dimensional (3D) imaging of mineralized tissues; however, 
the segmentation between bone and mineralized cartilage is challenging. Here, we 
present state-of-the-art deep learning segmentation for µCT images to assess 3D 
CC morphology. The sample includes 16 knees from 12 New Zealand White rab-
bits dissected into osteochondral samples from six anatomical regions: lateral and 
medial femoral condyles, lateral and medial tibial plateaus, femoral groove, and pa-
tella (n  =  96). The samples were imaged with µCT and processed for conventional 
histology. Manually segmented CC from the images was used to train segmentation 
models with different encoder–decoder architectures. The models with the greatest 
out-of-fold evaluation Dice score were selected. CC thickness was compared across 
24 regions, co-registered between the imaging modalities using Pearson correlation 
and Bland–Altman analyses. Finally, the anatomical CC thickness variation was as-
sessed via a Linear Mixed Model analysis. The best segmentation models yielded av-
erage Dice of 0.891 and 0.807 for histology and µCT segmentation, respectively. The 
correlation between the co-registered regions was strong (r = 0.897, bias = 21.9 µm, 
standard deviation = 21.5 µm). Finally, both methods could separate the CC thick-
ness between the patella, femoral, and tibial regions (p  <  0.001). As a conclusion, 
the proposed µCT analysis allows for ex vivo 3D assessment of CC morphology. We 
demonstrated the biomedical relevance of the method by quantifying CC thickness 
in different anatomical regions with a varying mean thickness. CC was thickest in the 
patella and thinnest in the tibial plateau. Our method is relatively straightforward to 
implement into standard µCT analysis pipelines, allowing the analysis of CC morphol-
ogy. In future research, µCT imaging might be preferable to histology, especially when 
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1  |  INTRODUC TION

Calcified cartilage (CC) is a mineralized tissue delineated from the non-
calcified articular cartilage by the tidemark, and from the subchondral 
bone by the cement line (Madry et al., 2010). The CC has an important 
role in anchoring the articular cartilage to the subchondral bone via 
individual collagen fibrils (Sophia Fox et al., 2009). For healthy condi-
tions, the relative CC thickness (CC.Th) to the total cartilage is nearly 
constant, but the CC volume relative to the total cartilage volume var-
ies and has been shown to range from 3.23% to 8.8% (Müller-Gerbl 
et al., 1987). Blood vessels from the subchondral bone extend into the 
CC layer, providing nutrients to the local chondrocytes (Madry et al., 
2010). Furthermore, based on the current literature, CC is a dynamic 
tissue undergoing changes with mechanical loading, ageing, and joint 
pathology, e.g. osteoarthritis (Hoemann et al., 2012).

The thickness of articular cartilage (Cohen et al., 1999; Kiviranta, 
Tammi, et al., 1987) and subchondral bone (Milz & Putz, 1994) vary 
greatly in different areas of the knee joint with a high thickness in 
heavily loaded areas. It can be hypothesized that similar changes are 
present in the CC as well. An early study on CC.Th revealed regional 
differences within the human femoral head (Müller-Gerbl et al., 
1987). Furthermore, clear regional differences in equine CC have 
been reported (Kim et al., 2013; Martinelli et al., 2002). By contrast, 
in canine knees, only minor regional differences have been found 
(Kiviranta, Tammi, et al., 1987). These differences related to anatom-
ical location could be linked to the local loading environment.

In general, exercise and loading are thought to affect the CC 
structure. The intensity of exercise on heavily loaded joint re-
gions is associated with thicker CC in equine tarsi (Tranquille et al., 
2009) and carpus, even without changes in the overlying non-CC 
(Murray et al., 1999). An increase in the canine CC.Th was observed 
with high-intensity exercise (Oettmeier et al., 1992). By contrast, 
unloading of knees with immobilization resulted in thinner CC in 
canine knees (Kiviranta, Jurvelin, et al., 1987). In the human knee 
joint, similar findings have been reported; both articular and CC are 
thick in load-bearing areas and thin under the menisci of the knee 
(Thambyah et al., 2006).

Two competing events occur in ageing CC: calcification of the 
deep articular cartilage via advancement of the tidemark (Havelka 
et al., 1984) and endochondral ossification (bone replacing CC at the 
cement line) (Doube et al., 2007). The latter is likely dominant as age-
ing accelerates the thinning of CC and increases the number of tide-
marks (Doube et al., 2007; Lane & Bullough, 1980). Although CC.Th 
varies across humans and different animal species (Frisbie et al., 

2006), similar changes in ageing CC have been found in animal mod-
els. Thinning of CC, increases in vessel invasion (Pan et al., 2012), as 
well as chondrocyte apoptosis (Adams & Horton, 1998) have been 
reported in murine CC with ageing. On the other hand, Murray et al. 
reported an age-related increase in CC.Th in the equine tarsometa-
tarsal joint (Murray et al., 2009). Joint pathology can also induce 
tissue responses in the CC. Remodelling of CC (Doube et al., 2007; 
Lane & Bullough, 1980) occurs during OA progression, contributing 
to a decrease in articular cartilage thickness (Goldring & Goldring, 
2007). Microfractures in the CC, subchondral bone plate, and the 
trabeculae lead to the formation of cysts and channels, thereby af-
fecting the cross-talk between articular cartilage and subchondral 
bone (Madry et al., 2010).

Traditionally, CC imaging has been performed on images ob-
tained from histological sections (Müller-Gerbl et al., 1987) as well 
as backscattered scanning electron microscopy (SEM) in equine 
(Doube et al., 2007) and human joints (Ferguson et al., 2003; 
Gupta et al., 2005). Both histology and SEM require extensive and 
time-consuming sample processing protocols and allow for two-
dimensional (2D) imaging only. Nowadays, three-dimensional (3D) 
volumetric reconstruction of histological (Gerstenfeld et al., 2006) 
and SEM images (Guo et al., 2014) is possible with serial sectioning 
and imaging, but the associated processing is laborious and has the 
potential to introduce errors.

Micro-computed tomography (µCT) has been widely used to 
characterize 3D morphology at the micron level, including CC 
(Kerckhofs et al., 2012; Mehadji et al., 2019). In contrast to histology 
and SEM, only minimal sample processing is required in µCT. We 
showed previously that µCT images of the human subchondral plate 
contain both the mineralized CC and the subchondral bone (Finnilä 
et al., 2017). Indeed, CC cannot be separated from bone with low-
resolution µCT imaging but becomes visible only in high-resolution 
µCT images (Rytky et al., 2020). However, because of the very minor 
difference in mineralization between the subchondral bone and CC, 
it is challenging to delineate the interface between CC and subchon-
dral bone also in high-resolution µCT imaging.

The identification of the tidemark and cement line from µCT 
images is often conducted manually by researchers. This is a sub-
jective and highly time-consuming endeavour, especially for tissues 
with complex shapes. Deep convolutional neural networks (CNNs) 
have recently shown great promise for automating various segmen-
tation problems. U-Net (Ronneberger et al., 2015) has been the most 
popular segmentation architecture for biomedical images in recent 
years, and it has also been applied to µCT data (Tiulpin et al., 2020). 

analyzing dynamic changes in cartilage mineralization. It could also provide further 
understanding of 3D morphological changes that may occur in mineralized cartilage, 
such as thickening of the subchondral plate in osteoarthritis and other joint diseases.
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However, the newly introduced Feature Pyramid Networks (FPN) 
allow for capturing both low-resolution global features as well as 
high-resolution local features at a low computational cost (Lin et al., 
2017). Conventional training of CNNs is conducted by initializing the 
coefficients from a random distribution. An alternative training ap-
proach is transfer learning, in which the network is initialized from 
an existing model, often pre-trained on ImageNet dataset (J. Deng 
et al., 2009; Ng et al., 2015). Notably, such an approach works ef-
ficiently across domains beyond natural images (Shin et al., 2016; 
Tiulpin & Saarakkala, 2020). For example, transfer learning from 
deep residual networks (He et al., 2016) has been used to classify 
pulmonary nodules from CT images (Nibali et al., 2017), or segment 
the lungs in chest X-rays (Solovyev et al., 2020).

In this study, we propose an accurate framework for automated 
µCT-based evaluation of the CC.Th in 3D. This requires introduc-
ing state-of-the-art deep learning architectures for CC segmenta-
tion. To demonstrate the validity of the method, we perform direct 
comparisons of CC.Th between µCT and conventional histology. 
We utilized osteochondral samples of New Zealand White rabbits, a 
frequently used animal model for various musculoskeletal diseases. 
Furthermore, we hypothesize that the CC.Th varies in different ana-
tomical locations of the knee. We demonstrate the capability of our 
automatic framework by assessing differences in CC.Th between the 
different anatomical locations.

2  |  MATERIAL S AND METHODS

2.1  |  Sample collection

Sixteen knees were collected from twelve healthy, skeletally mature 
female New Zealand White rabbits (strain 052 CR). Eight knees were 
collected from four rabbits (age: 14 months) and eight knees from 
eight rabbits (age: 12.5  months). Each knee was dissected and di-
vided into six anatomical regions: lateral and medial femoral con-
dyle, lateral and medial tibial plateau, femoral groove, and patella 
(n = 96, Table 1). Details on animal housing, husbandry conditions, 
and diet are described in a previous study (Mustonen et al., 2019). All 
experiments were carried out under the guidelines of the Canadian 
Council on Animal Care and were approved by the committee on 
Animal Ethics at the University of Calgary (Renewal 3 for ACC Study 
#AC110035).

2.2  |  Imaging

The dissected osteochondral samples were formalin-fixed. Prior to 
imaging, samples were wrapped in moist paper, and placed in plas-
tic vials (Cryo.s™) for positional stability. The samples were subse-
quently imaged using a desktop µCT scanner (Skyscan 1272; Bruker 
microCT) with a tube voltage of 50  kV, current of 200  µA, and a 
0.5 mm aluminum filter. The scanning was conducted in a step of 
0.2° over 360° and finally, 1800 projection images with an isotropic 
pixel size of 3.2 µm were obtained.

The images were reconstructed using the manufacturer's 
software (NRecon, version 1.7.0.4, beam hardening correc-
tion applied). A narrow window with attenuation coefficients 
0.085–0.141  mm−1 was used to provide high contrast between 
the bone and CC. The volumes-of-interest (VOI) of all sam-
ples were selected from the central load-bearing area (VOI 
size = 2 mm × 2 mm × sample height). This selection reduced the 
µCT image stacks to a reasonable size (from ~12 GB to ~700 MB 
per sample) for the subsequent analysis. See Figure S1 for exam-
ples of the preprocessing steps.

After the µCT imaging, samples were prepared for histological 
analysis. Samples were decalcified using a standard protocol with 
ethylenediaminetetraacetic acid solution, paraffin-embedded, and 
cut into 5-µm-thick sections using a microtome (three sections from 
each region). The sections were stained with Masson-Goldner's tri-
chrome for identification of the CC layer and imaged using a light 
microscope (Axioimager 2; Carl Zeiss MicroImaging Gmbh; control 
software = AxioVision; resolution = 2.56 µm). A total of 281 sections 
were used in this study.

2.3  |  Training CC segmentation models

A total of 253 histology images were segmented manually from 
87 osteochondral samples. The boundaries of the CC were drawn 
based on the distinct collagen staining of CC compared to the 
articular cartilage and subchondral bone plate. At the interface 
between CC and articular cartilage, the topmost tidemark was 
followed. The discrimination was also supported by the higher 
staining intensity of Aniline blue in CC. Subchondral bone has the 
highest Aniline blue intensity and guides the segmentation at the 
complex interface between CC and subchondral bone. However, 
narrow CC cavities (>10 pixels) and small isolated areas that are not 
connected to the CC layer were excluded (Figure 1a, red arrows). 
To limit the time required for manual segmentation, smaller regions 
were segmented from the full histology images (approximately 
one third of a full histology section). For the µCT, manual anno-
tations were conducted for 60 samples from 10 knees according 
to two inclusion criteria: (1) a CC region with a distinct grayscale 
gradient and (2) the presence of chondrocytes inside the CC layer 
(Figure 1c, blue arrows). Annotations were done for 10–30 slices 
per sample, evenly spaced within each volume resulting in a total 
of 1050 annotated slices. The manual annotations were used as the 

TA B L E  1  Descriptive statistics of the rabbits used in the study. 
On the right, the number of images and samples (separated by/
mark) segmented manually is described. These segmentations are 
used as training data for the deep learning models

# animals # knees # Samples
# Histology 
slices

Manual 
segmentations

Histology µCT

12 16 96 3/sample 253/87 1050/60

Abbreviation: µCT, micro-computed tomography.
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gold standard for the automated segmentation algorithms and for 
conducting a reference analysis for the CC morphology.

The fully automatic CC segmentation was conducted using 
a deep learning pipeline inspired by Solovyev et al. (2020) on 
Python 3.7. The pipeline was built using an in-house developed 
Collagen-framework (https://github.com/MIPT-Oulu/Collagen). 
For the histology segmentation, we used ResNet-34 (He et al., 
2016) pre-trained on ImageNet (J. Deng et al., 2009). We used a 
U-Net decoder with batch normalization in this model. The net-
work was trained for 100 epochs under fourfold cross-validation, 
splitting the training and validation folds with respect to rabbit ID. 
For the µCT segmentation, we used ResNet-18 as our base model, 
and also an FPN decoder, which had instance normalization as well 
as the spatial dropout. Briefly, the normalization reduces bias for 
individual features with large values, whereas dropout reduces 
model overfitting by zeroing random nodes of the network. This 
model was also trained in fourfold cross-validation but for 60 ep-
ochs due to faster convergence.

We used a combination of binary cross-entropy and soft Jaccard 
index as the optimization loss function. Binary cross-entropy is one 
of the most popular segmentation metrics and can result in stable 
convergence. However, Jaccard index can account for class imbal-
ance, such as an imbalance between the CC and the surrounding 
tissue. To facilitate a robust segmentation model, we used several 
image augmentation techniques (Table S1) from the SOLT library 
(https://github.com/MIPT-Oulu/solt) to diversify the training data. 

To assess the final segmentation performance, we calculated the 
loss and Dice score coefficient as an average from the evaluation 
folds. The selection of the encoder and decoder was done based on 
an ablation study (Figure 2; Figure S2).

2.4  |  Model application on new images (inference)

During inference, CC was predicted for the full histology images, by 
combining smaller tiles with a sliding window (512 × 1024 -pixel win-
dow with 256 × 512 -pixel steps), averaging the overlapping predic-
tions. The tiling was used to avoid memory issues on the graphical 
processing unit while segmenting larger areas of CC. The tiles were 
combined, averaging the overlapping areas and predictions from 
every fold. Subsequently, a threshold was applied to the prediction 
map by using a probability of 0.8 (a high threshold was used for the 
exclusion of ambiguous areas from the maps, especially for the µCT 
images). In the case of the µCT stacks, the inference was conducted 
slice-by-slice with similar tiling. The predictions were averaged from 
every fold as well as the coronal and sagittal planes for obtaining the 
final probability map.

The histology masks were post-processed by removing regions 
smaller than 500 pixels. This ensured the removal of small artefacts 
while retaining large CC regions that could be disconnected due to a 
fold in the histology section (Figure S3). In the µCT post-processing, 
masks were subjected to a sweep operation to keep only the largest 

F I G U R E  1  A histological section from the rabbit femoral condyle segmented manually (a) and automatically with the neural network (b). 
Co-registered µCT image from the same region with manual (c) and automatic (d) segmentation. Magnified images are provided to allow 
detailed comparison of the segmentation boundaries. Scale bars for 100 and 50 µm (magnification) are shown in the corresponding images. 
The blue arrows refer to chondrocytes inside the CC layer. Isolated small areas of CC are excluded from the manual segmentations (red 
arrows). Based on the magnified images, the deep CC layers seen in histology are not observed with µCT, leading to possible overestimation 
of CC.Th in histology. µCT, micro-computed tomography; CC, calcified cartilage

https://github.com/MIPT-Oulu/Collagen
https://github.com/MIPT-Oulu/solt
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object. This ensured the removal of possible false positives occur-
ring on the tiles far from the actual CC layer. Finally, all CC masks 
were median filtered with a radius of 12 pixels (3D filtering in the 
case of µCT).

2.5  |  Morphological analysis

The full analysis procedure of CC.Th is summarized in Figure 3. The 
thickness estimation of the CC layer was performed automatically 
using a Python-based implementation of the local thickness al-
gorithm. In the 2D case, the thickness assessment relies on mask 
skeletonization, a Euclidean distance transformation, and finally 
a simple circle-fitting algorithm (Hildebrand & Rüegsegger, 1997). 
The 3D CC.Th analysis of the µCT volumes was conducted with a 
similar sphere-fitting algorithm. From the estimated thickness maps, 
quantitative parameters such as mean-, median-, maximum CC.Th, 
or standard deviation of CC.Th can be calculated. In this study, we 
used the mean CC.Th as the quantitative parameter. The source 
code for the full segmentation and analysis procedure is published 
on our research unit's GitHub page (https://github.com/MIPT-Oulu/
Rabbi​tCCS). For the µCT volumes, the thickness analysis took 2–3 h 
per sample (on a high-end 12-core CPU), whereas the analysis for 
the histology slices took roughly 3 s per image. For this study, the 
3D thickness analysis was calculated with parallel processing on the 
Puhti supercomputer (https://resea​rch.csc.fi/csc-s-servers). This 

effectively reduced the computation time for the µCT volumes to 
roughly 6 min per sample.

To further investigate the applicability of the automatic segmen-
tation on CC.Th analysis, a 2D analysis was performed between the 
manual segmentations and the out-of-fold predictions of the se-
lected models. The thickness values were averaged for each sample 
with multiple histology sections or µCT slices.

2.6  |  Validation with histology

To compare the CC analysis between histology and µCT in 2D, 
matched µCT slices (Figure 4) were estimated using co-registration 
based on rigid transformations with DataViewer (Bruker; version 
1.5.2.4). A total of 24 samples (from four animals) were co-registered 
with the corresponding histology sections to find the matching sub-
chondral structures. As the search space is large when aligning the 
few micro meter thick histology sections with the full sample, the re-
maining samples in paraffin blocks were imaged again using the µCT 
scanner. The co-registration of two µCT-imaged samples is straight-
forward and allows for locating the cutting orientation and approxi-
mating the location of the histological sample. Final co-registration 
was fine-tuned by performing a second co-registration between 
the original µCT datasets and the histology images. Five serial µCT 
images closest to the co-registered histology image were selected. 
Finally, we calculated the CC.Th from the co-registered histology 

F I G U R E  2  Illustration of the model training process. For both histology- and µCT segmentation, a total of four models were trained with 
two different encoder and decoder designs. Based on the experiments, ResNet-34 and U-Net were more suitable for the complex histology 
masks (Dice score = 0.891), whereas ResNet-18 and FPN yielded higher performance for the smoother µCT masks (Dice score = 0.807). 
Pearson correlation of the subsequent CC.Th analysis (bottom row) supported the choice of the segmentation models. µCT, micro-computed 
tomography; CC, calcified cartilage; FPN, Feature Pyramid Networks

https://github.com/MIPT-Oulu/RabbitCCS
https://github.com/MIPT-Oulu/RabbitCCS
https://research.csc.fi/csc-s-servers
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image, whereas the CC.Th for µCT-imaged samples was averaged 
from the five selected images.

2.7  |  Statistical analysis and 
performance evaluation

For the co-registration experiment, a two-tailed Pearson correlation 
and Bland–Altman analyses were conducted to compare CC.Th be-
tween the µCT and histology. The deep learning segmentation mod-
els were validated against the manual CC segmentations from µCT 
and histology using the Dice score. The thickness analyses using out-
of-fold predictions and manual segmentations were compared using 
Pearson correlations. The anatomical differences of CC.Th were as-
sessed using mean comparisons with Linear Mixed Effect Models 
(IBM SPSS Statistics; v.26), accounting for the rabbit ID as the ran-
dom effect, and the anatomical location as the fixed effect. The 
significance was assessed with Least Significant Difference without 
Bonferroni correction.

3  |  RESULTS

3.1  |  Deep learning-based segmentation

For both imaging modalities, the quality of the deep learning model 
predictions against the manual annotations (out-of-fold validation) is 
summarized in Figure 2 and Figure S2. By comparing the four differ-
ent model architectures, ResNet-34 with the U-Net decoder yielded 
the highest mean Dice score for histology (Dice score  =  0.891), 
whereas ResNet-18 with FPN yielded the best performance for µCT 
segmentation (Dice score = 0.807). The quality of the segmentation 
on the full dataset was visually confirmed from virtual sections on 
orthogonal planes (Figure S4).

In addition, we compared the 2D CC.Th analysis for the man-
ual and predicted CC segmentations for both modalities (Figure 2 
bottom; Figure S5). With the selected model architecture, a high 
Pearson correlation was achieved between the manual and auto-
matic CC.Th quantification from histology (r  =  0.984, p  <  0.001). 
The correlation between predicted CC.Th and manually segmented 
CC.Th in µCT images was also strong, although considerably smaller 
(r = 0.801, p < 0.001). This correlation analysis further supported the 
choice for model architecture (Figure 2, bottom).

3.2  |  Validation with histology

Examples of µCT images co-registered with histology are shown 
in Figure 4. The results of the quantitative comparisons are shown 
in Figure 5 (predicted CC) and Figure S6 (manual segmentation). 
The automated µCT-based measurements of CC.Th had a strong 

F I G U R E  3  A flowchart summarizing the present study. 
Example from the femoral groove is shown with magnified 
insets, to highlight the similarities and differences between 
histology and µCT. After sample preparation, the tissue samples 
were imaged with µCT. Subsequently, the samples underwent 
histology processing, sectioning, and imaging with a light 
microscope. The preprocessing steps for the µCT data are 
illustrated in Figure S1. During the automated analysis process, 
the CC layer is predicted using the deep learning models, 
thickness analysis is conducted, and finally, quantitative 
parameters are estimated from the estimated thickness maps. 
The obtained values were used in the validation of the methods 
as well as for comparison between the anatomical regions of 
the knee. µCT, micro-computed tomography; CC, calcified 
cartilage
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correlation (r = 0.897, p < 0.001) with a similar analysis on the co-
registered histology images. Furthermore, the µCT analysis had a 
good agreement (bias = 21.9 µm, standard deviation = 21.5 µm) with 
histology, based on the Bland–Altman analysis. However, the residu-
als were not normally distributed, due to larger differences in the 
patellar region. Furthermore, one of the patella samples yielded a 
larger difference than the 95% limit. Manual segmentation yielded 
a smaller correlation (r  =  0.852, p  <  0.001) as well as greater bias 
(36.9  µm) and standard deviation (30.9  µm) than the comparison 
using predicted masks. This time, two patella samples resulted in a 
difference outside the 95% limits of agreement.

3.3  |  Anatomical locations

An example of a thickness map and VOI inside a lateral plateau 
sample is shown in the Video S1. The differences in CC.Th based 
on anatomical variability are illustrated in Figure 6. According to the 
Linear Mixed Effects Model analysis on the histology and µCT re-
sults (Table 2), the mean CC.Th varies greatly between the studied 
anatomical regions (p < 0.001). The thickest CC was in the patellar 
region, whereas the thinnest CC was in the tibial regions (lateral and 
medial plateau). The histology analysis allowed for further separation 
of the lateral and medial femoral condyles (p = 0.026). Although the 
absolute differences in CC.Th were larger using histology analysis 

than with the µCT approach, the µCT results had a smaller variance 
for individual regions than that observed with histology, allowing for 
separation of the anatomical locations.

4  |  DISCUSSION

Morphological analysis of CC may reveal novel understanding of 
musculoskeletal physiology and pathology. A suitable tool for struc-
tural analysis of CC would be µCT; however, the separation between 
bone and CC is extremely challenging. In this study, we developed 
a µCT-based framework for 3D analysis of CC morphology. The 
framework utilizes state-of-the-art deep learning segmentation for 
automated analysis of CC.Th. Finally, we compared CC morphology 
on different locations within the healthy rabbit knees. Our results 
demonstrate that CC.Th can be quantified not only from histol-
ogy but also from µCT, which is feasible and efficient due to an 
automatic segmentation approach. The proposed method enables 
studying the 3D morphology of the mineralized CC without the 
time-consuming and destructive histological processing and with 
minimal user-induced bias.

Our results revealed that different CNN architectures were 
best suited for CC segmentation from histology and µCT images 
(Figure 2; Figure S2). The FPN decoder is computationally more effi-
cient, but it introduces an up-sampling layer for the model output. As 

F I G U R E  4  Examples from the co-registered histology slices and µCT images. Scalebar for 200 µm is shown in the top left. The CC can be 
assessed using both imaging modalities, although the thinnest CC areas are not visible in the µCT images. Likely, these areas have a similar 
level of mineralization as the subchondral bone. The histology preparation could cause swelling of the tissue. This likely causes the largest 
proportional differences on the patella, which has a thick CC layer. µCT, micro-computed tomography; CC, calcified cartilage
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a result, U-Net provides more detailed predictions because the CC 
is predicted without a subsequent interpolation. The results show 
that the U-Net decoder provided a slight advantage for segment-
ing the more complex CC structures in histology images. In the µCT 
images, such details are not visible, and FPN decoder yielded better 
results than the U-Net one. Encoder-wise, the deeper ResNet-34 
might yield even better performance than the ResNet-18 encoder 
(He et al., 2016). However, the ResNet-18 encoder with fewer layers 
than ResNet-34 performed better on the µCT data than ResNet-34. 
Thus, we suspect that the more complex ResNet-34 may overfit 
when images become ambiguous, as in the case of the µCT images.

The automated CC segmentation performed particularly well 
for the histology samples (Figure S5). A relatively high Dice score 
coefficient (0.891) and similar CC.Th results compared with the 
manual annotations (r = 0.984) suggest that the automated and man-
ual methods give virtually identical results. For the µCT data, the 
performance was weaker than for the histology data (Dice = 0.807, 
r = 0.801). However, the segmentation of CC from the µCT images 
is much more difficult than segmentation from histology slides. 
Therefore, this result was expected. Based on our experience, there 
is also a significant variation in manual CC segmentation between 
human annotators. However, when comparing the estimated 2D 
CC.Th between histology and µCT for co-registered regions, there 

was strong agreement (r = 0.897). Although not explicitly shown in 
this study, we note that the proposed segmentation method general-
izes fairly well, and could potentially be used to predict CC structures 
in diseased samples. This is supported by our initial experiments on 
osteoarthritic CC, and we aim to characterize both healthy and dis-
eased CC in the future. Furthermore, one could also include manual 
annotations of diseased structures in the training data to increase 
segmentation performance.

We have previously shown that the subchondral bone plate 
imaged with µCT contains also the CC layer (Finnilä et al., 2017). 
Consequently, automated labelling of the CC layer could identify 
the true subchondral bone tissue accurately. The proposed method 
requires high-resolution for resolving the mineralized cartilage. We 
believe that this is of high interest for studies that focus on the sub-
tle changes in the bone plate, such as thinning due to increased re-
modelling. Such thinning of the bone plate has been suggested to 
occur already in the early stages of OA (Burr & Gallant, 2012).

The CC.Th measured from histology was on average 21.9  µm 
thicker compared with µCT, with highest differences on thickest re-
gions such as the patella (Figure 5). Based on our results, the main 
differences are in the deep layers of CC which are only observed 
in histology images. We hypothesize that the less mineralized CC 
measured with µCT accounts for ‘young’ tissue, which is active and 

F I G U R E  5  Quantitative CC.Th 
comparison of the matched histology 
and µCT regions based on automated 
segmentation. The equation for the linear 
fit, Pearson correlation and p-value are 
shown in the top image. For the Bland–
Altman plot, the bias is indicated with 
a horizontal line, and the distance of 
1.96 standard deviations (95% CI) with 
a dashed line. The estimated values are 
highly correlated (r = 0.897) and the 
Bland–Altman analysis reveals that the 
µCT method yields 21.9 µm thinner 
CC.Th on average. The areas with a 
high CC.Th (mainly the patellar region) 
have the highest absolute differences 
between methods. µCT, micro-
computed tomography; CC, calcified 
cartilage



    |  259RYTKY et al.

recently mineralized, and has distinct attenuation properties com-
pared with the CC at the bone formation front and the bone tissue it-
self. Lower mineralization (hydroxyapatite content) of CC compared 
with bone has previously been reported using X-ray diffraction (Rey 
et al., 1991; Zhang et al., 2012). However, multiple research groups 
have reported a higher mineralization of CC in backscattered elec-
tron imaging (Burr, 2004; Ferguson et al., 2003; Gupta et al., 2005) 
and Raman microscopy (Das Gupta et al., 2020) studies, at least for 
human tissue. Thus, we considered that there might be a possible 
contribution of partial volume effects related to cellularity. Most of 
the cellular structures are visible; however, the observed changes 
are likely related to tissue mineralization. On the other hand, the 
deep CC appears more mineralized with similar attenuation prop-
erties as the subchondral bone, making it impossible to identify it 
solely based on X-ray methods. The samples with high CC.Th likely 
contain large, partly ossified areas of deep CC (such as the lateral 
condyle in Figure 1 and patellar region in Figure 4), leading to dif-
ferences in CC.Th between the imaging methods. The initial, often 
extremely thin, CC layer could even have similar attenuation to bone 
before ossification. This would suggest that the µCT analysis spe-
cifically targets the newly mineralized CC. Therefore, we propose 
that our method could provide novel 3D information on tidemark 
advancement and other dynamic processes in CC. Due to the easier 
and non-destructive sample preparation, the method might be pref-
erable to standard histology for analyzing subtle changes of cartilage 

mineralization when combined with other bone analysis. In future 
studies, the method should be further developed to better under-
stand the transition of CC to subchondral bone at the ossification 
front.

Interestingly, CC.Th depends greatly on anatomical location, as 
identified with both imaging methods. This is also consistent with 
our hypothesis. In the patellar region, CC.Th was the thickest among 
all locations of the rabbit knee. Femoral regions had intermediate 
CC.Th, whereas the thinnest regions were found in the medial tib-
ial plateau region. We hypothesize that these variations in CC.Th 
are due to the distinct biomechanical environment in the different 
regions. First, the tibial plateau predominantly experiences com-
pressive load due to body weight, whereas the patella experiences 
mainly shear forces that arise from the sliding joint articulation. 
Second, in the femur, the environment is a mix of these phenomena, 
i.e. the femoral condyles experience more compressive stress com-
pared with higher shear forces on the groove. However, we did not 
find statistically significant differences in CC.Th between the con-
dyles and groove. Finally, the higher shear stress experienced by the 
patella and femoral groove likely requires a stronger connection be-
tween the articular cartilage and the underlying subchondral bone 
plate, thus, resulting in higher CC.Th. Other studies have shown that 
the CC.Th of rabbit knees increases when subjected to chronic com-
pression and that the CC is thicker in the lateral compared to the 
medial knee compartment (Roemhildt et al., 2012).

F I G U R E  6  Boxplots illustrating the group-wise CC.Th values obtained from the histology and µCT modalities. The median value for each 
group is shown with the horizontal line and mean value with the cross. From the graph, the anatomical regions can be divided into three 
categories: thin CC (lateral and medial tibia), intermediate CC (lateral and medial femoral condyles, femoral groove) and thick CC (patella). 
µCT, micro-computed tomography; CC, calcified cartilage
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This study has several limitations: First, the decalcification pro-
cess required for preparation of the histology slides may cause struc-
tural alterations in the tissue, such as swelling of the CC. Second, the 
intensity gradient between CC and subchondral bone can be ambig-
uous. This is especially the case for ultra-thin or non-existent CC. An 
ambiguous interface may appear because of endochondral remodel-
ling resulting in bony protrusions into CC. Third, although an accept-
able performance was achieved, the amount of training data used 
for the deep learning segmentation was relatively low. Examples 
from a greater number of animals may give a better performance, 
especially in the case of the challenging µCT segmentation. Fourth, 
our automated thickness analysis method is computationally expen-
sive and does not scale well for large volumes. For routine use, more 
advanced scalable algorithms should be implemented, for example 
utilizing a distance ridge calculation (Dougherty & Kunzelmann, 
2007). Fifth, the segmentation models might require fine-tuning to 
data acquired from a different microscope or µCT scanner to en-
sure sufficient performance on new samples. In the future, more de-
tailed CC structure could potentially be extracted by combining the 
presented approach with contrast-enhancement (Kerckhofs et al., 
2018; Nieminen et al., 2015) and/or imaging with devices capable 
of submicron resolution (Akhter et al., 2017). Finally, the proposed 
histology segmentation does not account for multiple tidemarks. 
Some evidence for tidemark duplication was found in few samples 
especially on medial femoral condyle, but the duplicated tidemarks 
were only faintly highlighted. We believe that the lack of duplicate 
tidemarks might be mainly due to the fact that we studied healthy 

rabbits but could also be caused by the properties of the chosen 
histological stain.

In conclusion, we have presented a promising method for the 
morphological analysis of CC with µCT. To the best of our knowl-
edge, this is the first automated method for quantitative 3D analysis 
of CC.Th that has been sufficiently validated against the histological 
gold standard. It is a relatively simple extension to current µCT pipe-
lines that allow 3D analysis of CC morphology. As a proof of concept, 
we could detect anatomical variation in the rabbit knee; the patellar 
region has the thickest CC and the tibial plateau region the thinnest. 
This structural difference between regions is presumably related 
to the diverse biomechanical environments, and thus the different 
requirements of the joint surfaces in different regions of the knee. 
Combined with other bone analysis, µCT imaging could provide an 
efficient alternative to histology when studying dynamic processes 
of the osteochondral junction, such as the tidemark advancement or 
bone plate remodelling.
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