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Abstract: Alkaline/neutral invertase (A/N-INV) is an invertase that irreversibly decomposes sucrose
into fructose as well as glucose and plays a role in plant growth and development, starch synthesis,
abiotic stress, and other plant-life activities. Cassava is an economically important starch crop in
tropical regions. During the development of cassava tuber roots, A/N-INV activity is relatively high,
which indicates that it may participate in sucrose metabolism and starch synthesis. In this study,
MeNINV1 was confirmed to function as invertase to catalyze sucrose decomposition in yeast. The
optimal enzymatic properties of MeNINV1 were a pH of 6.5, a reaction temperature of 40 ◦C, and
sucrose as its specific catalytic substrate. VB6, Zn2+, and Pb2+ at low concentrations as well as EDTA,
DTT, Tris, Mg2+, and fructose inhibited A/N-INV enzymic activity. In cassava, the MeNINV1 gene
was mainly expressed in the fibrous roots and the tuber root phloem, and its expression decreased as
the tuber root grew. MeNINV1 was confirmed to localize in chloroplasts. In Arabidopsis, MeNINV1-
overexpressing Arabidopsis had higher A/N-INV activity, and the increased glucose, fructose, and
starch content in the leaves promoted plant growth and delayed flowering time but did not change its
resistance to abiotic stress. Our results provide new insights into the biological function of MeNINV1.

Keywords: cassava; alkaline/neutral invertase; MeNINV1; Arabidopsis thaliana; sucrose metabolism;
vegetative growth

1. Introduction

Sucrose and starch are the most common nonstructural carbohydrates in higher
plants [1]. Starch is the main storage form of carbohydrates, while soluble sucrose is
the main transport form of photosynthetic products from source organs to sink organs
(such as roots and seeds) [2]. Sucrose is a carbon and energy transfer carrier and a sig-
naling molecule involved in many physiological processes [3]. The first step of sucrose
metabolism is its breakdown into two hexoses (glucose and fructose), which is impor-
tant in transporting photoassimilates because it affects storage capacity [4]. In addition,
the decomposition of sucrose is important for signal transduction as sucrose and hexose
can induce different signal responses and play important functions in plant growth and
development, biotic and abiotic stresses, starch synthesis, osmotic regulation, and other
life activities [5]. Sucrose decomposition is catalyzed by two enzymes: sucrose synthase

Plants 2022, 11, 946. https://doi.org/10.3390/plants11070946 https://www.mdpi.com/journal/plants

https://doi.org/10.3390/plants11070946
https://doi.org/10.3390/plants11070946
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/plants
https://www.mdpi.com
https://orcid.org/0000-0003-3075-9512
https://orcid.org/0000-0003-1791-0433
https://doi.org/10.3390/plants11070946
https://www.mdpi.com/journal/plants
https://www.mdpi.com/article/10.3390/plants11070946?type=check_update&version=1


Plants 2022, 11, 946 2 of 14

and invertase. The decomposition of sucrose into UDP-glucose and fructose by sucrose
synthase is reversible, while the hydrolysis of sucrose into glucose and fructose by invertase
is irreversible [6,7]. The irreversible decomposition of sucrose by invertase determines its
role in plant sucrose metabolism.

There are several isoenzymes of invertase. According to their optimal pH and their
isoelectric point, invertase can be divided into alkaline/neutral invertase (A/N-Inv) and
acid invertase (A-Inv) [8]. Acid invertase (pH 4.5–5.0) can be divided into vacuolar invertase
and cell wall invertase according to solubility and subcellular localization. A-Inv belongs to
the glycoside hydrolase family GH32 [9], which can catalyze the decomposition of sugars
with β-1,2 glycosidic bonds, has a high affinity for sucrose, and can also hydrolyze raffinose
and stachyose. A/N-Inv is a nonglycosylated protein belonging to the glycoside hydrolase
family GH100 with an optimal pH value of 6.5–8.0 [7,9,10]. A/N-Inv can only specifically
catalyze the hydrolysis of sucrose [7], but some studies have found that A/N-Inv can also
catalyze the decomposition of maltose [11]. The enzyme activity of A/N-Inv is inhibited by
fructose, glucose, tris-(hydroxymethyl)- aminomethane (Tris), and metal ions [11]. A/N-
Inv is extremely unstable and easy to inactivate during the in vitro extraction process.
Therefore, physiological function research of A/N-Inv is less abundant than that of A-Inv.

As in a few previous studies, A/N-Inv only existed in the cytoplasm. With in-depth
research, it has been discovered that A/N-Inv can be divided into an α-group and a β-
group according to their evolutionary relationship. The A/N-Inv of the β-group are more
specific, and all of them are located in the cytoplasm, while the α-group can be divided
into the α1 and α2 classes. The A/N-Inv of class α1 are mostly located in the mitochondria
or chloroplasts, and the A/N-Inv of class α2 are mostly located in plastids [12–14]. The
β-group A/N-Inv might be involved in sucrose metabolism in the nonphotosynthetic
cells, regulating cell development and the synthesis of secondary metabolites [15]. The
C-terminus of the β-group A/N-Inv has a conserved sequence that can bind to 14-3-3
protein. The 14-3-3 protein can phosphorylate the serine residue at this binding site under
the cooperation of calcium-dependent protein kinases CPK3 and CPK21 and positively
regulate the activity of invertase [16]; PIP5K9 can prevent 14-3-3 protein from interacting
with A/N-Inv and thereby negatively regulating the activity of invertase [17]. The α-
group A/N-Inv has no binding site for 14-3-3 protein. There may be other enzyme activity
regulation mechanisms, but they are not yet known. The α-group A/N-Inv may be
involved in sucrose metabolism in chloroplasts or mitochondria, or both, regulating the
stability of photosynthetic processes and energy conversion and affecting starch synthesis
in organelles, plant germination and flowering, the balance of reactive oxygen species, and
abiotic stress [18–21].

Cassava leaves have extremely high efficiency in photosynthetic carbon assimilation
and sucrose synthesis, but the starch accumulation in cassava tuber roots is far lower than
the potential theoretical yield [22]. A/N-Inv activity is mainly manifested in storage roots,
which indicates that it may be involved in the sucrose metabolism of cassava tuber-root
development and play an important role in the accumulation of tuber-root starch [23].
There are 11 A/N-Inv gene members in cassava, among which MeNINV1, 6, 7, 8, 9, and
10 are classified in the α-group, and MeNINV2, 3, 4, 5, and nINV1 are classified in the
β-group [24]. Our previous studies have found that MeNINV1 (belonging to the α-group)
and nINV1 (belonging to the β-group) are much higher than other members during the
accumulation of starch in cassava tuber roots at each stage, indicating that they might be
key genes for sucrose metabolism and starch accumulation in cassava tuber roots [24]. The
regulatory mechanism of β-group A/N-Inv activity has been studied, but the regulatory
mechanism of α-group A/N-Inv activity is not yet fully understood [16,17]. In this study,
the characteristics of MeNINV1 of the α-group A/N-Inv were investigated; these charac-
teristics included enzymatic properties, gene expression patterns, and protein location.
Finally, MeNINV1 has been overexpressed in Arabidopsis to explore its role in plant growth
and development, sucrose metabolism, starch accumulation, and abiotic stress.
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2. Results
2.1. Functional Analysis of MeNINV1 by Yeast Complementation

Previously, 11 A/N-Inv family genes (MeNINVs) from the cassava genome were
cloned and analyzed in our laboratory [24]. MeNINV1 was classified into the α-group with
relatively high expression levels in different tissues and stages of tuber root development.
To verify whether MeNINV1 had A/N-Inv activity, the MeNINV1 gene was cloned into the
yeast-expressing vector pDR195. The recombinant plasmid was named pDR195-MeNINV1
and transformed into the invertase mutant yeast strain SEY2102. SEY2102, SEY2102 carrying
pDR195, and SEY2102 carrying pDR195-MeNINV1 were streaked on Synthetic Dropout
solid medium (SD medium lacking uracil) with sucrose as the sole carbon source. The
results showed that SEY2102 carrying the pDR195-MeNINV1 strain grew normally, while
the other two yeast strains did not (Figure 1). This result indicated that MeNINV1 can
catalyze the decomposition of sucrose to provide a carbon source and energy for the growth
of the invertase mutant yeast SEY2102.
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Figure 1. Invertase activity analysis of MeNINV1 in transgenic yeast cells. pDR195-MeNINV1:
SEY2102 was transformed with pDR195-MeNINV1; pDR195: SEY2102 was transformed with pDR195;
SEY2102: the invertase mutant SEY2102. Yeast cells were grown on SD medium with sucrose as the
sole carbon source at 30 ◦C for 3 d.

2.2. Analysis of MeNINV1 Enzymatic Characteristics

The crude enzyme from SEY2102 carrying pDR195-MeNINV1 and SEY2102 carrying
pDR195(as a control) were each extracted, and the enzymatic activity was measured under
different conditions. MeNINV1 catalyzed the decomposition of sucrose into reducing
sugars (glucose and fructose) and then reacted with 3,5-dinitrosalicylic acid (DNS) to
produce a brown-colored product. The results showed that the optimal pH of MeNINV1
was approximately 6.5, indicating that MeNINV1 belonged to A/N-Inv (Figure 2A). The
highest activity was at 40 ◦C, but MeNINV1 still had 35% enzyme activity at 0 ◦C (Figure 2B).
The enzymatic activity gradually increased from 0 mM to 160 mM sucrose substrate but
slightly decreased at 200 mM. The Km of MeNINV1 protein was 10.59 mM at pH 6.5, and
the maximum reaction rate Vmax was 292.8 nmol/mg protein/min (Figure 2C). MeNINV1
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only specifically catalyzed the decomposition of sucrose, not maltose, lactose, or trehalose,
indicating that MeNINV1 had specificity for sucrose (Figure 2D). The addition of fructose, a
decomposition product of sucrose, to the reaction solution inhibited the enzymatic activity
of MeNINV1 (Figure 2E). The enzyme activity of MeNINV1 was strongly inhibited by
VB6, Zn2+, and Pb2+ at low concentrations (Table 1). As the concentrations of EDTA, DTT,
Tris, and Mg2+ gradually increased, the enzymatic activity of MeNINV1 also gradually
decreased. In contrast, as the concentrations of Ca2+ and Mn2+ gradually increased, the
enzyme activity of MeNINV1 first decreased and then slightly increased (Table 1).
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Figure 2. Enzymatic characteristics of MeNINV1. (A) The optimal pH of MeNINV1 determined
through the DNS method. (B) The optimal temperature of MeNINV1 determined through the
DNS method. (C) The enzymatic activity of MeNINV1 in different sucrose concentrations. (D) The
enzymatic activity of MeNINV1 in different substrates. (E) Inhibition of the enzymatic activity of
MeNINV1 by fructose. Data are the mean ± SD of three independent assays.

2.3. Subcellular Localization of the MeNINV1 Protein

The pCAMBIA1300-MeNINV1-GFP and pCAMBIA1300-GFP vectors were transiently
transferred into cassava protoplasts to observe MeNINV1 localization under a laser confocal
microscope through GFP green fluorescence. The results showed that in pCAMBIA1300-
GFP-transformed cassava mesophyll cell protoplasts, GFP green fluorescence was observed
in whole mesophyll cells, and the red fluorescence emitted by the chloroplasts did not
overlap. In contrast, both were observed in the chloroplasts of pCAMBIA1300-MeNINV1-
GFP-transformed cassava mesophyll cell protoplasts. This finding indicated that MeNINV1
was located in the chloroplasts (Figure 3).
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Table 1. Effects of metal ions and chemicals on the activity of MeNINV1.

Chemicals Concentration (mM) Relative Activity (%) Metal Ions Concentration (mM) Relative Activity (%)

None - 100 ± 6.54 Ca2+ 20 81.22 ± 0.47
Tris 1 90.32 ± 7.84 40 33.25 ± 0.55

2 84.85 ± 4.15 60 22.29 ± 0.57
4 75.53 ± 3.23 80 43.85 ± 0.12
6 69.33 ± 3.52 100 41.29 ± 0.46
8 62.44 ± 1.97 Mg2+ 20 67.54 ± 0.32
10 56.15 ± 2.72 40 52.39 ± 1.66
20 41.72 ± 2.32 60 40.87 ± 0.19
50 30.70 ± 0.56 80 32.50 ± 0.63

100 30.11 ± 0.13 100 24.18 ± 0.56
EDTA 20 52.28 ± 0.28 Mn2+ 20 46.63 ± 0.14

40 46.06 ± 0.38 40 18.86 ± 0.28
60 31.20 ± 0.41 60 27.91 ± 0.48
80 19.18 ± 0.13 80 31.54 ± 0.36

100 15.46 ± 0.16 100 38.93 ± 0.17
DTT 20 80.71 ± 1.99 Zn2+ 20 44.60 ± 0.14

40 68.43 ± 0.21 40 15.77 ± 0.25
60 33.80 ± 0.10 60 12.97 ± 0.05
80 25.17 ± 0.21 80 12.95 ± 0.04

100 25.34 ± 0.44 100 12.83 ± 0.14
VB6 20 24.83 ± 0.13 Pb2+ 20 48.64 ± 0.11

40 15.20 ± 0.09 40 13.28 ± 0.02
60 14.17 ± 0.08 60 13.28 ± 0.13
80 15.97 ± 0.11 80 13.63 ± 0.09

100 16.59 ± 0.30 100 13.36 ± 0.06

Tris: Tris (hydroxymethyl) methyl aminomethane THAM; EDTA: ethylenediaminetetraacetic acid; DTT: dithio-
threitol; VB6: Vitamin B6. Data are the mean ± SD of three independent assays.
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Figure 3. Subcellular localization of MeNINV1 in cassava mesophyll protoplasts. GFP fluorescence
was observed using the green channel, and chlorophyll autofluorescence was visualized using the
red channel. Bar = 10 µm.

2.4. The Expression of MeNINV1 in Cassava Tissues and during Tuber Root Development

In this study, eight tissues and organs of cassava tuber root phloem and xylem, fibrous
roots, young and mature leaves, stems, fragile embryonic calli (FEC), and somatic embryos
(OES), as well as three tuber root development periods at five time points during the
initial stage (80 d after planting), the expanding stage (130 d and 180 d after planting), and
the mature stage (230 d and 280 d after planting) were analyzed through transcriptome
sequencing. The results showed that the MeNINV1 gene was mainly expressed in fibrous
roots and tuber root phloem, while its expression was relatively low in young leaves and
FEC (Figure 4A). The expression levels of the MeNINV1 gene were highest at the tuber root
initial stage (80 d after planting) and showed a downward trend during tuber root growth;
the lowest expression level was at 230 d after planting (Figure 4B).
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2.5. Transformation and Identification of MeNINV1 Transgenic Arabidopsis

MeNINV1 fused with GFP under the control of the 35S promoter in pCAMBIA1300-
MeNINV1-GFP and the pCAMBIA1300-GFP vector as control were transformed into
Arabidopsis through the floral-dip method. After the hygromycin selection, five T1 trans-
genic lines were obtained, and four of them were detected with positive transformation
by PCR (Figure 5A). The semiquantitative RT–PCR and qRT–PCR results showed that the
MeNINV1 gene was expressed in the four transgenic Arabidopsis lines, in which the L1
line had the highest expression and the L4 line had the lowest expression (Figure 5B,C).
After three generations of selection on Murashige and Skoog (MS) medium containing
50 mg/L hygromycin, the homozygous transgenic lines L1, L4, and L5 were obtained to
further study MeNINV1 gene function in plants (Figure S1). The A/N-Inv activities in the
three MeNINV1 transgenic plants were higher than those in the control vector and wild
type (WT) plants, and the L1 and L5 had higher A/N-Inv activities, which was consistent
with the MeNINV1 expression levels in the transgenic Arabidopsis (Figure 5D).

2.6. Overexpression of MeNINV1 in Arabidopsis Promoted Plant Growth and Delayed
Flowering Time

The MeNINV1 homozygous lines L1, L4, and L5, EV transgenic Arabidopsis; and WT
Arabidopsis were cultured under the same conditions (Figure 6A). The leaf morphologies of
MeNINV1 transgenic Arabidopsis were not significantly different from those of EV and WT
(Figure 6B). Still, the leaf length and width were significantly larger than WT (Figure 6D).
The numbers of leaves per plant were also significantly greater than those of EV and WT
(Figure 6E). The flowering time of MeNINV1 transgenic Arabidopsis was significantly later
than that of EV and WT, which was delayed by 3 to 6 d (Figure 6C,F). However, there were
no significant differences in the morphologies of the flowers, pods, and seeds among the
MeNINV1 transgenic Arabidopsis and EV and WT (Figure S2). These results indicate that
the MeNINV1 gene promotes the growth of Arabidopsis and delays plant flowering.

2.7. Overexpression of MeNINV1 in Arabidopsis Increased Sucrose Metabolism and
Starch Synthesis

To explore whether MeNINV1 was involved in sugar metabolism in transgenic Ara-
bidopsis, the contents of sucrose, fructose, glucose, and starch were detected. The results
showed that the sucrose content in the MeNINV1 transgenic Arabidopsis lines decreased
slightly but was not significantly different from that in WT and EV (Figure 7A). In contrast,
the fructose, glucose, and starch contents increased significantly (Figure 7B–D). This indi-
cated that the increased A/N-Inv activity in MeNINV1 transgenic Arabidopsis increased the
decomposition of sucrose to produce more glucose and fructose, leading to the increased
synthesis of starch.
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Figure 5. Identification of MeNINV1 transgenic Arabidopsis lines. (A) PCR detection of T1 transgenic
Arabidopsis, M—DL2000 marker; L1–5—transgenic plants; PC—positive control of pCAMBIA1300-
MeNINV1-GFP vector; NC—negative control of WT; NP—no template PCR. (B) Semiquantitative RT–
PCR of MeNINV1 in T1 transgenic Arabidopsis lines. AtACTIN2 was the reference gene. (C) The related
expression levels of MeNINV1 in T1 transgenic Arabidopsis lines. AtACTIN2 was the reference gene, and
the relative expression of MeNINV1 in WT was used as a calibrator to compare with other lines for map-
making. (D) A/N-Inv activity in leaves of WT and transgenic Arabidopsis. In (B–D): WT—wild-type
Arabidopsis thaliana Columbia; EV—transgenic Arabidopsis with the pCAMBIA1300-GFP vector. Data
in (C,D) are the mean ± SD of three independent assays. Significant differences were determined by
one-way ANOVA followed by Duncan’s multiple range test at p < 0.05. Values labeled with different
letters (a, b, and c) were significantly different.
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thesis 

Figure 6. Phenotypes of MeNINV1 transgenic Arabidopsis and their controls. (A) Phenotypes of plants.
(B) Morphology of leaves per plant. (C) Flowering initials. (D) The length and width of the longest
leaves. (E) The numbers per plant. (F) Flowering time of the plants. L1, L4, and L5 are MeNINV1
transgenic Arabidopsis lines. EV is a pCAMBIA1300-GFP transgenic Arabidopsis line. WT is wild-type
Arabidopsis. Plants in (A,B,D,E) are five weeks old; (C,F) are flowing initials. Data in (D–F) are the
means of 20 leaves (D) or plants (E,F) with three independent assays. Significant differences were
determined by one-way ANOVA followed by Duncan’s multiple range test at p < 0.05. Values labeled
with different letters (a, b, and c) were significantly different. Bar in B = 2 cm.
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Figure 7. Analysis of sucrose, fructose, glucose, and starch in MeNINV1 transgenic Arabidopsis and
their controls. (A) Sucrose content. (B) Fructose content. (C) Glucose content. (D) Starch content.
The plants used for analysis were six weeks old. L1, L4, and L5 are MeNINV1 transgenic Arabidopsis
lines. EV is a pCAMBIA1300-GFP transgenic Arabidopsis line. WT is wild-type Arabidopsis. Data are
the mean ± SD of three independent assays. Significant differences were determined by one-way
ANOVA followed by Duncan’s multiple range test at p < 0.05. Values labeled with different letters (a,
b, and c) were significantly different.

2.8. No Change in the Overexpression of MeNINV1 in Arabidopsis under Abiotic Stress

Sucrose metabolism has often been associated with the abiotic stress resistance of
plants. In this study, several stressors, such as salt, drought, and cold, were tested in
MeNINV1 transgenic Arabidopsis. The results showed that the MeNINV1 transgenic Ara-
bidopsis did not have enhanced tolerance to stress (Figure S3).

3. Discussion

The yeast-restoration experiment identified that MeNINV1 could restore the inver-
tase function in the invertase mutant strain SEY2102 (Figure 1), which was the same as
Ta-A/N-Inv1 from wheat [25]. Further studies have found that MeNINV1 only catalyzed
the decomposition of sucrose, not maltose, trehalose, and lactose (Figure 2D). Many studies
have found that A/N-Inv could only decompose sucrose, such as At-CYT-INV1 from
Arabidopsis [19] and INV from carrot [26]. The optimal enzymatic pH of A/N-Inv has been
determined to be 6.5–8.0 and that of A-Inv 4.5–5.0 [9]. The optimal pH for MeNINV1 to
catalyze sucrose decomposition was 6.5, which was the same as A/N-InvC from Arabidop-
sis [27]. Generally, the optimal reaction temperature of A/N-Inv has been 37–45 ◦C [7,11],
but high catalytic activity for sucrose degradation at low temperatures was also found in
the alkaline invertase rInvHJ14 from Bacillus [28]. The optimal reaction temperature of
MeNINV1 was 40 ◦C, but its enzyme activity remained at approximately 35% at a low
temperature (0 ◦C). The kinetic curve of MeNINV1 was 10.59 mM at pH 6.5, which was
within the range (Km = 10–30 mM) of the A/N-Inv from Arabidopsis, as had been reported
previously [29]. In enzymatic reactions, substrates can inhibit the activity of the enzyme. In
this study, increased fructose in the reaction solution decreased the enzymatic activity of
MeNINV1, which indicates that fructose could be one of the products. This phenomenon
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was also found in alkaline invertase from rice [30] and HbNIN2 from rubber [11]. The
enzyme activity of MeNINV1 was strongly inhibited by VB6, Zn2+, and Pb2+ at low concen-
trations, and other metal ions and chemicals (e.g., EDTA, DTT, Tris, and Mg2+) inhibited its
activity, which was similar to the reported A/N-Inv from carrots [27], Arabidopsis [28], and
rice [29], except that a low concentration of vitamin B6 increased the enzymatic activity
of HbNIN2 [11]. These studies on the enzymatic properties of A/N-Inv were similar,
indicating that A/N-Inv has been functionally conserved among different species.

A/N-Inv was divided into α-group and β-group according to the evolutionary rela-
tionships [24]. Studies have reported that all β-group A/N-Inv have been located in the
cytoplasm [31]. The α A/N-Inv group was divided into classes α1 and α2, and most of
class α1 were located in the mitochondria or the chloroplasts [19,32,33], and class α2 were
located in plastids [18]. MeNINV1 was classified in the α1 group, along with PtNIN1 and
At3G06500 (A/N-InvC). PtNIN1 was shown to localize in the chloroplasts and the mito-
chondria [20], and A/N-InvC was shown to localize in the mitochondria [19]. The online
software Cell-PLoc-2 [34] and WoLF PSORT [35] were used in this study to predict the
possible localization of MeNINV1 in the chloroplasts. Subsequently, MeNINV1-GFP was
transiently expressed in cassava protoplasts, and MeNINV1 was located in the chloroplasts.
The localization of MeNINV1 was different from that of PtNIN1 and A/N-InvC, which
could have been caused by differences in protein sequences.

The determination of the invertase activity at each stage of cassava tuber root starch
accumulation identified that A/N-Inv had the highest activity in tubers, indicating that
it played an important role in this process [24,36,37]. The A/N-Inv activity of high-starch
cassava tuber varieties was significantly higher than that of low-starch varieties [23]. Tissue-
specific analysis showed that the MeNINV1 gene was mainly expressed in the fibrous roots
and the tuber root phloem, which was different from the previous study where MeNINV1
was mainly expressed in the stems [24], possibly due to the different growth states of
cassava (the previous cassava was planted for 80 d). The expression level of MeNINV1
was the highest at 80 d after planting and the lowest at 230 d after planting, which was
accompanied by the accumulation of starch during tuber root development, indicating
that MeNINV1 might be a key gene in this process, which was consistent with previous
research [24].

MeNINV1 transgenic Arabidopsis increased plant biomass and delayed flowering, sug-
gesting that the MeNINV1 gene promoted the vegetative growth of Arabidopsis and delayed
reproductive growth (Figure 6). A/N-Inv plays an important role in the catabolism of
sucrose, and the decomposition products of sucrose are crucial for plant growth and devel-
opment [38]. Many reports have pointed out that invertase has affected plant growth and
development. For example, the Arabidopsis A/N-InvG affected the development of lateral
roots [39]. The mutations in the OsCYT-INV1 gene led to reduced A/N-Inv activity and an
inhibited rice root cell development and reproductivity [40]. The homozygous mutants of
LjINV1 showed a severe reduction in the growth of roots and shoots, a change in cellular
development, and impaired flowering in Lotus japonicus [41]. The mutation of Arabidopsis
A/N-InvC affected the growth and development of plants, especially during the germi-
nation and flowering stages [19]. The expression of the CIN12 gene in Populus tomentosa
was disturbed, and the activity of cytoplasmic invertase was inhibited by 38–55%, resulting
in a 9–13% reduction in crystalline cellulose, which affected the formation of wood [31].
The expression of SlCIN7 in tomatoes was inhibited, resulting in reduced pollen vigor and
hindered pollen germination [21]. These studies fully demonstrate that invertase controlled
plant growth and development by affecting sugar signaling.

Previous studies have indicated that some A/N-Invs might be involved in sucrose catabolism
and starch accumulation. The alkaline/neutral invertase PtrA/NINV of Poncirus trifoliata was
heterologously expressed in tobacco, and the A/N-Inv activity of transgenic tobacco was increased.
There was no change in the sucrose content under normal conditions, but the sucrose content
was significantly decreased, and the reduced sugar content was significantly increased under
stress [20]. The double mutations in the alkaline/neutral invertase genes A/N-InvG and A/N-InvI
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in Arabidopsis reduced the activity of A/N-Inv by 40%, and there was no starch accumulation in
the root-cap cells [15]. In MeNINV1 transgenic Arabidopsis, the A/N-Inv activity in the leaves was
increased, and the contents of fructose, glucose, and starch were significantly increased, although
the sucrose content was not significantly changed. This result suggested that the MeNINV1 gene
affected sucrose catabolism and promoted starch synthesis due to increased glucose and fructose.
The lack of change in sucrose content in the leaves of MeNINV1 transgenic Arabidopsis could have
been caused by photosynthesis.

Studies have also found that some A/N-Invs responded to abiotic stress in plants by
affecting sucrose metabolism [20,38]. However, MeNINV1 transgenic Arabidopsis did not
significantly improve salt, drought, or low-temperature resistance. This finding indicated
that the MeNINV1 gene does not participate in the stress response in plants.

4. Materials and Methods
4.1. Strains and Plasmids

The Escherichia coli strain DH5α and the Agrobacterium tumefaciens strain GV3101
used to construct the recombinant vectors and for the transformation of Arabidopsis were
stored in our laboratory. The invertase mutant yeast strain SEY2102 used for the yeast
functional complementation experiment was kindly provided by Jie Liu (Northwest A&F
University, Xianyang, China). A yeast shuttle vector pDR195 used for MeNINV1 pro-
tein(NCBI accession: AEP31948.1) expression, the binary vector pCAMBIA1300-35S-GFP
used for MeNINV1 subcellular localization, and the Arabidopsis thaliana (columbia-0) used
for transformation were stored in our laboratory.

4.2. Functional Analysis of MeNINV1 by Yeast Complementation

The full-length open reading frame (ORF) of the MeNINV1 (NCBI accession: JN616390.1)
was amplified by PCR with the pDR195-M1-F/R primers containing Not I and Sal I restric-
tion sites (Table S1). The amplified product and the pDR195 vector were double-digested
with restriction enzymes Not I and Sal I and then ligated by using T4 ligase to form the
recombinant plasmid pDR195-MeNINV1. The pDR195 vector and pDR195-MeNINV1 were
transformed into the yeast mutant SEY2102 according to the lithium acetate (LiAc) transfor-
mation method [42].

SEY2102 yeast cells containing pDR195 or pDR195-MeNINV1 were grown on select
SD media (lacking uracil) containing 2% of either sucrose or fructose as a sole carbon source
for 3 d at 30 ◦C to observe their growth.

4.3. Analysis of the Enzymatic Characteristics of MeNINV1

Yeast cells containing the pDR195 or pDR195-MeNINV1 vectors were cultured in
a YPD solution medium for 2 d at 30 ◦C. The cells were collected by centrifugation at
12,000 rpm and 4 ◦C for 10 min and washed twice with PBS buffer. The collected yeast
cells were ground using liquid nitrogen and then transferred to PBS buffer (pH = 6.5) and
centrifuged at 12,000 rpm at 4 ◦C for 10 min. The supernatant was a crude enzyme solution.
The concentration of the extracted protein was determined by the Bradford method [43].
Alkaline/neutral invertase activity was measured using the DNS method [44], the activity
using crude serum from SEY2102 carrying pDR195 as essential control. To determine the
optimal reaction conditions, different pH values, temperatures, and sucrose concentrations
were tested. Under the optimal conditions, the effects of different substrates, fructose
concentrations, metal ions (Ca2+, Mg2+, Mn2+, Zn2+, and Pd2+), and chemical reagents (Tris,
EDTA, DTT, and VB6) on the enzyme activity were studied.

4.4. Plant Materials

The cassava (Manihot esculenta, South China 8 (SC8)) used in this study was planted
in Lingao, Hainan, China. The cassava tuber roots were collected at 80, 130, 180, 230, and
280 d after planting for RNA-seq. Fragile embryogenic calli and somatic embryos on the
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medium were chosen for RNA-seq. The tuber phloem, tuber xylem, fibrous roots, tender
leaves, mature leaves, and cassava stems were collected at 180 d after planting for RNA-seq.

In vitro plantlets of cassava SC8 used for cassava mesophyll protoplast isolation were
kept in MS medium (supplemented with 2% sucrose and 0.8% agarose, pH 5.8) at 28 ◦C
under 12 h/8 h (light/darkness) for 6–10 weeks to obtain fully expanded leaves.

A. thaliana Col-0 was used as the wild-type (WT) control in this study, and all transgenic
Arabidopsis lines were generated on a background of Col-0. Seeds were sterilized with
75% (w/v) alcohol for 10 min, washed 1 time with absolute ethanol, transferred to sterile
filter paper with a pipette, and air-dried for approximately 30 min until the alcohol had
completely evaporated. The sterilized seeds were sown on 1/2 MS medium (2% (w/v)
sucrose, 0.7% (w/v) agar) and vernalized at 4 ◦C for 3 d in the dark. Then the seeds were
cultured under the conditions of 22 ◦C, 110 µmol/m2/s light intensity, 16 h light/8 h dark,
and 70% relative humidity for 10 d. Finally, the seedlings were transferred to pots filled
with a mixture of vermiculite and soil, and they were watered with a nutrient solution
every 3 d. The plants were grown under the same conditions.

4.5. Expression Analysis of the MeNINV1 Gene in Cassava

The expression levels of MeNINV1 in different tissues and organs, as well as tuber
root development periods, were calculated according to the SC8 cassava RNA sequencing
data (unpublished).

4.6. Subcellular Localization of the MeNINV1 Protein

The full-length ORF of MeNINV1 without a stop codon was amplified by PCR with the
1300-M1-F/r primers containing Kpn I and Sal I restriction sites (Table S1). The amplified
product and the pCAMBIA1300-GFP vector were double-digested with the restriction
enzymes Kpn I and Sal I and then ligated using T4 ligase to form the recombinant plasmid
pCAMBIA1300-MeNINV1-GFP. The cassava mesophyll protoplast isolation and transfor-
mation methods were described by Wu et al. [45]. The GFP fluorescence (green channel,
488 nm) and chlorophyll autofluorescence (red channel, 568 nm) were observed under a
laser confocal microscope (OLYMPUS FV1000, Olympus, Tokyo, Japan).

4.7. Transformation and Identification of MeNINV1 Arabidopsis

Agrobacterium GV3101 with pCAMBIA1300-MeNINV1-GFP and pCAMBIA1300- GFP
were transformed into Arabidopsis Col-0 by the flower-infusion method. The infected mature
seeds (T0) were collected and cultured on 1/2 MS (containing 50 mg/L hygromycin) solid
medium to screen for positive transformants. Arabidopsis seedlings rooting on hygromycin
medium were identified by leaf PCR with 2 × M5 HiPer Superluminal mix-with blue dye
(Mei5bio, Beijing, China) using the 1300-F/R primers (Table S1). The positive transgenic
lines (T1) were generated and examined by semiquantitative RT–PCR, and qPCR. AtActin2
(GenBank Accession: NM_112764) was used as an internal control. pCAMBIA1300-GFP-
transformed Arabidopsis was used as empty vector control. Wild-type (WT) Arabidopsis
Col-0 was used as a negative control.

The positive transgenic line (T1) seeds were collected and cultured on 1/2 MS (con-
taining 50 mg/L hygromycin) solid medium to screen for single-copy lines. Seeds of
the single-copy transgenic lines (T2) were collected and cultured on 1/2 MS (contain-
ing 50 mg/L hygromycin) solid medium to screen for homozygous lines. For further
experiments, T3 homozygous Arabidopsis transgenic lines (L1, L4, and L5) were used.

When the Arabidopsis plants were five weeks old, the leaves of pCAMBIA1300-MeNINV1-
GFP, pCAMBIA1300-GFP T3 transgenic lines, and WT Arabidopsis were analyzed for alka-
line/neutral invertase activity using an A/N-Inv kit (Keming, Suzhou, China).

4.8. Phenotypic Statistics of Transgenic Arabidopsis

The seeds of pCAMBIA1300-MeNINV1-GFP, pCAMBIA1300-GFP T3 transgenic lines,
and WT Arabidopsis were sown in vermiculite. When the plants had grown four true leaves,
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the seedlings with similar growth were transferred to plastic pots (7 × 7 cm). After 5 weeks
under the conditions of 22 ◦C, 110 µmol/m2/s light intensity, 16 h light/8 h dark, and 70%
relative humidity, the morphological data of plants, including leaf length/width, number
of leaves, and flowering time, were calculated.

4.9. Detection of Various Sugars in Transgenic Arabidopsis

The leaves of 6-week-old pCAMBIA1300-MeNINV1-GFP and pCAMBIA1300-GFP
transgenic lines as well as WT Arabidopsis were collected, and the contents of sucrose,
glucose, fructose, and starch were determined. The above indicators were measured using
sucrose, glucose, fructose, and starch kits (Keming, Suzhou, China).

4.10. Analysis of Abiotic Stress in Transgenic Arabidopsis

Ten-day-old seedlings (L1, L4, L5, EV, and WT) were transferred to 1/2 MS medium
supplemented with 0, 100, 200, or 300 mM mannitol or 0, 50, 100, or 150 mM NaCl under the
same conditions for 10 d as the drought- and salt-stress treatments. Ten-day-old seedlings
(L1, L4, L5, EV, and WT) were transferred to 1/2 MS medium at 4 ◦C for 10 d as a cold-stress
treatment.

4.11. Statistical Analysis

The data are presented as the mean ± SD and were compared using the Statistical
Product and Service Solutions (SPSS, IBM, Armonk, NY, USA) software with one-way
analysis of variance (ANOVA) followed by Duncan’s multiple range test at the significance
level of p < 0.05.

5. Conclusions

In this study, MeNINV1 was confirmed to function as invertase to catalyze sucrose
decomposition in yeast. The enzymatic properties of MeNINV1 were an optimal pH of 6.5,
a reaction temperature of 40 ◦C, and sucrose as its specific catalytic substrate. Chemical
reagents, metal ions, and fructose can inhibit A/N-INV enzymic activity. In cassava, the
MeNINV1 gene was mainly expressed in the fibrous roots and the tuber root phloem, and
its expression decreased as the tuber root grew. MeNINV1 was confirmed as located in the
chloroplasts. MeNINV1-overexpressing Arabidopsis had a higher A/N-INV activity, and the
increased glucose, fructose, and starch content in the leaves promoted plant growth and
delayed flowering time but did not change their resistance to abiotic stress.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/plants11070946/s1, Figure S1: Screening of single-copy and
homozygous transgenic Arabidopsis, Figure S2: The floral organs and fruit pods of MeNINV1-
overexpressing Arabidopsis lines, Figure S3: Resistance analysis of MeNINV1-overexpressing Arabidop-
sis lines, Table S1: The primers used in the study.
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