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Sphingolipids including sphingosine-1-phosphate and ceramide participate in numerous cell programs
through signaling mechanisms. This class of lipids has important functions in stress responses;
however, determining which sphingolipid mediates specific events has remained encumbered by the
numerous metabolic interconnections of sphingolipids, such that modulating a specific lipid of interest
through manipulating metabolic enzymes causes ‘ripple effects’, which change levels of many other
lipids. Here, we develop a method of integrative analysis for genomic, transcriptomic, and lipidomic
data to address this previously intractable problem. This method revealed a specific signaling role
for phytosphingosine-1-phosphate, a lipid with no previously defined specific function in yeast,
in regulating genes required for mitochondrial respiration through the HAP complex transcription
factor. This approach could be applied to extract meaningful biological information from a similar
experimental design that produces multiple sets of high-throughput data.
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Introduction

Sphingolipids, a class of lipids found in all cell types across
eukaryotic species, include bioactive molecules such as
sphingosine-1-phosphate and ceramide (Zheng et al, 2006;
Hannun and Obeid, 2008b). In budding yeast, the synthesis of
sphingolipids increases acutely on heat stress and mediates
cell survival at high temperature (Dickson et al, 1997;
Jenkins et al, 1997). Several sphingolipid-dependent subpro-
grams of the cell response to heat stress have been identified
including cell cycle arrest, regulation of protein synthesis
and degradation, and transcriptional reprogramming
(Chung et al, 2000; Jenkins and Hannun, 2001; Cowart et al,
2003; Cowart and Hannun, 2005; Meier et al, 2006); however,
these findings derive largely from studies wherein all
sphingolipid synthesis is blocked, and thus, biological
roles for specific lipid species remain unknown. Although
specific genetic manipulations can be designed to determine
the effects of deletion or over-expression of enzymes of
sphingolipid metabolism, the interconnectedness of the
sphingolipid metabolic network (as in many metabolic path-

ways) leads to widespread changes in lipid levels on single
enzyme mutation, thus preventing attribution of the observed
effects to specific lipid species. Here, we illustrate this
problem in the yeast heat stress response. We then present a
systems biology approach designed to reveal potential
lipid-specific signaling pathways by deconvoluting a body of
heterogeneous biological information derived from genomic,
transcriptomic, lipidomic, and functional annotation data
(Figure 1). The analysis indicates that phytosphingosine-1-
phosphate (PHS1P), a sphingolipid with no previously
known biological function in Saccharomyces cerevisiae,
regulates the expression of genes involved in cellular respira-
tion in a manner that requires the HAP2/3/4/5 transcription
factor (TF) complex (Bonander et al, 2008). Biological
validation of these findings indicated the systems analysis
successfully identified a biological pathway mediated by
PHS1P. Importantly, the methods and approaches developed
in this study may be applicable to other metabolomic and
genomic studies that generate high-throughput data sets
across multiple platforms and where the interest is in the
function of specific metabolites.
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Results

Sphingolipid metabolism

The initial metabolites resulting from sphingolipid biosynth-
esis include the sphingoid bases dihydrosphingosine (DHS)
and phytosphingosine (PHS), which in turn serve as metabolic
precursors for synthesis of an array of chemically diverse
species including ceramides and sphingoid base phosphates
(Figure 2). Though the homologous mammalian lipid sphin-
gosine-1-phosphate activates a variety of signaling events
through receptor-mediated modulation of characterized sig-
naling pathways (Alvarez et al, 2007), specific cell functions
for sphingoid base phosphates in yeast remain unknown.
PHS1P was shown earlier to transiently increase during heat
stress (Skrzypek et al, 1999), suggesting a potential role for
this lipid in the heat stress response. Moreover, mutant yeast
strains that accumulate PHS1P exhibited poor growth and heat
stress resistance (Skrzypek et al, 1999; Kim et al, 2000),
though a specific role for this lipid in the heat stress response
remains unidentified. We hypothesized that PHS1P may
mediate subprograms of the heat stress response, and,
therefore, we designed experiments to perturb PHS1P meta-

bolism using a conventional gene deletion approach. Deletion
of LCB4 and LCB5 genes, encoding the yeast sphingoid base
kinases (Nagiec et al, 1998), attenuates PHS1P production
whereas deletion of DPL1, encoding the sphingoid base
phosphate lyase (Saba et al, 1997), blocks its degradation
and results in accumulation of PHS1P (Figure 2). Thus,
mutating the above genes allows a ‘clamp’ on PHS1P in cells at
either low or high levels, respectively. Log-phase cultures of
the lcb4D/lcb5D, the dpl1D, and wt strains were subjected to
heat stress, and samples were collected at 5-min intervals over
a time course of 30 min in two duplicate experiments. To
collect multiple ‘-omics’ data reflecting cellular signaling
systems, each sample was divided into two portions, thus
allowing mRNA and sphingolipid extraction from each sample
for transcriptomic and lipidomic analyses (Bielawski et al,
2006), generating a total of 42 transcriptomics measurements
paired with 42 corresponding lipidomics measurements.

Transcriptomic responses to heat stress

As previously reported (Gasch et al, 2000; Gasch and Werner-
Washburne, 2002; Cowart et al, 2003), heat stress significantly
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Figure 1 Overview of the integrative systems approach. The lipidomics, transcriptomic, and genomic data were collected from experiments and databases; (A, B, C)
example data points or data matrix. Integrating the matching lipidomic and transcriptomic data in a correlation analysis lead to a gene-versus-lipid correlation coefficient
matrix shown as a heat map shown in (D). Genomic and transcriptomic data were combined to infer the activation states of TFs under each experiment, shown as a TF-
versus-condition heat map representing the activation states in (E). The inferred activation sates of TFs from (E) were combined with lipidomic data (A) to model the
relationship between lipid mass and activation of TFs, shown as a heat map representing the significant logistic parameters in (F). The results from (E) and (F) resulted in
the hypothesis that PHS1P mediated regulation of a subset of genes through activation of the HAP complex, which was tested in a series of genetic and pharmacological
experiments (G).
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induced or repressed the expression of over a thousand genes
in the wt strain, and a significant portion of this program was
conserved in both the lcb4D/lcb5D and the dpl1D strains.
However, we further identified the genes that are differentially
expressed among the strains under comparable conditions.
This group included 687 probe sets (corresponding to 441
genes with gene names) that were differentially expressed
after heat stress in the lcb4D/lcb5D mutant when compared to
wt strains. Analysis of this group using GOStat (Beissbarth and
Speed, 2004) revealed a broad range of functional categories
including DNA repair, translational regulation, post-transla-
tional modification of proteins, cell wall organization and
biogenesis, and others (Figure 3A).

Lipidomics responses to heat stress

Recognizing the connectedness of sphingolipid metabolism
(Alvarez-Vasquez et al, 2005; Hannun and Obeid, 2008a), we
hypothesized that the mutations might cause broad changes in
sphingolipid metabolism and that only a subset of these genes
spanning broad functional categories actually resulted from
the lack of PHS1P, whereas many of these genes’ aberrant
regulation might result from modulation of other sphingolipids
in this mutant. Therefore, we further evaluated the lipidomic
data to determine the impact of heat stress on lipid species and
to determine whether the effects of mutations generate a
metabolic ‘ripple effect’ leading to changes in other metabo-
lites. Indeed, out of 40 distinct sphingolipid species measured,
28 demonstrated changes at least at one time point of heat
stress in wild-type cells (Figure 3B). Heat stress induced an
increase in C18 PHS1P from nearly undetectable levels to
0.02 pmol/nmol phosphate (see Supplementary Table 1),
peaking around 20 min and returning to basal levels by
30 min. These kinetics were similar to previously published
data that demonstrated an eight-fold increase in PHS1P that
peaked around 10 min and returned to basal levels around
20 min (Skrzypek et al, 1999). As expected, these changes did
not occur in the lcb4D/lcb5D mutant strain. On the other hand,
the dpl1D strain showed constitutively elevated PHS1P, which
further increased during heat stress (Figure 3B, bottom row).
More importantly, the data revealed widespread differences in
lipid profiles between the three strains, both basal and under

heat stress. For example, the lcb4D/lcb5D strain demonstrated
significant elevation of PHS, increased a-hydroxylated cer-
amides of 20 and 22-carbon N-acyl chain length, increased
phytoceramides of 24 carbon chain length, and decreased
dihydroceramide of 26 carbon chain length. In fact, out of the
28 lipid species showing changes in the wild type over the time
course, at least 19 species showed differences between wt and
the lcb4D/lcb5D strain at least one time point.

Lipidomics profiles of the dpl1D strain also demonstrated
widespread differences as compared to the parental strain
(Figure 3B, right panel). With the exception of the expected
accumulation of PHS1P, lipid measurements in this strain
revealed fewer and more subtle variation from the wild-type
strain at basal temperature; however, time course measure-
ments indicated that deletion of DPL1 significantly altered the
heat stress sphingolipid response in that at least 20 of the 28
measured lipids exhibited differences from the parental strain
in at least one point of the time course. Moreover, changes in
this mutant were partially distinct from changes observed in
the lcb4D/lcb5D mutant strain.

In summary, these mutations not only had the expected
effects on PHS and PHS1P (substrate and product), but also
caused widespread changes in many sphingolipid species.
Therefore, any changes in gene regulation observed in the
lcb4D/lcb5D or dpl1D mutant strains could not be readily
attributed to PHS1P (or any single lipid species). To
circumvent the limitations of ‘gene-centric’ approach, an
alternative approach was devised to integrate information
from lipidomic and transcriptomic data in a manner that
allows inferring lipid-mediated events.

Indentify potential sphingolipid-regulated genes

To identify and quantify the information connecting lipidomic
and transcriptomic changes, we performed covariance analy-
sis (DeGroot and Schervish, 2002) between all lipid-probe
pairs, which led to a genes-versus-lipids matrix in which an
element contained a correlation coefficient (r) for a lipid–gene
pair if the r is statistically significant or a zero otherwise. It
was noted that a row of the matrix constituted a correlation
(information) pattern demonstrated by a gene with respect to
all lipids, and similarly a column encoded an information
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Figure 2 Summary of major sphingolipid biosynthetic pathways in Saccharomyces cerevisiae.
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pattern demonstrated by a lipid with respect to all genes. We
sought to identify the shared information patterns among
genes and lipids by applying a double-sided hierarchical
clustering analysis, which grouped genes (and lipids) sharing
similar information patterns into clusters. Selected results
focusing on key sphingolipids are shown in Figure 3C as a heat
map (also see Supplementary Table 2). The results indicate
that lipid species demonstrated distinct correlation patterns
with respect to modules of genes, suggesting potential
regulatory roles of the lipids on the modules. The double-
sided clustering revealed clusters of genes sharing similar
information with respect to lipid (blocks across rows) and
clusters of lipids sharing similar information with respect to
gene expression data (columns with similar correlation
coefficient patterns). For example, DHS and PHS, two closely
related metabolites in the metabolic network, were grouped
together because of their shared information with respect to
clusters of genes at the top region Figure 3C, but they also
showed distinct information with other gene clusters.

Importantly, this procedure identified subsets of genes that
were significantly correlated to PHS1P, with 44 positively
correlated probe sets (mapped to 23 named genes) from the
microarrays and 61 negatively correlated ones (mapped to
named 54 genes), which was significantly less than the genes
identified in the microarray analysis of the lcb4D/lcb5Dmutant

(441 genes). Among these 77 PHS1P-sensitive genes, 40 genes
were also deemed differentially expressed according to
differential expression analysis, whereas the other 33 genes
were not. The results indicate a tentative statistical advantage
of correlation analysis over the differential expression analysis
in that the former can use all samples (42 samples for a lipid-
versus-gene pair) whereas the latter can only use samples from
specific conditions (12 lcb4D/lcb5D microarrays versus 12 wt
microarrays after heat stress).

We applied a method referred to as GO Steiner Tree
(GOSteiner, 2009) to analyze the functional coherence of the
gene sets and to visualize their functional relationships. The
method represents the genes and their associated Gene
Ontology terms as a graph, finds a subgraph (a Steiner tree)
connecting all genes and their annotations with a shortest total
functional semantic distance, and finally evaluates the
statistical properties of the tree as metrics of functional
coherence. Supplementary Figure 1 shows the GO Steiner tree
for genes that demonstrated failure to induce on heat stress in
the lcb4D/lcb5D strain when compared to wt. Although the
analysis showed that the lcb4D/lcb5D-sensitive genes had
diverse functions, the visualization of the GO Steiner tree
revealed clusters of genes with coherently related functions,
including genes involved in mitochondrial metabolism, for
example, COX4, INH1, and ATP17, and vesicular transport,
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for example, APS2, SVP26, TPM2, and TVP23. The results
indicate that the deletion of LCB4 and LCB5 led to aberrant
regulation of several distinct groups of genes, among which
genes showing high correlation to PHS1P represented only a
subset of those genes (highlighted in Supplementary Figure 1).
Importantly, this subset included genes in specific sub-
categories (e.g. the mitochondrial metabolism), but not others
(e.g. vesicular transport) of the LCB4/LCB5-regulated genes.

The above results led to the hypothesis that, although both
sets of genes were lcb4D/lcb5D sensitive, only the genes
showing strong correlation to PHS1P levels were truly PHS1P
sensitive, whereas dysregulation of other genes in this mutant
strain could result from confounding changes in other
sphingolipids which had become apparent from the lipidomics
analysis (Figure 3B). We tested this hypothesis by treating wild
type cells (wt) with exogenous PHS1P in at non-heat stress
temperature and monitored the expression of sample genes
from the putative PHS1P-dependent set involved in the
mitochondrial metabolism (COX4, INH1, and ATP17) and a
putative non-PHS1P-dependent set involved in vesicular
transport (APS2, SAR1, SVP26, TPM2, and TVP23). Indeed,
expression of the genes involved in vesicular transport failed
to be induced by PHS1P (Figure 4A), whereas the mitochon-
drial metabolism genes demonstrated B2.4–3-fold increases
on treatment (Figure 4B). To further test whether the effects
were specific for PHS1P, wt and lcb4D/lcb5D mutant cells were
treated with PHS, the metabolic precursor of PHS1P, which
undergoes conversion to PHS1P in the wild type but not in the
lcb4D/lcb5D mutant. Indeed, in wild-type cells, PHS produced
a significant upregulation of the genes in the respiration set,
which was totally lacking in the lcb4D/lcb5D mutant
(Figure 4C). Thus, the integrated analysis enabled the
identification of the PHS1P-dependent subset of genes within
the larger set of genes that showed failed regulation in the
lcb4D/lcb5D mutant.

Identifying candidate TFs

Defining specific lipid-mediated responses, beyond the overall
gene-mediated responses manifested by mutations, is impor-
tant in that it allows studying the distinct roles and mechan-
isms of specific lipids—the putative functional mediators—
that contribute to the overall responses. Highly selective
PHS1P-mediated expression of specific genes led to the
hypothesis that PHS1P regulates a specific pathway by
activating some downstream TFs, which then mediate the
regulation of these genes in response to PHS1P. To identify
such putative TFs, a transcription factor binding site (TFBS)
matrix was constructed, in which an element contains a binary
variable indicating if a gene (g) can be bound by a TF (t). AN
element, btg, of the matrix is set to 1 if the analysis of the
chromatin immunoprecipitation experiments (Lee et al, 2002;
MacIsaac et al, 2006) indicates that the TF t is capable of
binding to the promoter sequence of gene g, or if there is
documentations of the interaction between the TFand the gene
according to the yeast TF database, YEASTRACT (Monteiro
et al, 2008). The knowledge of TFBSs enabled us to evaluate
whether any TFBS was significantly enriched in the promoters
of a gene set. Using a hypergeometric-distribution-based
model, we assessed enrichment of TFBSs in the promoters of

the genes that demonstrated positive correlation to PHS1P and
identified 22 TFBSs as significantly ‘enriched’ (see Supple-
mentary information). This led to the hypothesis that the
activation states of some of the candidate TFs were sensitive to
changes in PHS1P, thus transmitting the signal from PHS1P to
genes. To test the hypothesis, we further developed a two-stage
Bayesian information integration model to reveal information
flow from bioactive lipids-TFs-gene expression.

Inferring activation states of TFs

We developed a novel Bayesian model to infer the activation
states of the TFs under each experimental condition. This
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model extends our previous published method (Lu et al, 2004)
such that the genomic data of TFBSs can be integrated with
transcriptomic data to infer the activation state of TFs. In this
model, the activation state of a TF (t) under a specific condition
(a) is represented as a binary variable, sat, such that sat¼1
indicates the TF is active and sat¼0 otherwise. Representing
activation states of TFs as binary variables has two advan-
tages: (1) it provides a more intuitive representation of
activation (active/inactive) state of a TF, in comparison to
possible negative activation state allowed by some other
models (Lee and Batzoglou, 2003; Liao et al, 2003; Gao et al,
2004; Ochs et al, 2004; Battle et al, 2005; Sun et al, 2006); (2) it
renders the mathematical convenience to model the relation-
ship between lipids and activation states of TFs using logistical
regression, in which the sigmoid function mimics dose–
response curves commonly observed in signal transduction
pathways.

The model specifies that the expression value of a gene from
a specific experiment (ega) is influenced by three factors: (1)
TFs that bind to its promoter, indicated by bgt8tA{1,y..,T};
(2) the states of each of the TFs under this specific condition,
represented by sat8tA{1,y..,T}; (3) and the strength and
direction (induction or repression) of an activated TF on its
expression, represented by wgt8tA{1,y..T}. We define the
probabilistic relationship between the above parent variables
and the gene expression value as follows:

ega ¼
XT

t¼1

bgtsatwga þ e or

egajbgt; sat; wga; � N
XT

t¼1

bgtsatwga; t�1

 !

where e and t represent the noise of the system and N stands
for the Gaussian distribution. It is of interest to note that the

product of two binary variables, bgtsat, encodes a logic AND
relationship between the two variables in the equation, such
that the equation can be interpreted as follows: TF t influences
the expression value of gene g under the condition a if and only
if it has a binding site in the promoter of the gene (bgt¼1) AND
it is activated under the condition (sat¼1). The equation also
reflects coordinated influences of multiple activated TFs on a
gene’s expression in a linear form (usually in logarithmic
scales), an assumption widely used in modeling of expression
systems (Liao et al, 2003; Gao et al, 2004; Lu et al, 2004; Battle
et al, 2005). Given TFBS matrix and expression data, the model
probabilistically infers the state of each TF under a specific
condition using a variational Bayes technique (Lu et al, 2004)
(see Supplementary information for detailed description).
Figure 5A shows that many TFs switch states during heat
stress, among which many are well-documented stress-
responding TFs.

Modeling the role of lipids in TF activation

On the basis of the estimated binary TF states from the previous
section, a Bayesian logistic regression model was applied to
investigate the relationship between the levels of sphingolipids
and the putative TF activation states. In this model, the states
of a TF under each experimental condition were modeled as a
sigmoid function of the concentrations of sphingolipids, where
the probability that a TF (t) is active, conditioning on observed
lipid profiles (l1,y,L) under an experiment condition (a), is
defined as follows: logit pðsat ¼ 1jl1; l2; :::; lLÞð Þ ¼ b0 þ b1l1þ
b2l2 þ :::þ bLlL. In this model, a parameter blt reflects the
strength and direction of influence that the sphingolipid l has
on the activation state of the TF t. Using a Gibb’s sampling-
based Bayesian logistic regression, we identified all statisti-
cally significant parameters, and we interpret a significant
parameter blt with respect to a TF t as an indication that the TF
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Red color indicates activated state and black denotes inactivate states. The TFs were grouped according to their state across experiment; the yellow block indicates a
group of TFs ‘turned off’ after heat stress; the purple box outlines the TFs ‘turned on’ after heat stress. (B) Logistic regression modeling of the relationship between
sphingolipids and TF states. Statistically significant regression parameters are shown as a TF-versus-lipid heat map. The orange box indicates the significant parameters
associated with PHS1P with respect to Hap2p and Hap4p. (C) The ability of PHS1P treatment to induce PHS1P-dependent genes in the absence of HAP4 was
determined. The experiment was performed three times in triplicate and represented as mean±s.e.m.
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is regulated by lipid l, and the selected results are shown in
Figure 5B. A total of 13 TFs showed with significant coefficient
with respect to PHS1P, with 11 positively influenced and 2
negatively influenced. Among the positive TFs, Hap2p, Hap4p,
NRG1 and MGA1 were also among the 22 TFs deemed
significantly enriched in the PHS1P postively correlated gene
set. Hap2p and Hap4p are members of the HAP complex
(Chodosh et al, 1988; Buschlen et al, 2003), whose binding
sites were dominant in the PHS1P postively correlated gene
set, particularly in the subset involved in the cellular
respiration. Thus, modeling of the relationship between
sphingolipids and TF states, in combination with the static
information inferred from promoter analysis, provided evi-
dence at a mechanistic level that gave rises to the hypothesis
that PHS1P regulates expression of respiratory genes through
modulating the activity of the HAP complex.

To test this hypothesis, we evaluated the ability of PHS1P to
regulate PHS1P-dependent genes in a mutant strain deleted for
the gene encoding Hap4p (hap4D cells), an essential compo-
nent of the HAP complex. Wt cells or hap4D cells were treated
with exogenous PHS1P added into the culture media. RNAwas
isolated from each culture, and gene expression was deter-
mined by real time RT–PCR. Indeed, as compared with the
parental background strain, the hap4D strain demonstrated
complete loss of PHS1P-mediated induction of the target genes
(Figure 5C). The result indicated that regulation of these genes
by PHS1P required a functional HAP complex.

Discussion

Although there are publications (Fischer, 2005; Hirai et al,
2005; Ippolito et al, 2005) that simultaneously analyze
metabolomic and transcriptomic data, these studies mainly
concentrate on the relationships between the expression levels
of the enzymes and their metabolites. To our best knowledge,
this study represents a novel approach to integrating multiple
‘-omics’ data to infer signal transduction pathways involving
bioactive lipids at a mechanistic level. By integrating informa-
tion from heterogeneous types of data in the principled
probabilistic framework, the approaches developed in this
study overcame the difficulties associated with conventional
gene deletion/overexpression experiments commonly used in
studies to delineate signaling pathways. The problem that
single gene mutation leads to system-wide perturbation is
likely to be a general case in many biological systems,
particularly in metabolic networks; the interconnectedness
of sphingolipid metabolism demonstrated in this study is likely
an example rather than an exception of such systems. From a
systems biology point of view, genetic manipulation of genes is
a powerful tool to perturb systems, which provides opportu-
nities to study the systems at mechanistic level but it is not
necessarily sufficient to derive a causal relationship between
metabolites and their effectors. By collecting and assimilating
information at systems level, our study transcends the ‘gene-
centric’ framework, leading to the identification of the
signaling role of PHS1P in cellular stress responses in yeast.
Progressive analyses generated specific hypotheses at different
mechanistic levels: (1) PHS1P specifically regulates the
expression of a set of genes involved in cellular respiration;

and (2) this regulation requires the HAP TF complex; both
findings received support from experimental validation. The
study demonstrates the utility of integromic approaches in
studying cellular signaling systems. This should be of great
value in the study of bioactive lipids and other metabolic
pathways, where the need arises to dissect functions of specific
metabolites.

Materials and methods

Yeast culture and treatment

Strains of S.cerevisiae used are listed in Supplementary information.
Yeasts were routinely cultured in Yeast Proteose Dextrose media at
301C. Working cultures were seeded from overnight 5 ml cultures
of a single colony and allowed to grow with 200–250 r.p.m. shaking to
mid-logarithmic phase (OD¼0.4–0.8). For sample treatment, cells
were shifted to 391C over a time course of 5, 10, 15, 20, 25, and 30 min.
Cells were collected by centrifugation at 3500 g for 3 min, and pellets
were snap-frozen in an ethanol/dry ice bath. Frozen pellets were
stored at �801C. For treatment with exogenous compounds,
cells were maintained at 301C and compounds were added as
solutions in dimethylsulphoxide (DMSO), or DMSO alone was added
as a negative control. Treatments with exogenous compounds were
for 15 min.

RNA preparation and microarray hybridization

RNA was prepared from snap-frozen pellets using the RNeasy kit from
Qiagen according to manufacturer’s directions. Preparation of target
for microarray hybridization to the Affymetrix YG-S98 chip was
performed according to manufacturer’s instructions. Microarray
hybridization was performed at the Microarray Core Facility at the
Medical University of South Carolina. Microarray analyses were
performed using R packages of Bioconductor suite (Bioconductor,
Gentleman et al, 2004). Microarrays were normalized using the robust
microarray averaging package, and differential expression was
assessed using the linear model for microarray data package from
Bioconductor; false discovery rate was assess with Q-value package
(Storey and Tibshirani, 2003). The threshold for differential expression
and significant correlation coefficient was set at P-value o0.05 and
q-value p0.1. The microarray data set is publicly available at the Gene
Expression Omnibus database (Barrett et al, 2009), with an accession
number of GSE18121.

Lipidomics analysis

Lipids were extracted from snap-frozen yeast pellets as described
(Bielawski et al, 2006) and subjected to high-throughput LC/MS
analysis as described earlier (Bielawski et al, 2006). Quantification was
based on comparison of peak intensity to internal standards as
described earlier.

Real Time RT–PCR

Cells were grown in YPD media to mid-logarithmic phase and treated
with compounds dissolved in DMSO as indicated or vehicle alone
for 15 min in a 301C water bath with 200–250 r.p.m. shaking. Cells
were collected by centrifugation at 3500 g for 3 min, decanted, and
immediately frozen at �801C. RNA was extracted from frozen pellets
using the RNeasy kit from Qiagen. cDNAwas prepared from RNA using
Superscript II or Superscript III (Invitrogen) according to manufac-
turer’s directions. cDNA was diluted 10–20-fold before real-time PCR
using the SybrGreen solution and protocols (Bio-Rad) and primers as
indicated in the Supplementary information. Gene intensity signals
were normalized to levels of RNA for either ribosomal 18S subunit or
actin. Reactions were conducted in a Bio-Rad iCycler.
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Two-staged Bayesian information flow model

Detailed mathematical and computational descriptions of the Bayesian
latent variable model and Bayesian logistic regression are available as
online Supplementary information at Molecular Systems Biology.

Supplementary information

Supplementary information is available at the Molecular Systems
Biology website (www.nature.com/msb).
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