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Abstract Phycobilisome (PBS) is the main light- harvesting antenna in cyanobacteria and red 
algae. How PBS transfers the light energy to photosystem II (PSII) remains to be elucidated. Here 
we report the in situ structure of the PBS–PSII supercomplex from Porphyridium purpureum UTEX 
2757 using cryo- electron tomography and subtomogram averaging. Our work reveals the orga-
nized network of hemiellipsoidal PBS with PSII on the thylakoid membrane in the native cellular 
environment. In the PBS–PSII supercomplex, each PBS interacts with six PSII monomers, of which 
four directly bind to the PBS, and two bind indirectly. Additional three ‘connector’ proteins also 
contribute to the connections between PBS and PSIIs. Two PsbO subunits from adjacent PSII dimers 
bind with each other, which may promote stabilization of the PBS–PSII supercomplex. By analyzing 
the interaction interface between PBS and PSII, we reveal that αLCM and ApcD connect with CP43 of 
PSII monomer and that αLCM also interacts with CP47' of the neighboring PSII monomer, suggesting 
the multiple light energy delivery pathways. The in situ structures illustrate the coupling pattern of 
PBS and PSII and the arrangement of the PBS–PSII supercomplex on the thylakoid, providing the 
near- native 3D structural information of the various energy transfer from PBS to PSII.

Introduction
Life on Earth depends on photosynthesis for the conversion of solar energy to chemical energy. Red 
algae living in deep water can efficiently use dim and green light that cannot be absorbed by plants 
(Tschudy, 1934). This ability is mainly due to two primary photosynthetic components: the light- 
harvesting antenna and the photochemical reaction centers. The primary light- harvesting antenna 
is the phycobilisome (PBS), which is located on the stromal surface of the thylakoid membrane and 
captures light energy (Gantt and Conti, 1965; Gantt and Conti, 1966). The two reaction centers, 
photosystem II (PSII) and photosystem I (PSI), are located in the thylakoid membrane. PBS mainly 
transfers the light energy to PSII, leading to water splitting (Biggins and Bruce, 1989; Ley and Butler, 
1977a). PBS could also directly couple with PSI (Mullineaux, 1992; Su et al., 1992; Kondo et al., 
2007; Ueno et al., 2017).

PBSs are composed of chromophore- bearing phycobiliproteins (PBPs) and linker proteins, which 
further assemble into central core and peripheral rods (Gantt et al., 1976; Zilinskas and Greenwald, 
1986). Recently, the cryo- electron microscope (cryo- EM) structures of PBS from red algae at resolu-
tions of 3.5 Å (Zhang et al., 2017) and 2.82 Å (Ma et al., 2020). The cryo- EM structure of PBS in red 
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alga Porphyridium purpureum (Ma et al., 2020) shows that the PBS consists of a tricylindrical PBS 
core, 14 rods (Rod a–Rod g, Rod a’–Rod g’), 8 individual extra PE (αβ)6 hexamers (Ha–Hd, Ha’–Hd’), 
and 24 individual extra PE α or β subunits. The core contains one top cylinder B, composed of two 
allophycocyanin (APC) (αβ)3 trimers, and two bottom cylinders (A and A’), each of which is assembled 
by three APC trimers (A1–A3, A2 and A3 form APC hexamer). The rods consist of phycoerythrin (PE) 
and phycocyanin (PC) hexamers or only PE hexamers. For example, Rod a is composited of one basal 
PC hexamer and two distal PE hexamers. Thus, the energy absorbed by Rod transfers unidirection-
ally from the distal PE to the basal PC, and then funnels to APC in the core, and eventually to the 
two terminal emitters, including chromophores in the core–membrane linker protein (LCM, also called 
ApcE) (Capuano et al., 1991; Lundell et al., 1981; Tang et al., 2015) and allophycocyanin D (ApcD) 
(Glazer and Bryant, 1975; Peng et al., 2014).

PSII is a multi- pigment transmembrane protein complex involved in converting light energy into 
electrochemical potential energy (Adachi et al., 2008). The X- ray crystal structures of PSII from red 
alga Cyanidium caldarium (Ago et  al., 2016), cyanobacterium Thermosynechococcus elongatus 
(Nakajima et al., 2018), and the cryo- EM structure of PSII from green alga Chlamydomonas reihardtii 
(Sheng et al., 2019), the marine diatom Chaetoceros gracilis (Pi et al., 2019), and the higher plants 
Arabidopsis thaliana (van Bezouwen et al., 2017), Spinacia oleracea (Wei et al., 2016), and Pisum 
sativum (Su et al., 2017) have revealed the structural basis of energy transfer, electron transfer, and 
photoprotection within the photosystem. The main subunits of PSII include the reaction center D1, 
D2 protein, and chlorophyll- a binding proteins, CP43 and CP47. Both CP43 and CP47 subunits have 
been reported to mediate the energy transfer from PBS to the reaction center (Ueno et al., 2017).

The structural mechanism of energy transfer from PBS to PSII has been studied for many years. 
The organization of PBS and PSII on the thylakoid membrane has been studied using ultrathin 
section (Gantt and Conti, 1965; Wanner and Kost, 1980), freeze- fracture analysis (Lange et al., 
1990), negative staining (Arteni et al., 2008; Chang et al., 2015; Folea et al., 2008; Hellmich 
et al., 2014), atomic force microscopy (Liu et al., 2008), and cryo- electron tomography (cryo- ET) 
(Levitan et al., 2019; Rast et al., 2019; Wietrzynski et al., 2020). PBSs in red algae are tightly 
arranged in ordered rows on the thylakoid in most regions and randomly packed in some areas 
(Arteni et al., 2008; Lange et al., 1990; Liu et al., 2008). PBS arrangement in the two regions 
is dynamically regulated, varying with the cell’s age, the supply of nutrients, and available light 
(Arteni et al., 2008; Liu et al., 2008; Sagert and Schubert, 1995). However, the stoichiometric 
ratio of PBS/PSII in red algae and cyanobacteria remains controversial, ranging from 1:1 to 1:4 
(Arteni et al., 2008; Cunningham et al., 1989; Ohki et al., 1987; Takahashi et al., 2009), which 
likely reflects different growth conditions. Different approaches showed that PBS connects with PSII 
through ApcD, αLCM (the α domain of LCM), and ApcF (Zhao et al., 1992). In particular, ApcD and 
αLCM are well known as terminal emitters for mediating the transfer of energy from PBS to PSII. The 
negative staining structure of the purified PBS–PSII supercomplex in the Anabaena sp. strain PCC 
7120 proposed that αLCM and ApcF of PBS play important roles in mediating PBS interaction with 
PSII (Chang et al., 2015). The cross- linking structure of the purified PBS–PSII–PSI megacomplex in 
the cyanobacteria Synechocystis PCC 6803 identified five interlinks associated with αLCM and PSII 
(Liu et al., 2013). However, the organization and precise connection between PBS and PSII in the 
cellular environment are not fully understood.

In situ cryo- ET in combination with cryo- focused ion beam (cryo- FIB) milling is currently a powerful 
approach for directly dissecting macromolecular structures in the unperturbed cellular environment at 
molecular resolution (Wagner et al., 2020; Watanabe et al., 2020). The obtained structure is comple-
mentary to the structure of the isolated complex and reveals elements of the in vivo organization that 
can never be obtained through structures of the isolated complex, no matter how high the resolution. 
Here, by using this approach, we identified the native PBS–PSII supercomplex and the double PBS–
PSII supercomplex containing two adjacent PBS–PSII supercomplexes at resolutions of 14.3 Å and 
15.6 Å, respectively. These results illustrate the coupling pattern of PBS and PSII and the arrangement 
of PBS–PSII supercomplexes on the ordered distribution region of the thylakoid membrane, which 
cannot be determined with other methods. The newly found structural information provides a better 
understanding of energy transfer from PBS to PSII.

https://doi.org/10.7554/eLife.69635
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Results
Visualization of PBS and PSII on the thylakoid membrane
The red alga, P. purpureum, was cultured under low- light conditions to mimic its natural habitat 
(Cunningham et al., 1989) and to increase the population of regularly distributed PBS–PSII super-
complexes (Liu et al., 2008). Cells were harvested in the exponential phase of growth and were imme-
diately vitrified on cryo- EM grids to minimize environmental affection (Kaňa et al., 2014). Cryo- FIB 
milling was then used to prepare thin lamellae with ~150 nm thickness for cryo- ET data collection. 
We first imaged the whole cells. The tomogram slice shows that most PBS–PSII supercomplexes 
are packed in an orderly fashion on the thylakoid membranes (Figure 1—figure supplement 1A). 
Subsequently, 51 cryo- ET tilt series were collected at higher magnification at the ordered distribution 
regions for three- dimensional (3D) reconstruction and further sub- tomogram averaging.

Consistent with the conventional transmission electron microscope ultrastructures of other red 
algae (Gantt and Conti, 1965; Gantt et al., 1968; Tsekos et al., 1996; Wanner and Kost, 1980), 
PBSs are sandwiched between parallel thylakoid membranes. In the cross- section view, adjacent PBSs 
were attached to the upper and lower thylakoid membrane in opposite directions (Figure 1A,B,D). 
In the two orthogonal views, opposite PBSs are stacked into linear rows respectively (Figure 1C,E, 
Figure 1—figure supplement 1B,C, Video 1, Video 2, Video 3). These PBS rows are arranged in 
parallel, forming a large two- dimensional pattern covering the thylakoid membrane. In the cross- 
section view, densities are evident at the bottom of PBSs, which are embedded within the thylakoid 
membrane. Protrusions are visible on the luminal side (Figure 1A). The features of these densities are 
consistent with the location and morphology of PSIIs (Ago et al., 2016; Chang et al., 2015; Lange 
et al., 1990). From this, we can infer that these represent PSIIs. Due to the small size of the extrinsic 
domain of PSI, we could not distinguish convincing PSI densities in our tomograms.

To verify the PSII densities, we performed sub- tomogram averaging of two adjacent PBS particles 
on the same linear array (indicated in the red boxes of Figure  1—figure supplement 1B,C) and 
generated a structure at a resolution of 15.6 Å (Figure 2A, Figure 2—figure supplement 1A,B). The 
recently determined 2.82 Å single- particle PBS (PDB code 6 KGX) (Ma et al., 2020) was well- fitted 
into our sub- tomogram map (Supplementary file 1), except for the individual extra PE β subunit 
between the Rod e and Rod d' (Figure 2—figure supplement 2A,B). The map’s slice view shows 
a similar PSII dimer array structure resembling that of the red algae Porphyridium cruentum (Lange 
et al., 1990; Figure 2—figure supplement 3A,B).

To find the most likely PSII atomic resolution structure to fit the subtomogram map, we analyzed all 
of the reported X- ray models in a phylogenetic analysis (Figure 2—figure supplement 4B). PSII from 
the red algae C. caldarium (PDB code 4YUU) (Ago et al., 2016) is, evolutionarily, most similar to P. 
purpureum, and almost all the subunits show high homogeneity (ranging from 35% to 100%) with that 
of P. purpureum (Figure 2—figure supplement 4A,C). We then docked the X- ray model of PSII from 
C. caldarium into the sub- tomogram map, which shows a high cross- correlation coefficient (all above 
80%) between the model and sub- tomogram map (Supplementary file 1). Thus, we further confirmed 
these densities as PSIIs.

The overall structure of the PBS–PSII supercomplex
Our sub- tomogram map also reveals a different stoichiometry of PBS and PSII from previous reports 
(Arteni et al., 2008; Cunningham et al., 1989; Ohki et al., 1987; Takahashi et al., 2009). In the 
sub- tomogram map, two PBSs (labeled as PBS1 and PBS2) interact with a linear array of PSII dimers 
(labeled as A, B, C, A', B', C', C", Figure 2A (left panel), Figure 2—figure supplement 3B). Consid-
ering the map contains two PBSs, we named the structure double PBS–PSII supercomplex. After 
mapping this sub- tomogram map back into the tomogram, we observed long linear arrays of the 
PBS–PSII supercomplexes on the thylakoid membrane (Figure 1B–E). In this array, the PBS/PSII ratio 
is 1:6, that is, one PBS with six associated monomeric PSIIs periodically repeated along with the linear 
array. In the double PBS–PSII map, each PBS is directly anchored to a pair of PSIIs dimers, i.e., PBS1 
on the A–B pair and PBS2 on the A’–B’ pair (Figure 2A, right panel). The C' dimer connects the A–B 
pair to the A’–B’ pair, while the two PSIIs in the C' dimer respectively interact with the lateral disc- like 
densities on both sides of PBS, which have features of PBS hexamer (discussed later), and thus indi-
rectly attach to PBS1 and PBS2 (Figure 2A). The slice view shown in Figure 2—figure supplement 
3B indicates that the PSII dimers are arranged repeatedly in parallel. Thus, C and C’’ should also be 

https://doi.org/10.7554/eLife.69635
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Figure 1. Organization of PBS–PSII supercomplexes on the thylakoid membrane. (A) Representative tomogram slice in cross- section view. The box 
represents magnified details of PBS, a PSII dimer, the thylakoid membrane, and the lumen. (B) Spatial mapping of the PBS–PSII supercomplex (purple) 
and 3D segmentation of the thylakoid membrane (blue). (C–E) The magnified three presents perpendicular views of the organization of PBS–PSII in the 
thylakoid membrane boxed in (B). Thylakoid membrane, light blue; PBS, gray; Lateral hexamer, green; A1–A2 pair, purple; B1–B2 pair, cyan; C1–C2 pair, 
yellow; connector 1, coral; connector 2, khaki; connector 3, red.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Tomographic slice of the whole cell and the PBS–PSII supercomplexes on the thylakoid membrane.

https://doi.org/10.7554/eLife.69635
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the PSII dimer, although their densities are weak. 
The structure shows PBS1 is associated with PSII 
monomer A1, A2, B1, B2, C1, and C’2, and PBS2 connect with A’1, A’2, B’1, B’2, C’1, C’’2. Therefore, 
each PBS is associated with six monomeric PSIIs.

To study the geometry of the PBS–PSII supercomplex, we manually picked 34,380 individual PBSs 
with the interacting PSIIs particles. These were aligned and averaged into a structure at a higher reso-
lution, 14.3 Å (Figure 2B, Figure 2—figure supplement 1A,C). In the PBS–PSII map, the PSII dimers 
(PSII dimers A and B) are clearly shown. With a large threshold, the other two PSIIs corresponding to 
PSII dimer C in double PBS–PSII are visualized in the map and tomogram slice view (indicated with red 
stars in Figure 2—figure supplement 3C,D). The distance between the PSII dimers A and B is approx-
imately 12.4 nm, and the face planes of the two PSII dimers make a lateral angle of approximately 14° 
with the plane of the PBS central core. The centers of the two PSII double dimers shift approximately 

3  nm along the plane of the PBS central core, 
which makes the twofold symmetry axes of PBS 
and 6 PSIIs coincide (Figure  2—figure supple-
ment 5).

The improved PBS–PSII structure enables us 
to confirm that PSII dimers A and B bind with 
each other through a rigid density. By analyzing 
the fitting results, we suppose the density is most 
likely contributed by the two adjacent PsbO 
subunits: one is from the PSII monomer 1 of the 
PSII dimer A and the other from the PSII monomer 
4 of the PSII dimer B (Figure  2, Figure  2—
figure supplement 2C–E). However, we are 
limited by the current resolution and could not 
exclude that other factors may contribute to the 
density. The PsbO protein is found in PSII of all 
oxygenic organisms ranging from cyanobacteria 
and red algae to higher plants and serves as the 
manganese- stabilizing protein directly involved 
in the stability of photosynthetic water- oxidizing 
complex (Ifuku and Noguchi, 2016; Popelkova 

Video 1. Sequential slices back and forth through the 
representative tomogram in cross- section view. Related 
to Figure 1. Scale bar, 100 nm.

https://elifesciences.org/articles/69635/figures#video1

Video 2. Sequential slices back and forth through the 
representative tomogram slice in cross- section view. 
Related to Figure 1—figure supplement 1B. The color 
boxes indicate the two types of the tight perforations. 
Scale bar, 100 nm.

https://elifesciences.org/articles/69635/figures#video2

Video 3. Sequential slices back and forth through the 
representative tomogram slice in cross- section view. 
Related to Figure 1—figure supplement 1C. Scale bar, 
100 nm.

https://elifesciences.org/articles/69635/figures#video3

https://doi.org/10.7554/eLife.69635
https://elifesciences.org/articles/69635/figures#video1
https://elifesciences.org/articles/69635/figures#video2
https://elifesciences.org/articles/69635/figures#video3
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Figure 2. Overview of the PBS–PSII and double PBS–PSII structures. (A) The density map of double PBS–PSII structures at a resolution of 15.6 Å, 
presented in two perpendicular views. The center- to- center distance of two adjacent PBSs is approximately 345 Å. Two random circles indicated by 
black or red dashed lines mark the six PSII monomers binding with each of the two PBSs. PBS1 is associated with PSII monomer A1, A2. B1, B2, C1, and 
C'2. PBS2 connects with A'1, A'2, B'1, B'2, C'2, and C’’1. The surface threshold is 0.09. (B) The density map of the PBS–PSII supercomplex at a resolution 

Figure 2 continued on next page

https://doi.org/10.7554/eLife.69635
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and Yocum, 2011). Our results suggest that PsbO could play an additional role in stabilizing adjacent 
PSII dimers in PSII dimer rows.

To analyze the lateral densities on both sides of PBS connecting PBS to PSII dimer C, we further 
improved the resolution of the PBS–PSII supercomplex to 13.2  Å after post- processing from the 
14.3 Å resolution map (Figure 2—figure supplement 1D). The slice view of the PBS–PSII map shows 
that the densities are round discs with solid densities in the center (Figure 2—figure supplement 
3E–G). These features are reminiscent of the structure of the extra hexamer found in the single- 
particle cryo- EM structure of P. purpureum PBS. Moreover, the lateral densities are of the same size 
and shape as the extra hexamer. As all eight extra hexamers in P. purpureum PBS are PE hexamers, 
we hypothesize that the lateral density could be contributed by a PE hexamer, which is referred to 
as the lateral hexamer (Figure 2B). Further analysis indicated that the lateral hexamer connects with 
the bottom hexamer of Rod a and the second hexamer of Rod e, which are the PC and PE hexamers, 
respectively (Figure 2—figure supplement 3E).

Interaction pattern between PBS and PSII
In the PBS–PSII map, extensive interfaces between PBS core and PSII are observed. To better analyze 
the potential interactions, we docked the atomic models of PBS and PSII into the map and extracted 
the densities of PBS core cylinders A, A' and PSII dimers A, B (Figure 3A,B; Figure 3—figure supple-
ment 1). ApcD and αLCM are two well- documented terminal emitter subunits of PBS (Zhao et  al., 
1992; Zlenko et al., 2019). We observed the interfaces between αLCM, ApcD, and PSII dimers A, B 
from the surface clip views (Figure 3, Video 4).

As was shown in the proximal and middle clip views, there is a wide interface between αLCM and 
CP43 of PSII dimer A1 (CP43A1), as well as a relatively small interface between αLCM and CP47 of PSII 
dimer B1 (CP47B1) (Figure 3C–E). These observations suggested the interactions between αLCM with 
CP43 and CP47, consistent with the energy transfer from PBS to CP43 and CP47 detected in red algae 
and cyanobacteria (Ueno et al., 2017). The different sizes of the interface may provide a structural 
view that energy transfer from PBS to CP43 is the main pathway in red alga (Ueno et al., 2017). The 
other terminal emitter subunit ApcD was also involved in energy transfer from PBS to PSII (Ashby and 
Mullineaux, 1999; Calzadilla et al., 2019; Ley and Butler, 1977b). The middle and distal clip views 
showed an interaction interface between ApcD and CP43A1 (Figure 3E,F), which may mediate the 
energy transfer from ApcD to PSII.

Supplementary interactions intermediated by three connector proteins
After docking the atomic models of PBS, PSII dimer, and two lateral hexamers into the density map of 
PBS–PSII supercomplex, we still observed three extra densities that are not occupied by any model. 
Two of them are associated with the PBS and PSII (Figure 4—figure supplement 1A), and the third 
one is associated with the lateral hexamer and PSII (Figure 4—figure supplement 1B). Since we could 
not identify the proteins corresponding to these densities, we temporarily deemed them ‘connec-
tors’ (connectors 1–3; Figure 4, Figure 4—figure supplement 2A–E). Nevertheless, their positions 

of 14.3 Å fitted with the single- particle model of PBS (EMDB code EMD- 9976, PDB code 6 KGX) and X- ray structure of PSII (PDB code 4YUU), presented 
in two perpendicular views. The lateral hexamer was fitted with the single- particle model of the Rod a distal PE hexamer. The surface threshold is 0.059. 
(C) The magnified image shows that the two PsbO subunits bind with each other at the interface of the adjacent PSII dimers (Inset). A map of PSII dimers 
A and B, segmented from (B) with the same surface threshold level. The arrow indicates the binding site.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Resolution estimation and the ResMap analysis of the density maps for the double PBS–PSII supercomplex and the PBS–PSII 
supercomplex.

Figure supplement 2. Sub- tomogram structural analysis of the PBS–PSII supercomplex.

Figure supplement 3. Sub- tomogram map analysis of the double PBS–PSII supercomplex, the PBS–PSII supercomplex, and the PBS–PSII supercomplex 
with post- processing.

Figure supplement 4. PSII sequence analysis of Porphyridium purpureum and Cyanidium caldarium.

Figure supplement 5. Geometry of PBS and PSIIs.

Figure 2 continued

https://doi.org/10.7554/eLife.69635
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in the map suggest that these proteins likely participate in the formation of the PBS–PSII super-
complex (Figure 4) as well as the assembling of 
the PBS–PSII array on the thylakoid membrane 
(Figure 1C–E).

We segmented out the three connectors from 
the PBS–PSII supercomplex map and find that 
they are all rod- like structures, but different in size 
(Figure  4—figure supplement 2). The surface 
clip views of connector 1 show that connector 1 
contacts the β2 subunit of the PBS core layer a3 
and the CP47 of PSII monomer B2 (CP47B2), as 
well as D1B2 and D2B2 (Figure 4B,C). Connector 
2 is smaller than connector 1 (Figure  4D,E, 
Figure  4—figure supplement 2A–C). One side 
of connector 2 interacts with the basal hexamer 
of Rod a, and the other side with D1B1, D2B1, 
and CP47B1 in the neighboring PSII monomer B1 

Figure 3. The connections between PBS and PSIIs. (A, B) A segmentation map of two basal cylinders of the PBS 
core (labeled as a and a', respectively) and PSII dimers A and B (each monomer is labeled as A1, A2, B1, and B2, 
respectively). Each basal cylinder consists of three APC trimers, a1, a2, and a3. This map was segmented from the 
PBS–PSII supercomplex at a surface threshold level of 0.065. (C–F) Surface clip views of the segmented PBS–PSII 
supercomplex show the details of the interaction between the αLCM, ApcD, and CP43, CP47. The clip planes were 
indicated in (A). The surface threshold was 0.065. CP43A1, CP43 of PSII dimer A1; CP47B1, CP47 of PSII dimer B1.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Map extraction model of the PBS–PSII supercomplex.

Video 4. Clip views of the segmentation map of two 
basal cylinders of the PBS. Related to Figure 3.

https://elifesciences.org/articles/69635/figures#video4

https://doi.org/10.7554/eLife.69635
https://elifesciences.org/articles/69635/figures#video4
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(Figure 4D,E). Thus, both connector 1 and connector 2 connect with PBS and PSII, suggesting that 
they may consolidate the anchor of PBS on PSII dimer.

Different from connectors 1 and 2, connector 3 mediates a connection between the lateral hexamer 
and the bridging PSII dimer C. The density map of connector 3 shows that connector 3 could be 
divided into one small part and one big part (Figure 4—figure supplement 2D,E). The small part 
is buried in the lateral hexamer’s central cavity, and the big part extends out to connect with PSII. 
This structural feature is very similar with the structure of some rod linker proteins, such as LR6 of P. 
purpureum PBS, with the N- terminal rigid domain occupying the central cavity of a hexamer and the 
C- terminal region extending out, suggesting that connector 3 might be the linker protein of the lateral 
hexamer. The structure indicates that the lateral hexamer together with connector 3 stabilizes PBS’s 
connection with PSII in the interconnected array of the PBS–PSII supercomplex.

Figure 4. Three connector proteins in the PBS–PSII supercomplex. (A) Overall structure of the PBS–PSII 
supercomplex (surface threshold of 0.065), highlighting the PBS core, Rod a of PBS, connector 1, and connector 
2 between PBS and PSII. (B, C) The magnified clip views of connector 1 show that connector 1 interacts with the 
β2 subunit of the a3 trimer layer and the CP47, D1, and D2 subunits of PSII monomer B2 (labeled with CP47B2, 
D1B2, and D2B2, respectively). (D, E) The magnified clip views of connector 2 show that connector 2 mediates the 
connections between the bottom hexamer of Rod a and D1, D2, and CP47 of PSII monomer B1 (labeled with D1B1, 
D2B1, and CP47B1, respectively). (F) The overall structure of double PBS–PSII supercomplex (surface threshold = 
0.09) highlights the linkage of connector 3 between PBS’s lateral hexamer and PSII’s bridging dimer C shown in 
Figure 2A. (G, H) The density of connector 3 and its putative connections with PBS’s lateral hexamer and PSII from 
two perpendicular views. According to the slice view of the PBS–PSII supercomplex, some densities of connector 3 
are inserted into the central cavity of the lateral hexamer (Figure 4—figure supplement 2E); this cavity density is 
not colored here.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Extra density analysis of the PBS–PSII supercomplex and the double PBS–PSII 
supercomplex.

Figure supplement 2. Structures of connectors 1, 2, and 3.

https://doi.org/10.7554/eLife.69635
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Discussion
Organization of PBS and PSIIs
PBS is classified into different structural types, including hemidiscoidal (Chang et al., 2015), hemiel-
lipsoidal (Arteni et al., 2008), block type (Zhang et al., 2017), bundle type (Guglielmi et al., 1981) 
and rod type (Chen et al., 2009). These results in diverse organizational structures between PBS and 
PSII. Hemidiscoidal PBSs of the Synechocystis strain PCC 6803 and the Anabana sp. strain PCC 7120 
are associated with one PSII dimer (Chang et al., 2015; Rast et al., 2019). The rod- like AmPBS is 
composed of four hexamers and is adjacent to one PSII dimer (Chen et al., 2009; Niedzwiedzki et al., 
2019). The hemiellipsoidal PBS connects with monomeric PSII at a ratio from 1:1 to 1:4 (Arteni et al., 
2008; Cunningham et al., 1989; Lange et al., 1990; Ohki et al., 1987; Takahashi et al., 2009). Using 
in situ cryo- ET, our work reports the native PBS–PSII supercomplex structure of red algae. The struc-
ture reveals a different ratio (1:6) of hemiellipsoidal PBS and PSII on the native thylakoid membrane 
(Figure 5A,B). Each PBS directly interacts with two PSII dimers and indirectly interacts with two PSII 
monomers from two peripheral bridging PSII dimers, forming the interconnected array of the PBS–
PSII supercomplex with the support of three unassigned connectors. With 14° rotation and 30 Å shift 
of PSII dimer pair relative to PBS core, the terminal emitters, ApcD and αLCM, in the two symmetric 
a2a3 and a2'a3' hexamers of the core, connect with CP43 of PSII monomers A1 and B2, and CP47 in 
PSII monomers B1 and A2 (Figure 5). A similar geometry of the PBS–PSII supercomplex was reported 
in cyanobacteria and red algae possessing hemidiscoidal PBS, suggesting that hemidiscoidal PBSs use 
the same strategy for energy transfer from PBS to PSII (Arteni et al., 2009; Arteni et al., 2008). This 

Figure 5. Schematic model of the PBS–PSII supercomplex. (A) The front view of the schematic model of the PBS–
PSII supercomplex. For PBS, only core and Rod a are represented for clarity. In the PBS core, a and a' represent the 
two basal cylinders. Each cylinder consists of three APC trimers. b represents the top cylinder containing two APC 
trimers. (B) The side view of (A). Each PBS interacts with six PSII monomers: the two basal cylinders a and a' of the 
PBS core directly connect with PSII monomers A1, A2, B1, and B2. The connections are consolidated by connector 
1 and connector 2; the lateral hexamers indirectly interact with the PSII monomers C1 and C'2 in the two peripheral 
PSII bridging dimers C and C' through connector 3. Two PsbO subunits from the adjacent PSII dimers bind with 
each other and may promote stabilization of the PBS–PSII supercomplex. The PBS–PSII supercomplexes regularly 
stack face- to- face into the interconnected arrays, forming the organized network on the thylakoid membrane. (C, 
D) The detailed connections between PBS and PSII. αLCM interacts with CP43 and CP47 of PSII monomer, which 
may provide a way to funnel light energy to the reaction center. ApcD connects with CP43, suggesting another 
energy transfer way. (D) Highlights the connections of αLCM - CP43A1, αLCM–CP47B1, and ApcD–CP43A1. CP43A1, CP43 
of PSII dimer A1; CP47B1, CP47 of PSII dimer B1.

https://doi.org/10.7554/eLife.69635
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structure also enables the extra lateral hexamers in P. purpureum to associate with PSII monomers C1 
and C'2 through connector 3 (Figure 5A,B).

In this work, we focused on the PBS–PSII structures in the ordered distribution regions, where 
both PBS and PSII are neatly arranged according to a strict stoichiometry of 1:6. Previous research 
conducting fraction freezing analysis (Lange et al., 1990) has found that the PBS–PSII complexes on 
random distribution regions could have lower stoichiometry (between 1:1 and 1:4), which are repre-
sented as an PSII monomer, dimer, trimer, or double dimer. These observations show the possible 
diversity of PBS–PSII organization on the thylakoids.

The connection between PBS and PSIIs
Extensive studies have shown that αLCM and ApcD are the terminal emitters of the energy coupling 
between PBS and PSII (Zhao et al., 1992; Zlenko et al., 2019). In our structures, we detailed the 
connections of αLCM and ApcD with PSII, which contribute to the energy flows from PBS to PSII 
(Figure 3). ApcF was also reported to be involved in the energy transfer in cyanobacteria (Calzadilla 
et al., 2019; Chang et al., 2015). However, we could not find a solid connection between ApcF and 
PSII. Thus, it is very likely that ApcF only plays an auxiliary role for direct energy transfer to reaction 
centers in red algae.

Additionally, these in situ structures reveal that three extra connectors are associated with PSII by 
the PBS core, Rod a, and the lateral hexamer, respectively. While the current resolution limited addi-
tional detailed analysis of the connectors, we attempted to estimate the molecular weights of these 
connectors at around 30–80 kDa according to the size and shape (Figure 4—figure supplement 2).

We found a class of PSII dimer C (PSII dimer C, C', and C" in Figure 2A) that does not directly bind 
to PBS but is closer to the lateral hexamer. Since PSII dimer C can only absorb energy from the inde-
pendent lateral hexamer instead of the whole PBS through connector 3, they could have fewer bilins 
feeding into them than the other PSIIs and could become saturated with light at higher intensities. If 

Figure 6. The thylakoid membrane builds perforations and stairs by branching and fusing with the neighboring membrane. (A) Typical tomogram slice. 
The white box indicates the tomogram region shown in Figure 1A; red box represents the membrane branching and fusing area. Scale bar, 100 nm. (B) 
Sequential slices back and forth through the representative tomogram in the red box area of (A), showing the membrane branches off one membrane 
and fuse with the neighboring membrane. The black arrow shows the fusion membrane; Red arrow shows the branching event. Scale bars, 50 nm. (C) 3D 
segmentation model of the red box area of (A) in the absence of the PBS–PSII supercomplexes to show the 3D morphology of the thylakoid. The two- 
line arrow indicates the membrane stairs. The numbers label different layers of membrane. (D) The clip view of the 3D segmentation model. The clip 
position is showed in the right panel of (C). The arrows show the membrane stairs. (E) The membrane top view shows the perforation on the top of the 
membrane stair. Figure accompanied by Video 5.

https://doi.org/10.7554/eLife.69635
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the PSII dimer C is more sensitive to light intensity 
than the others, it could be involved in the tran-
sition between the ordered distribution region 
and the random distribution region. The transient 
absorption spectroscopic measurements and 
time- resolved fluorescence spectroscopy at low 
temperatures (77k  or 4 k) could help confirm this 
hypothesis.

The energy transfer from PBS to PSII could 
follow multiple pathways (Figure  5). The two 
terminal emitters, αLCM and ApcD, funnel light 
energy to PSII by distinct structural connec-
tions. The chromophore of αLCM mediates energy 
transfer via interaction with CP43 and CP47. In 
contrast, the chromophore of ApcD is mediated 
by interactions with CP43. Since connector 2 
connects with both the basal PC hexamer of Rod 
a and CP47 of PSII, we speculate that alternative 
routes of energy transfer bypassing the PBS core 
to PSII could exist: connector 2 and connector 
3 could mediate the energy flow from the basal 
hexamer of Rod a to PSII and from lateral hexamer 
to PSII, respectively. Ueno et al. have reported 

light energy flows from CP43 to CP47 by energy transfer between the neighboring PSII monomers 
(Ueno et al., 2017). Our in situ structure reveals that αLCM transfers energy to CP43 as well as the 
neighboring CP47, may suggesting that αLCM provides the modulation activity of energy flow between 
CP43 and the neighboring CP47. However, it is currently unclear whether the connector proteins play 
a specific role in the energy transfer between PBS and PSII, and this topic requires further study.

The perforations and stairs of the thylakoids
In several tomograms, we observed the thylakoid membrane branching and fusion regions (Figure 6, 
Video  5). Within the limited thickness of the tomogram, we observed a small area of thylakoid 
membranes present branching and fusion events (Figure 6A). The two parallel thylakoid membranes 
are split into two branches. One branch approaches and fuses with another branch from the neigh-
boring thylakoid membrane (Figure 6A,B). The 3D segmentation model shows that the branching 
and fusing membranes built ‘stairs’ between two neighboring thylakoid membranes (Figure 6C,D). 
On the top of the ‘stairs’ is the large perforation on the thylakoids (Figure 6E). These structures are 
very similar to the thylakoid membrane architecture in the cyanobacteria Prochlorococcus (Ting et al., 
2007), Synechococcus sp. PCC 7942 and Microcoleus sp. reported by Nevo et al., 2007. They also 
observed perforations as well as branching and fusion of the membranes, which resulted in a highly 
connected network to allow water- soluble and lipid- soluble molecules to diffuse through the entire 
membrane network (Nevo et al., 2007). Thus, it is reasonable to deduce that the perforations and 
stairs of the thylakoid membrane in the red alga might play the same role, although it needs to be 
further investigated.

Materials and methods

Video 5. Sequential slices back and forth through 
the representative tomogram slice to show thylakoid 
membrane branching and fusing areas. Related to 
Figure 6A–E. Scale bar, 20 nm.

https://elifesciences.org/articles/69635/figures#video5
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Key resources table

Reagent type (species) or 
resource Designation Source or reference Identifiers

Additional 
information

Strain, strain background 
(Porphyridium purpureum)

Porphyridium purpureum 
UTEX 2757 https:// utex. org/ products/ utex- lb- 2757

UTEX Culture Collection 
of Algae 2,757   

Gene (Porphyridium 
purpureum) uniprot https://www. uniprot. org/ uniprot/ UP000324585 Proteome

https://doi.org/10.7554/eLife.69635
https://elifesciences.org/articles/69635/figures#video5
https://utex.org/products/utex-lb-2757
https://www.uniprot.org/uniprot/
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Reagent type (species) or 
resource Designation Source or reference Identifiers

Additional 
information

Software, algorithm SerialEM https:// bio3d. colorado. edu/ SerialEM/ Version 3.1.8 Data collection

Software, algorithm Chimera https://www. cgl. ucsf. edu/ chimera/ Version 10.15 Visualization

Software, algorithm Relion https:// www3. mrc- lmb. cam. ac. uk/ relion/ Version 2.1
Subtomogram 
averaging

Software, algorithm IMOD
https:// bio3d. colorado. edu/ imod/ index. 
html Version 4.9

Tomogram 
reconstruction

Software, algorithm TOMO3D

https:// sites. google. com/ site/ 3dem/ 
imageprocessing/ tomo3d

 
Version 2.0

Tomogram 
reconstruction

Software, algorithm I3 https://www. electrontomography. org/ Version 0.9.3 Subtomogram 
averaging

 Continued

Cell culture and cryo-EM sample preparation
Porphyridium purpureum (from UTEX Culture Collection of Algae, UTEX 2757) cell was cultured in 
Bold 1NV:Erdshreiber (1:1) half- seawater medium, bubbled with sterilizing filtered air at 22 °C, under 
a light–dark periodic ratio of 16  hr:8 hr, with a white light flux of about 37 μmol photons•m−2•s−1. Then 
red algal cells were harvested at about 1.5–3.0 months by centrifuge at 6000 g at room temperature 
for 10 min under dark, and the pellet was washed and re- suspended with fresh half- seawater culture 
medium under dark.

We used holy- carbon copper grids (Quantifoil R1.2/1.3, 200 mesh) for the cryo- EM sample prepa-
ration. Cryo- EM grids were prepared with Leica EM GP (Leica Company) at 20 °C and 100 % humidity. 
To minimize the environmental affection (Kaňa et al., 2014), we first prepared the plunge freezing 
equipment. Then red algal cells are harvested and immediately vitrified in the Leica EM GP chamber 
without light. A drop of 4 μL culture medium was added to the glow- discharged grids. After being 
blotted, the grids were plunged into liquid ethane and stored in liquid nitrogen. We prepared four to 
six grids for each session. Each grid took less than 1 min. Moreover, we covered a layer of foil paper 
on the cell volume to protect them from the light.

Cryo-FIB lamella preparation
With the modified workflow, as Schaffer et al., 2017 reported, cryo- EM grid was first transferred to 
Helios NanoLab G3 (FEI) system. A layer of Au was sputtered to the surface of cryo- EM sample to 
increase the conductivity. A layer of protective organometallic platinum was then deposited on the 
top of the sample with the GIS system. The working distance was 10 mm, and the GIS temperature 
was set to 46 °C. Ga2+ ion beam was used to milling the cells at a 5° stage tilt. The beam current for 
rough milling was 0.79 nA and gradually decreased to 40 pA. The lamella was finally polished to about 
150 nm in thickness with the beam current of 24 pA.

Cryo-ET data collection
The cryo- ET data were collected with Titan Kiros Microscopy (Thermo Fischer Scientific) operated at a 
voltage of 300 kV and equipped with a Cs corrector, GIF quantum energy filter, and K2 Summit direct 
electron detector (Gatan Inc). All tilt series were recorded from 60° to –60° with SerialEM software 
(Mastronarde, 2005). The recording state was at a nominal magnification of 33,000× in counting 
mode with a pixel size of 3.421 Å•pixel–1. Each stack was exposed for 2.4 s with an exposure time of 
0.3 s per frame and recorded as a movie of 8 frames, resulting in the total dose rate of approximately 
1.927 electrons per Å2 for each stack. The tomographic tilt series were recorded from −50° to +66° 
with an increment of 2° using the unidirectional strategy. On average, 6 frames were collected for 
each image resulting in a total dose between 100 e−/Å2 and 110 e−/Å2 per tilt series. GIF was set to a 
slit width of 20 eV. The defocus ranged from –2.8 μm to –5.5 μm. MotionCor2 program was used to 
correct the beam- induced motion (Zheng et al., 2017).

https://doi.org/10.7554/eLife.69635
https://bio3d.colorado.edu/SerialEM/
https://www.cgl.ucsf.edu/chimera/
https://www3.mrc-lmb.cam.ac.uk/relion/
https://bio3d.colorado.edu/imod/index.html
https://bio3d.colorado.edu/imod/index.html
https://sites.google.com/site/3dem/imageprocessing/tomo3d
https://sites.google.com/site/3dem/imageprocessing/tomo3d
https://www.electrontomography.org/
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Cryo-ET reconstruction and sub-tomograms averaging
Fifty- one tilt series were aligned with the patch- tracking method in IMOD software (Kremer et al., 
1996). The tomograms were reconstructed with TOMO3D scripts (Agulleiro and Fernandez, 2015). 
The tomograms reconstructed with simultaneous iterative reconstruction technique were used to 
manually particle- picking. To get high- resolution structures, we performed sub- tomogram averaging. 
Five thousand and thirty- seven sub- tomograms were firstly picked and aligned with i3 software to 
generate an initial model (Winkler et  al., 2009). Tomograms reconstructed with weighted- back 
projection were used for further sub- tomogram averaging analysis. Then 75,310 manually picked sub- 
tomograms were extracted with RELION software (Bharat et al., 2015). CTF correction was estimated 
with CTFFIND4 (Rohou and Grigorieff, 2015) implemented in RELION. Dose damage compensation 
was performed with the script provided in the RELION tutorial. The first round of auto- refinement 
was performed with the binning four sub- tomograms. For the reconstruction of the double PBS–PSII 
supercomplex, the coordinates of first- round auto- refinement were shifted and carried on another 
round of 3D classification with global search. The good classes were selected and performed auto- 
refinement with the binning two sub- tomograms. After refinement, a resolution map at 15.6 Å was 
achieved. To improve the resolution, we reconstructed the PBS–PSII supercomplex with the refined 
coordinates and Euler angles obtained in the first round of rough refinement. These sub- tomograms 
were performed 3D classification without alignment. The good classes were chosen to do another 
round of auto- refinement with local search at 1.8 degrees. Finally, the sub- tomograms of the PBS–PSII 
supercomplex without binning were refined to 14.3 Å and postprocessed to 13.2 Å. During the auto- 
refinement, the datasets were automatically divided into two halves by RELION. The resolution was 
estimated using the gold- standard Fourier shell correlation with 0.143 criteria by ResMap (Scheres 
and Chen, 2012).

Atomic model fitting and analysis
To analyze the double PBS–PSII and PBS–PSII sub- tomogram averaging maps, the atomic model of 
PBS built with single particle analysis and crystal model of PSII (PDB code 4YUU) were docked into the 
sub- tomogram averaging maps with ‘fit in map’ command in UCSF Chimera (Pettersen et al., 2004). 
The cross- correlation coefficient results are listed in Supplementary file 1. The geometry of the PBS–
PSII supercomplex was measured with the ‘distance’ and ‘angles’ command in UCSF Chimera. To 
analyze the arrangement of the PBS–PSII supercomplex in the thylakoid membrane, the double PBS–
PSII and PBS–PSII sub- tomogram averaging maps were re- mapped back into the tomograms with the 
refined orientations and positions taking use of home- made scripts. The segmentation of the thyla-
koid membrane was performed with TomoSegMemTV (Martinez- Sanchez et al., 2014), Amira soft-
ware (FEI Visualization Sciences Group), and UCSF ChimeraX (Pettersen et al., 2021). Segmentation 
of the subunits of the double PBS–PSII and PBS–PSII supercomplex was conducted in UCSF Chimera 
with the ‘Segmentation panel’. The densities of the subunits were then extracted by subtracting other 
parts with the subtract function. Surface rendering was further colored with the color zone panel.
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The following dataset was generated:

Author(s) Year Dataset title Dataset URL Database and Identifier

Sui S- F, X M Li, M J Li, 
Ma JF

2021 Structure of the PBS- PSII 
supercomplex from red 
algae

https://www. ebi. ac. 
uk/ pdbe/ entry/ emdb/ 
EMD- 31241

Electron Microscopy Data 
Bank, EMD- 31241

Sui S- F, X M Li, M J Li, 
Ma JF

2021 Structure of the 
double phycobilisome- 
photosystem II 
supercomplex from red 
alga

https://www. ebi. ac. 
uk/ pdbe/ entry/ emdb/ 
EMD- 31242

Electron Microscopy Data 
Bank, EMD- 31242

Sui S- F, X M Li, M J Li, 
Ma JF

2021 Cryo- electron tomography 
of phycobilisome- 
photosystem II 
supercomplex on the 
thylakoid

https://www. ebi. ac. 
uk/ pdbe/ entry/ emdb/ 
EMD- 31243

Electron Microscopy Data 
Bank, EMD- 31243

Sui S- F, X M Li, M J Li, 
Ma JF

2021 Cryo- electron tomography 
of phycobilisome- 
photosystem II 
supercomplex on the 
thylakoid

https://www. ebi. ac. 
uk/ pdbe/ entry/ emdb/ 
EMD- 31244

Electron Microscopy Data 
Bank, EMD- 31244

Sui S- F, X M Li, M J Li, 
Ma JF

2021 Cryo- electron tomography 
of phycobilisome- 
photosystem II 
supercomplex on the 
thylakoid

https://www. ebi. ac. 
uk/ pdbe/ entry/ emdb/ 
EMD- 31245

Electron Microscopy Data 
Bank, EMD- 31245

The following previously published datasets were used:

Author(s) Year Dataset title Dataset URL Database and Identifier

Ma JF, You X, Sun 
S, Wang XX, Qin S, 
Sui S- F

2020 Structure of the 
phycobilisome from the 
red alga Porphyridium 
purpureum

https://www. rcsb. org/ 
structure/ 6KGX

RCSB Protein Data Bank, 
6KGX

Ago H, Adachi H, 
Umena Y, Tashiro T, 
Kawakami K, Kamiya 
N, Tian L, Han G, 
Kuang T, Liu Z, Wang 
F, Zou H, Enami I, 
Miyano M, Shen J- R

2016 Crystal structure of oxygen- 
evolving photosystem II 
from a red alga

https://www. rcsb. org/ 
structure/ 4YUU

RCSB Protein Data Bank, 
4YUU
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