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Abstract
Background: In this article, I propose a model-selection-free method to map multiple quantitative trait loci (QTL) in 
variance component model, which is useful in outbred populations. The new method can estimate the variance of 
zero-effect QTL infinitely to zero, but nearly unbiased for non-zero-effect QTL. It is analogous to Xu's Bayesian shrinkage 
estimation method, but his method is based on allelic substitution model, while the new method is based on the 
variance component models.

Results: Extensive simulation experiments were conducted to investigate the performance of the proposed method. 
The results showed that the proposed method was efficient in mapping multiple QTL simultaneously, and moreover it 
was more competitive than the reversible jump MCMC (RJMCMC) method and may even out-perform it.

Conclusions: The newly developed Bayesian shrinkage method is very efficient and powerful for mapping multiple 
QTL in outbred populations.

Background
There are two kinds of models which can be used to map
QTL in outbred populations, the allelic substitution
model [1-3] and the variance component model [4-7]. In
the allelic substitution model, the number of QTL alleles
is assumed to be known, and the QTL allelic substitution
is estimated by the given linkage phases of parents, which
can be inferred from genotypes of family members. The
least square [2] and maximum likelihood [1,3,8] of inter-
val mapping are two popular statistical approaches for
such models. Compared with the allelic substitute model,
the variance component model is more robust because it
can handle an arbitrary number of alleles with arbitrary
modes of gene actions[9]. Moreover, the linkage phase of
parents is unnecessary, which is nice since it is hard to
accurately infer, particularly when family size is small,
such as with human populations. Therefore, the variance
component model is usually used to map QTL in outbred
populations [4-7,9-12]. In the variance component
model, the identity-based-decent (IBD) matrix may be
different for each locus and can provide information to
localize the QTL. The least square method [10,11] and

the maximum likelihood method [4,13] are also two
important statistical methods for handling this model.

Because of the polygenic nature of quantitative traits,
multiple QTL mapping is a problem of model selection.
The least square method and the maximum likelihood
method can nicely handle single QTL model, but is diffi-
cult for them to handle multiple QTL model. Recently,
the Bayesian reversible jump MCMC (RJMCMC) method
has been used to map multiple QTL in the variance com-
ponent model [9,12]. However, it still has some disadvan-
tages. Because the model dimension is variable, it usually
has poor mixing character and is difficult to converge
[14-16]; moreover, it is also difficult to explore all the
model space, especially in genome-wide mapping where
thousands of possible locus are scanned [16].

Therefore, in this article I proposed a model-dimen-
sion-fixed method, in which the estimate of variance is
very precise for nonzero-effect QTL, and gradually con-
verges to zero for zero-effect QTL. Therefore, special
model selection is needless. It is similar to the recent
Bayesian shrinkage estimation methods [15,17-19], which
are based on the allelic substitution model, whereas my
method is based on the variance component model. The
efficiency of the new method is demonstrated by a series
of simulation experiments.
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Method
Genetic model
Suppose that one has a sample of n individuals from out-
bred populations. Assuming that QTL dominant effect
and polygenic dominant effect are absent. Then the linear
model can be expressed as

where, y is the n × 1 phenotypic vector; β is the k × 1
vector of covariate effects; k is the number of the covari-
ate; X is the n × k design matrix related to the covariate

effects; aj ~ N(0, Φj ) is the n × 1 vector of random
QTL effect, for j = 1,2, ..., q, where Θj is the IBD matrix
and can be inferred by the conditional expectation

approach [20]; and  is the QTL variance; e ~ N (0,

In ) is the vector of random error, where In, is the n × n

identity matrix and  is the residual variance; q is the
maximum QTL number, which is set beforehand; g ~

N(0, A ) is the n × 1 vector of random polygenic effect,

here A is the additive relationship matrix and  is the
polygenic additive variance, the polygenic term g may be
excluded from equation (1) in genome-wide mapping.
The variance component model can be expressed as

Similarly, the term of polygenic variance A  should
also be excluded from equation (2) in genome-wide map-
ping.

Prior specification and joint posterior distribution
Yi and Xu [9] assigned a uniform prior distribution for

QTL variance, , but in my method, the

Jeffreys' hyper prior  is assumed. The spe-
cial prior is the key in the new method and will be illus-
trated in detail later. The prior for polygenic variance and
residual variance is assumed to follow scaled inverted
chi-square distribution with degree of freedom ω and
scaled parameter s2 (see also [21] for detail); and the prior

for covariant effect and QTL position λj are assumed to
follow normal distribution, β ~ N (β0, V0), and uniform
distribution, respectively. The joint posterior distribution
is given in Appendix.

Updating QTL variance by random walk Metropolis-
Hastings algorithm
Because there is no close form for the posterior distribu-

tion of QTL variance , the Metropolis-Hastings
algorithm [22,23] is used to simulate it. I firstly propose a
new QTL variance and then accept it according to its
acceptance probability.
Generating the new proposal QTL variance
I employ the Browne's method [24], a special random
walk Metropolis-Hastings algorithm (RWM-H) to update

QTL variance. Firstly a new QTL variance  is pro-
posed and sampled from a scaled inverted chi-squared
distribution, conditional on the current value of QTL

variance , , with

the degree of freedom ν and the scaled parameter  that

equals the expectation of the current value , i.e.

, and then the new QTL
variance is accepted according to its accept probability.
Since the new generated value closely relies on the old
one, this approach is a special case of RWM-H, and the
degree of freedom ν is equivalent to the tuning parameter
[21,24].
Calculating the acceptance probability
The new proposal QTL variance is accepted with proba-
bility equal to min (1, r), where,

and  represents all elements of θ except . In

equation (3), the first term is likelihood, the second is
prior and the third is called proposal ratio or Hastings
ratio [23]. Because the proposal distribution is not sym-

metric, , hr must be com-

puted, and
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MCMC implementations
The implementations of the MCMC algorithm are sum-
marized as follows:

a. Initialize all parameters from legal values;
b. Update the covariate effect β;

c. Update the QTL variance ;

e. Update the polygenic variance ;

f. Update the residual variance ;

g. Update the QTL positions .
The covariate effect β is updated by the efficient Gibbs

sampler; the updating approach of  and  are simi-

lar to that of  (see also [21] for detail); the updating of

the QTL position  is illustrated in Appendix.

Post-MCMC analysis
To summarize the posterior probability, I divide the
genome into bins with interval of 1 cM and calculate
weighted QTL variance for each bin. The weighted QTL
variance is defined as the estimate of the QTL variance
multiplied by its posterior probability at each bin (see
also [21]), which is the modification of the weighted QTL
effect [15]. If the profile of the weighted QTL variance
generates a notable bump on the genome, the QTL is
claimed as detected [15,19,25].

Results
I simulated 500 independent full-sib families with 6 indi-
viduals in each one, and therefore 3,000 individuals were
investigated in my study. The parents of the full-sib fami-
lies were randomly sampled from a large outbred popula-
tions in Hardy-Weinberg and linkage equilibrium. One
chromosome with the length of 100 cM was simulated,
and 11 evenly spaced markers covered the chromosomes

with an average marker interval of 10 cM. I assigned 6
alleles for each marker and infinite alleles for each QTL.
Three QTL were simulated on the genome positioned at
15 cM, 45 cM and 75 cM, respectively. The additive vari-
ances of the three QTL were respectively 0.5, 1.2 and 0.8,
and the dominant variances were assumed absent. The
residual effect for each offspring was randomly sampled

from normal distribution with mean 0 and variance  =

1.0. The polygenic variance  = 1.0. The simulation
method for the polygenic effect has been illustrated in
[26]. The population mean equaled to 0. The phenotypic
value for each sib was the sum of population mean, QTL
effects, polygenic effect and residual effect. Therefore,
the heritabilities explained by the three QTL were respec-
tively 11.1%, 26.7% and 17.8%.

Before performing the simulated experiments, I firstly
gave a default setup. The excepted QTL number q0 = 2,
which may lead to the maximum QTL number,

 (see [27] for detail); the degree of
freedom for generating the proposal variance ν = νA = νe =

10; the hyper-parameter ωA = ωe = 3 and 
(are approximately estimated as the phenotypic variance),

and hence  (equal to the expectation of
their variance estimations, see [21]). Because ωA and ωe

took a small value, the values of  and  would have
ignorable effect on their estimates. The importance of the
hyper-parameter also has been illustrated in [21]. The
MCMC ran for 21,000 rounds and the data was saved
with every 10 rounds after the first 1,000 MCMC was dis-
carded, so that there were 2,000 (20,000/10) posterior
samples for posterior analysis.

Performance on simulated data with zero-QTL model
To demonstrate the special character of the proposed
method, I firstly analyzed the data from the simulated
zero-QTL model. The profiles of QTL intensity and
weighted QTL variance are plotted in Figure 1a and Fig-
ure 1b, respectively. The profile of weighted QTL vari-
ance gives very noisy signals for QTL detection, but the
values of weighted QTL variance are very tiny and the
profile is much flat, which reflects that the proposed
method can effectively shrink the values of the variance
of zero-effect QTL infinitely close to zero. Figure 2 gives
the MCMC traces of the polygenic variance and the
residual variance, and indicates that the estimates of
them are all close to their true values, 1; moreover, the
Markov chains of them converge fast and mix well.
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Investigation into the performance of the special RWM-H 
algorithm
I use a special RWM-H algorithm to update the variance
components, and the new proposal variance σ2 (QTL
variance, polygenic variance or residual variance) is sam-
pled from the scaled inverted chi-squared distribution
with degree of freedom ν and scaled parameter the vari-
ance of the current round. In order to test the influence of
ν, I set ν as 3, 15, 30, 50, 100, 150 and 200, respectively.
The QTL intensity histogram [28] is plotted in Figure 3a.
There are three peaks bumped on the chromosome, but
QTL intensity is not used in QTL detection. I also plot
the profile of weighted QTL variance, and the general
pattern is given in Figure 3b. All other experiments have

performed similar pattern, so the figures are not shown. I
find the profile of weighted QTL variance is rather flat for
the positions that have no QTL, which makes the signals
of QTL clearer than QTL intensity. The parameter esti-
mates are listed in Table 1, and there are no clear differ-
ences in parameter and standard deviation estimates for
different ν. Furthermore, I summarized the acceptance
rate of the M-H sampler for the variance components.
Because it is cumbersome to show them separately, I
averaged the acceptance rate over all variance compo-
nents under different setting of ν. I further plot the profile
of the change of the acceptance rate against ν in Figure 4.
It shows that the acceptance rate increases by ν, but the
rate of change decease by ν. When ν is smaller than 30,
the curve is much steeper, but it flatten when ν is larger
than 30. The degree of freedom ν may influence the
acceptance rate in the special RWM-H algorithm, and
hence it is equivalent to the tuning parameter in the tra-
ditional Metropolis-Hastings algorithm. Finally, I found
that when ν is larger than 200, the shrinkage character is
hardly held. The reasons will be addressed in Discussion.

Comparison with the regression method
I also used the software QTL Express [29], an IBD based
regression method, to analyze the simulated data. The
method is based on single-QTL model. The profile of F
statistic is plotted in Figure 5. Only one QTL localized at
44 cM was detected, and the simulated three QTL were
combined together. However, the three QTL can be sepa-
rated successfully by the new method. The results clearly
reflect the advantage of the new method that uses multi-
ple QTL model over the regression method that bases on
single QTL model.

Figure 1 Profiles of QTL intensity (a) and weighted QTL variance 
(b) obtained from the proposed method under simulated zero-
QTL model.
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Figure 2 Traces of polygenic variance and residual variance ob-
tained from the proposed method.
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Comparison with the RJMCMC method with repeat 
experiments
To compare the proposed method with the RJMCMC
based method [9], I simulated 30 sets of data. For the
RJMCMC method, the maximum QTL number and the
expected QTL number were also the same as the default
setup; the prior distribution of the QTL variance, poly-
genic variance and residual variance followed uniform
distribution with endpoint being zero and phenotypic
variance; the thinning interval was empirically set as 10;
the burn-in period was 1,000 and the length of the com-
plete chain was 201,000, and hence, there were 10,000
samples saved for posterior analysis. It took ~ 5 hr for the
new and RJMCMC method on a Pentium IV PC with a
2.60-GHz processor and 1.00 GB RAM.

I list the empirical statistical power and the average
estimates of 30 replications for both methods in Table 2,
and the results show that: (1) the QTL detecting powers
of the proposed method are slightly higher than that of
the RJMCMC method; (2) there are no clear differences
between the two methods in parameter estimates, and
both are very precise.

Application in genome-wide mapping
In the genome-wide mapping, I simulated a large genome
of 2,000 cM, covered by 201 evenly spaced markers with
interval 10 cM. Five QTL were simulated with positions
and effects in Table 3. The total heritability was 69.4%,
and the heritability explained by these QTL ranged from
8.1% to 22.4%. The residual variance was 1.5 and the poly-

genic variance was 0. The family structure and other
parameters were the same as the previous simulation.

Comparison with RJMCMC
The simulated data was analyzed with the proposed
method and the RJMCMC method. In the proposed
method, the excepted QTL number q0 = 3, which results
the maximum QTL number q = 8; the degree of freedom
generating the proposal variance ν = νA = νe = 10; the

hyper-parameter ωA = ωe = 3 and  for the
polygenic variance and the residual variance. The MCMC
ran for 51,000 rounds and the data was saved with every
10 rounds after the first 1,000 MCMC was discarded, so
that there were 5,000 (50,000/10) samples for posterior
analysis. In the RJMCMC method, also q0 = 3 and qm = 8,
thinning interval 10 and burn-in length 1,000, but the
length of the complete chain was 201,000. In the genome-
wide mapping, for all the QTL that affect the trait are
included in the model, the polygenic variance is excluded
from the model and thus needn't be estimated.

The QTL intensity profiles of both methods are plotted
in Figure 6a. It shows that the profile of the new method
is higher than that of the RJMCMC method. But it is not
sufficient to prove that the new method is more powerful
than the RJMCMC method, because the QTL intensity is
not used to detect QTL in shrinkage method. The profile
of the weighted QTL variance is given in Figure 6b, and
five clear bumps are found around their true simulated
positions, which shows that the five simulated QTL are

s sA e
2 2 2 0= = .

Table 1: The estimates of the QTL parameters and their standard deviations obtained from the proposed method under 
different levels of degree of freedom.

d.f. Position QTL variance Population 
mean

Polygenic 
variance

Residual 
variance

QTL1 QTL 2 QTL 3 QTL 1 QTL2 QTL3

3 11 45 75 0.827
(0.363)

1.314
(0.232)

0.592
(0.210)

0.029
(0.003)

0.827
(0.363)

1.164
(1.181)

15 11 45 75 0.481
(0.178)

1.358
(0.198)

0.584
(0.247)

0.028
(0.005)

0.812
(0.373)

1.182
(0.074)

30 11 45 75 0.508
(0.186)

1.329
(0.241)

0.602
(0.222)

0.034
(0.004)

0.849
(0.380)

1.151
(0.178)

50 10 45 75 0.784
(0.376)

1.333
(0.214)

0.635
(0.175)

0.031
(0.004)

0.784
(0.376)

1.181
(0.173)

100 10 45 74 0.834
(0.364)

1.353
(0.217)

0.637
(0.203)

0.036
(0.003)

0.834
(0.364)

1.162
(0.172)

150 10 45 76 0.786
(0.336)

1.356
(0.242)

0.647
(0.154)

0.030
(0.003)

0.786
(0.336)

1.178
(0.159)

200 10 46 76 0.875
(0.381)

1.232
(0.288)

0.582
(0.186)

0.029
(0.005)

0.87
(0.381)

1.140
(0.176)

The standard deviations are given in parentheses.
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all detected by the new method. However, in the RJM-
CMC method, the estimated average number of QTL
equaled to 3.37. The profile of the posterior QTL inten-
sity is depicted in Figure 7, showing that the trait is

mostly affected by three or four QTL with probability
0.565 or 0.359, and the estimated number of QTL is
clearly smaller than the true number of QTL. The results
suggest that my new method is competitive with the
RJMCMC method, and may even out-perform it. The
computing time of the proposed method and the RJM-
CMC method were nearly equal and they took ~ 24 hr on
a Pentium IV PC with a 2.60-GHz processor and 1.00 GB
RAM.

Test on the sensitive of the maximum QTL number
The maximum QTL number q is a hyper-parameter,
which should be ascertained beforehand. In my study I
followed the approach of [27] to ascertain it and

. For testing the sensitive of the maximum
q, I set the expected QTL number q0 = 4 and 5, which led
to q = 11 and 14, respectively. The profiles of weighted
QTL variance are plotted in Figure 8, and show no clear
differences; moreover, they are very similar to the profile
in Figure 6b that uses q0 = 3 and q = 8. The results demon-
strated that the new method was not very sensitive to the
value of the expected QTL number. I also ran the RJM-
CMC method under q0 = 4 and 5, and the estimated QTL
numbers were 3.42 and 3.46, respectively. Clearly, they
were also smaller than the true values.

Discussion
The Jeffreys' hyper prior for QTL variance,

, which is much crucial in Bayesian
shrinkage analysis for inbred line crosses [15,17,18], is
also the key to the new method. Although the two meth-

q q q= +0 0 3

p j j( ) ~ /s s2 21

Figure 3 Typical profiles of QTL intensity (a) and weighted QTL 
variance (b) from the proposed method.
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Figure 4 The change of the acceptance rate against the degree of 
freedom by the proposed method.
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ods handle different statistical models, the behavior is
much similar, and they all need not special model selec-
tion. However, the vague prior may cause an improper
posterior [30,31]. Ter Braak et al. [32] proposed to use the

prior  with a small value of δ but not
the extreme value 0 to avoid generating improper poste-
rior, while this extreme value was just used in [17] and my
researches. I also attempted to set δ = 0.0001 and other
values and did several times of experiments, and the
results at δ = 0.0001 were essentially the same as those at
δ = 0 (the results were not shown).

Because there are no close forms for the variance com-
ponents, the M-H algorithm is always used to update
them. There are two kinds of M-H algorithm, and one is
the RWM-H, in which the new proposal value is condi-
tionally sampled on the old one; the other is called inde-
pendent Metropolis-Hastings algorithm (IM-H), and the
proposed value is independently sampled on the old one.
Generally, the RWM-H is more efficient than the IM-H,
because in the RWM-H the proposal values may auto-
matically reach their main support region in the itera-
tions. Another advantage of the RWM-H is that the
estimate of QTL variance for zero-effect QTL may be

gradually converged to zero. However, the special shrink-
age character is hardly held by the IM-H algorithm
because it is usually low probability that the values of the
proposal variance close to zero infinitely. Hence in this
article I use a special RWM-H to update QTL variance,
which is also another key to my method.

The size of the tuning parameter may influence the effi-
ciency of the RWM-H algorithm. In this method, the
degree of freedom ν is equivalent to the tuning parame-
ter, if ν is smaller, the efficiency of the M-H algorithm
may decrease due to the low acceptance rate. But if ν is
larger, although the acceptance rate increase, it is more
difficult for the proposal variance components to explore
their posterior distribution. If ν > 200, the chain will be
stuck locally and the posterior distribution of variance
components will be very difficult to explore, which
explains why the shrinkage character is hardly hold by the
proposed method when ν >200. In fact, the tuning
parameter should be set appropriately, which makes the
acceptance rate to be 10~ 40% [33]. Therefore, in my
method, the optimal tuning parameter ν should range
from 3 to 15 from Figure 4.

I assign a scaled inverted chi-square distribution for
polygenic variance and residual variance, which makes

p j j( ) ~ ( )s s d2 2 1− +

Table 2: The average estimates of the QTL parameters from 30 replicated experiments in the proposed and RJMCMC 
method.

QTL No. Power (%) Position QTL variance Population 
mean

Polygenic 
variance

Residual 
variance

Shrinkage analysis:

QTL1 90.0 (27/30) 13.7(3.40) 0.465(0.125) 0.028 (0.004) 1.118(0.324) 0.923(0.187)

QTL2 100.0(30/30) 45.8(1.32) 1.210(0.153)

QTL3 96.7(29/30) 74.2(2.86) 0.787(0.116)

RJMCMC:

QTL1 86.7 (26/30) 14.1(3.98) 0.511(0.132) 0.031 (0.003) 1.201(0.315) 0.915(0.188)

QTL2 100.0 (30/30) 46.1(1.37) 1.150(0.140)

QTL3 90.0(27/30) 74.9(3.51) 0.834(0.126)

Table 3: QTL parameters and their estimates obtained from the two methods in the genome-wide mapping.

QTL No. True parameters Estimations
(new method)

Estimations
(RJMCMC method)

Position(cM) Variance Position(cM) Variance Position(cM) Variance

1 215 0.4 224 0.460(0.176) 224 0.539(0.131)

2 422 0.6 433 0.345(0.151) 433 0.457(0.120)

3 853 1.1 853 1.406(0.177) 854 1.502(0.190)

4 1450 0.5 1438 0.372(0.158) 1436 0.522(0.147)

5 1843 0.8 1844 1.138(0.182) 1844 1.224(0.174)
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the incorporation of the prior information possible, and
this has been studied in previous work [21]. Certainly,
other priors also can be used and then the formula of
acceptance probability should be constructed appropri-
ately.

The polygenic term is excluded in our genome-wide
mapping because many QTL with relative large effect are
investigated in my simulated study. In practice, the trait
may be affected by few QTL with substantial effects and
many QTL with minor effects, and then it is necessary to
include the polygenic effect in the model.

I proposed a basic method for mapping QTL in vari-
ance component models. The method is also important
in fine mapping [34-38] in which both linkage informa-
tion and linkage disequilibrium (LD) information are uti-
lized. If the markers are densely distributed, fine mapping
provides an extremely powerful way for QTL mapping.
The new method is also convenient to be modified to the
simultaneous fine mapping of multiple QTL as long as
the IBD matrix is appropriately constructed. Moreover,

the method also can be extended to more complicated
situation, such as that involving QTL dominant effect and
epistatic effect.

I employed the approach of Yi et al. [27] to ascertain the
maximum QTL number and found that the method was
not very sensitive to the maximum QTL number. Theo-
retically, the maximum QTL number may be set as any
value as long as it is greater than the actual QTL number.
The simplest method is to assume that each marker inter-
val contain one QTL, while it increases the computa-
tional burden. The appropriate selection of the maximum
QTL number will contribute to saving the computational
time.

The new developed method is very simple and easy to
implement. The computer program is written in FOR-
TRAN language, and it is also compiled into my software
"BayesMapQTL.exe" which can be used to analyze simu-
lated data, as well as field data with variable family size.
Both program and software are available for request.

Conclusion
In this research, I proposed a Bayesian shrinkage estima-
tion method for mapping multiple QTL. Different from
Xu's (2003) shrinkage method that discriminately esti-
mates QTL substitute effect, my method can shrinkage
estimate QTL variance so that it need no special model
selection. Simulation experiments show that the pro-
posed method is efficient in simultaneously mapping
multiple QTL in outbred populations and may even out-
perform the RJMCMC method.

Appendix
Joint posterior distribution
Observable parameters include marker information M,
additive genetic relationship matrix A, covariate matrix X

and phenotypic values ; unobservablesy =
=

{ }y i
n
i 1

Figure 6 Profiles of QTL intensity (a) and weighted QTL variance 
(b) in the genome-wide mapping. The true locations of the simulat-
ed QTL are indicated by upward arrows on the horizontal axis.
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Figure 7 Posterior distribution of the number of QTL from the 
RJMCMC method.
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Figure 8 Profiles of weighted QTL variance for q = 11 (a) and q = 
14 (b) in the genome-wide mapping. The true locations of the sim-
ulated QTL are indicated by upward arrows on the horizontal axis.
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include QTL positions λ = , model effects

 and hyper-parameters

. Joint posterior probability
of unobservables then can be expressed as

where,

and

Update QTL position

The proposal position is moved around the old one,  =
λj + d, where d is a random number sampled from uni-
form distribution with bound -kcM and kcM, where k is a
predetermined tuning parameter and equals to 1 for
chromosome segment analysis, and 20 for genome-wide
scan in my study. When the new position is proposed, the
IBD matrix is calculated according to marker informa-
tion, and then the new position is accepted with probabil-
ity equal to min(1, r),

The proposal ratio or Hastings ratio hrp = 1 due to the
symmetric uniform proposal.

Acknowledgements
I am grateful to two anonymous reviewers for their helpful comments which 
have greatly improved the presentation of the manuscript. Lijun Pu, Weixuan 
Fu and one of reviewers helped proofread the language. I also thank BMC edi-
torial for the waiver of the publication cost. This research was supported by 
Chinese Heilongjiang Education Ministry grant 11541254 to M. F.

Author Details
1Life Science College, Heilongjiang August First Land Reclamation University, 
Daqing, 163319, China and 2Department of Animal Genetics and breeding, 
College of Animal Science and Technology, China Agricultural University, 
Beijing 100193, China

References
1. Knott SA, Haley CS: Maximum likelihood mapping of quantitative trait 

loci using full-sib families.  Genetics 1992, 132(4):1211-1222.
2. Haley CS, Knott SA, Elsen JM: Mapping quantitative trait loci in crosses 

between outbred lines using least squares.  Genetics 1994, 
136(3):1195-1207.

3. Knott SA, Haley CS: Methods for multiple-marker mapping of 
quantitative trait loci in half-sib populations.  Theor Appl Genet 1996, 
93:71-80.

4. Goldgar DE: Multipoint analysis of human quantitative genetic 
variation.  Am J Hum Genet 1990, 47(6):957-967.

5. Amos CI: Robust variance-components approach for assessing genetic 
linkage in pedigrees.  Am J Hum Genet 1994, 54(3):535-543.

6. Xu S, Atchley WR: A random model approach to interval mapping of 
quantitative trait loci.  Genetics 1995, 141(3):1189-1197.

7. Almasy L, Blangero J: Multipoint quantitative-trait linkage analysis in 
general pedigrees.  Am J Hum Genet 1998, 62(5):1198-1211.

8. Liu Y, Jansen GB, Lin CY: Quantitative trait loci mapping for dairy cattle 
production traits using a maximum likelihood method.  J Dairy Sci 2004, 
87(2):491-500.

9. Yi N, Xu S: Bayesian mapping of quantitative trait loci under the 
identity-by-descent-based variance component model.  Genetics 2000, 
156(1):411-422.

10. Haseman JK, Elston RC: The investigation of linkage between a 
quantitative trait and a marker locus.  Behav Genet 1972, 2(1):3-19.

11. Fulker DW, Cardon LR: A sib-pair approach to interval mapping of 
quantitative trait loci.  Am J Hum Genet 1994, 54(6):1092-1103.

12. Liu J, Liu Y, Liu X, Deng HW: Bayesian mapping of quantitative trait loci 
for multiple complex traits with the use of variance components.  Am J 
Hum Genet 2007, 81(2):304-320.

13. Schork NJ: Extended multipoint identity-by-descent analysis of human 
quantitative traits: efficiency, power, and modeling considerations.  
Am J Hum Genet 1993, 53(6):1306-1319.

14. Yi N, George V, Allison DB: Stochastic search variable selection for 
identifying multiple quantitative trait loci.  Genetics 2003, 
164(3):1129-1138.

15. Wang H, Zhang YM, Li X, Masinde GL, Mohan S, Baylink DJ, Xu S: Bayesian 
shrinkage estimation of quantitative trait loci parameters.  Genetics 
2005, 170(1):465-480.

16. Banerjee S, Yandell BS, Yi N: Bayesian quantitative trait loci mapping for 
multiple traits.  Genetics 2008, 179(4):2275-2289.

17. Xu S: Estimating polygenic effects using markers of the entire genome.  
Genetics 2003, 163(2):789-801.

18. Xu S: Derivation of the shrinkage estimates of quantitative trait locus 
effects.  Genetics 2007, 177(2):1255-1258.

19. Yang R, Xu S: Bayesian shrinkage analysis of quantitative trait Loci for 
dynamic traits.  Genetics 2007, 176(2):1169-1185.

20. Xu S, Gessler DD: Multipoint genetic mapping of quantitative trait loci 
using a variable number of sibs per family.  Genet Res 1998, 71(1):73-83.

21. Fang M, Liu S, Jiang D: Bayesian composite model space approach for 
mapping quantitative trait Loci in variance component model.  Behav 
Genet 2009, 39(3):337-346.

22. Metropolis N, A RW, Rosenbluth MN, Teller AH, Teller E: Equation of state 
calculations by fast computing machines.  J Chem Phys 1953, 
21:1087-1091.

23. Hastings WK: Monte Carlo sampling methods using Markov chains and 
their applications.  Biometrika 1970, 57:97-109.

24. Browne WJ: Applying MCMC Methods to Multi-level Models.  Bath: 
University of Bath; 1998. 

25. Xu C, Wang X, Li Z, Xu S: Mapping QTL for multiple traits using Bayesian 
statistics.  Genet Res 2009, 91(1):23-37.

{ }l j j
q
=1

qq bb= { , , , , , , }s s s s s1
2

2
2 2 2 2� q A e

D V= { , , , ,bb0 0
2 2, } w wA e A es s

p f p p( , , , , ) ( , , , ) ( ) ( ),qq ll qq ll qq lly A X M y A X D∝

(A1)

f( , , , ) exp ( ) ( ) ,
/y A X V y X V y XTqq ll bb bb∝ − − −⎧

⎨
⎩

⎫
⎬
⎭

−1 2 1
2

(A2)

p p p s p s pA A A e e e j

j

q

( ) ( ) ( , ) ( , ) ( ),qq bb bbD V=
=

∏0 0
2 2 2 2 2

1

, s w s w s

(A3)

p p j

j

q

( ) ( )ll =
=

∏ λ
1

(A4)

l j
∗

r
f j j

f
hrp=

−
∗

⋅
( , , , , )

( , , , )
.

y A X

y A X

qq ll

qq ll

l
(A5)

Received: 12 May 2009 Accepted: 29 April 2010 
Published: 29 April 2010
This article is available from: http://www.biomedcentral.com/1471-2156/11/30© 2010 Fang; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.BMC Genetics 2010, 11:30

http://www.biomedcentral.com/1471-2156/11/30
http://creativecommons.org/licenses/by/2.0
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1459438
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8005424
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2239972
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8116623
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8582623
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9545414
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14762092
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10978304
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=4157472
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8198132
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17668380
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8250047
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12871920
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15781696
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18689903
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12618414
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17720913
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17435239
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9674384
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19263210
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19220929


Fang BMC Genetics 2010, 11:30
http://www.biomedcentral.com/1471-2156/11/30

Page 10 of 10
26. Gessler DD, Xu S: Using the expectation or the distribution of the 
identity by descent for mapping quantitative trait loci under the 
random model.  Am J Hum Genet 1996, 59(6):1382-1390.

27. Yi N, Yandell BS, Churchill GA, Allison DB, Eisen EJ, Pomp D: Bayesian 
model selection for genome-wide epistatic quantitative trait loci 
analysis.  Genetics 2005, 170(3):1333-1344.

28. Sillanpaa MJ, Arjas E: Bayesian mapping of multiple quantitative trait 
loci from incomplete inbred line cross data.  Genetics 1998, 
148(3):1373-1388.

29. Seaton G, Haley CS, Knott SA, Kearsey M, Visscher PM: QTL Express: 
mapping quantitative trait loci in simple and complex pedigrees.  
Bioinformatics 2002, 18(2):339-340.

30. Hobert JP, Casella G: The effect of improper priors on Gibbs sampling in 
hierarchical linear mixed models.  J Am Stat Assoc 1996, 91(1461-1473):.

31. Gelman A, Carlin J, Stern H, Rubin D: Bayesian data analysis.  London: 
Chapman and all/CRC; 2004. 

32. ter Braak CJ, Boer MP, Bink MC: Extending Xu's Bayesian model for 
estimating polygenic effects using markers of the entire genome.  
Genetics 2005, 170(3):1435-1438.

33. Roberts GO, Rosenthal JS: Optimal scaling for various Metropolis-
Hastings algorithms.  Statist Sci 2001, 16(4):351-367.

34. Meuwissen TH, Goddard ME: Fine mapping of quantitative trait loci 
using linkage disequilibria with closely linked marker loci.  Genetics 
2000, 155(1):421-430.

35. Meuwissen TH, Karlsen A, Lien S, Olsaker I, Goddard ME: Fine mapping of 
a quantitative trait locus for twinning rate using combined linkage and 
linkage disequilibrium mapping.  Genetics 2002, 161(1):373-379.

36. Meuwissen TH, Goddard ME: Prediction of identity by descent 
probabilities from marker-haplotypes.  Genet Sel Evol 2001, 
33(6):605-634.

37. Meuwissen TH, Goddard ME: Mapping multiple QTL using linkage 
disequilibrium and linkage analysis information and multitrait data.  
Genet Sel Evol 2004, 36(3):261-279.

38. Lee SH, Werf JH Van der: Simultaneous fine mapping of multiple closely 
linked quantitative trait Loci using combined linkage disequilibrium 
and linkage with a general pedigree.  Genetics 2006, 173(4):2329-2337.

doi: 10.1186/1471-2156-11-30
Cite this article as: Fang, Bayesian shrinkage mapping of quantitative trait 
loci in variance component models BMC Genetics 2010, 11:30

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8940284
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15911579
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9539450
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11847090
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15911578
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10790414
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12019251
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11742632
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15107266
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16751664


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


