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Understanding the structural similarity between genomes is pivotal in classification and phylogenetic analysis. 
As the number of known genomes rockets, alignment-free methods have gained considerable attention. Among 
these methods, the natural vector method stands out as it represents sequences as vectors using statistical 
moments, enabling effective clustering based on families in biological taxonomy. However, determining an 
optimal metric that combines different elements in natural vectors remains challenging due to the absence of a 
rigorous theoretical framework for weighting different 𝑘-mers and orders. In this study, we address this challenge 
by transforming the determination of optimal weights into an optimization problem and resolving it through 
gradient-based techniques. Our experimental results underscore the substantial improvement in classification 
accuracy achieved by employing these optimal weights, reaching an impressive 92.73% on the testing set, 
surpassing other alignment-free methods. On one hand, our method offers an outstanding metric for virus 
classification, and on the other hand, it provides valuable insights into feature integration within alignment-

free methods.

1. Introduction

The study of genome relationships has garnered significant attention in recent years as it provides a fundamental approach to understanding the 
connections among organisms. Traditional methods for sequence comparison rely on alignment, which, while effective, can be time-consuming [1–4]. 
With the advancement of sequencing techniques, the number of known genomes has increased rapidly. Consequently, more and more researchers 
are turning to alignment-free methods due to their high efficiency. A major idea in alignment-free methods involves embedding each genome to 
a point in the vector space. This transformation allows the sequence comparison problem to be recast as a classification or clustering problem for 
vectors, which can be readily solved using machine learning algorithms such as the 𝐾 -NN method [5] or the 𝐾 -means method [6]. In addition to 
its applications in classification and clustering, the concept of sequence embedding offers a novel approach to understanding genomes, representing 
each genome as a point in genome space and each family (or other levels of classification) as a cluster, providing a geometric perspective on genome 
analysis. In 2008, the Defense Advanced Research Projects Agency (DARPA) proposed two problems, namely “The Geometry of Genome Space” and 
“What are the Fundamental Laws of Biology?”, along with 21 other challenges in pure and applied mathematics [7]. These challenges have spurred 
researchers from diverse academic backgrounds to investigate the genome space and its metrics.

There are various alignment-free methods for embedding sequences into vector spaces and defining metrics, mostly rooted in the analysis 
of k-mers from probabilistic, statistical, or information theory perspectives [8–13]. The natural vector (NV) method is an effective method that 
incorporates the concept of statistical moments, transforming sequences into feature information based on different k-mers and different moment 
orders [14,15]. Features here refer to various types of numerical elements extracted from the sequences. By assigning weights to various types of 
feature information, a comprehensive metric is established. Prior research has validated the effectiveness and efficiency of the NV-based method. 
Notably, the convex hulls formed by NVs from distinct families do not overlap, demonstrating that NVs belonging to the same family cluster 
together [16–18]. Furthermore, the comprehensive metric introduced by NV facilitates the efficient classification and phylogenetic analysis of 
biological sequences [15,17].
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Despite the success of NV-based methods, determining an optimal metric remains a challenging task due to the lack of a rigorous theoretical 
framework for weighing different 𝑘-mers and orders. In previous studies, these weights have been manually assigned [17]. While experimental 
results have shown the efficacy of such manual weight selection for real biological data, the search for an optimal weight for classification remains 
ongoing.

In this paper, we approach the weight selection as an optimization problem. We take a smooth approximation of the classification accuracy 
as the objective function and employ a modified version of the gradient descent method to calculate an optimal weight. The utilization of the 
optimal weight for classification yields an accuracy of 92.73% for the testing set, which is 4.88% higher than the best performance achieved by six 
other alignment-free approaches including both NV-based methods with manually determined weights and methods derived from other perspectives 
[17,11–13]. Moreover, we extend our analysis by applying the optimal weight to each Baltimore class and fine-tuning the weights within the 
classes. Subsequently, we construct phylogenetic trees based on the fine-tuned optimal weight. This research makes three significant contributions. 
Firstly, we present a rapid and accurate algorithm for classifying new genomes, which becomes increasingly vital as more genomes are discovered. 
Secondly, the distance metric derived from the optimal weight can be applied in the construction of phylogenetic trees for organisms, especially for 
viruses, where the absence of common genes found in cellular organisms poses a challenge [19]. Finally, our method offers an opportunity for the 
integration of the numerous alignment-free features currently available, facilitating further advancements in alignment-free methods.

2. Materials and methods

2.1. Dataset

The data utilized in this study comprise the complete virus reference sequences sourced from the National Center for Biotechnology Information 
(NCBI) up to June 30, 2022. The sequences can be accessed via the following URL: https://ftp .ncbi .nlm .nih .gov /refseq /release /viral. To ensure data 
quality, a data cleaning procedure was performed, which involved the removal of three types of sequences: (1) sequences containing nucleotides 
other than 𝐴, 𝑇 (𝑈 ), 𝐶 , 𝐺; (2) sequences lacking a family label; and (3) sequences belonging to families consisting of only a single sequence. Before 
the data cleaning process, there were 14,813 sequences. Following this process, the dataset retained a total of 11,559 sequences from 123 families. 
It is worth noting that our data contains multi-segment viruses, where each sequence represents one segment in this case. To establish the training 
and testing sets, 80% of the sequences were randomly selected as the training set, while the remaining sequences constituted the testing set. The 
Genbank IDs are listed in the Supplementary material and can also be found in https://github .com /BobYHY /OptimalMetric.

2.2. Natural vectors and k-mer natural vectors

The natural vector method is an alignment-free method that transforms DNA sequences into vectors of moments [14]. Consider the sequence 
𝑆 = 𝑠1𝑠2...𝑠𝑛, define

𝑤𝑘(𝑠𝑖) =

{
1, 𝑠𝑖 = 𝑘
0, otherwise

(1)

where 𝑘, 𝑠𝑖 ∈ {𝐴, 𝑇 , 𝐶, 𝐺}. Then the natural vector of order 𝑚 can be defined as

(𝑛𝐴, 𝑛𝐶 , 𝑛𝐺, 𝑛𝑇 , 𝜇𝐴,𝜇𝐶 ,𝜇𝐺,𝜇𝑇 ,𝐷𝐴2 ,𝐷
𝐶
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𝑚
) (2)

where ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
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𝑖=1
𝑤𝑘(𝑠𝑖)
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𝑤𝑘(𝑠𝑖)

𝑛 = 𝑛𝐴 + 𝑛𝑇 + 𝑛𝐶 + 𝑛𝐺

(3)

𝑛𝑘 and 𝜇𝑘 are referred to as the order 0 element and order 1 element, respectively. 𝐷𝑘
𝑗

denotes the order 𝑗 element.

The 𝑘-mer natural vector method is an extension of the natural vector method [15]. 𝐾 -mer is a string composed of 𝑘 nucleotides and there 
are 4𝑘 possible 𝑘-mers (denoted by 𝑙1, ..., 𝑙4𝑘 ). For the sequence 𝑆 = 𝑠1𝑠2...𝑠𝑛, we can regard it as a sequence consisting of 𝑛 − 𝑘 + 1 𝑘-mers 
(𝑠1...𝑠𝑘)...(𝑠𝑛−𝑘+1...𝑠𝑛). Similar to traditional natural vectors, we can define the 𝑘-mer natural vector

(𝑛𝑙1 , ..., 𝑛𝑙𝑘 , 𝜇𝑙1 , ..., 𝜇𝑙𝑘 ,𝐷
𝑙1
2 , ...,𝐷

𝑙𝑘
2 , ...,𝐷

𝑙1
𝑚 , ...,𝐷

𝑙𝑘
𝑚 ).

(If 𝑛𝑙𝑖 = 0, we let 𝜇𝑙𝑖 =𝐷
𝑙𝑖
2 = ... = 0.)

2.3. The optimal weight and the algorithm for training

There are elements of different 𝑘-mers (1-𝐾) and different orders (0-𝑀), as mentioned before. Let 𝑑𝑖𝑠𝑘𝑚(𝑖, 𝑗) represent the Euclidean distance 
between the 𝑘-mer order 𝑚 elements of sequence i and sequence j. By assigning a weight 𝑤𝑘𝑚 (𝑘 = 1, ..., 𝐾; 𝑚 = 0, ..., 𝑀) to each distance, we can 
formulate a weighting metric:

𝑤

𝐾∑ 𝑀∑

2084

𝐷𝑖𝑠 (𝑖, 𝑗) =
𝑘=1𝑚=0

𝑤𝑘𝑚𝑑𝑖𝑠𝑘𝑚(𝑖, 𝑗). (4)
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To determine the optimal weight for classification purposes, we need a scoring criterion to evaluate different weights. In other words, we should 
develop a smooth function that quantifies the effectiveness of a given weight 𝑤. In the case of sequence classification using natural vectors, the 1-

nearest neighbor (1-NN) method with the leave-one-out strategy is commonly employed [5]. Therefore, a natural approach is to utilize the accuracy 
of predictions obtained from the 1-NN method with the leave-one-out strategy as the score for a particular weight, i.e.,

𝑆(𝑤) ∶= 1
𝑁

𝑁∑
𝑖=1

1{𝐹 (𝑖)=𝐹 (argmin𝑗≠𝑖{𝐷𝑖𝑠𝑤(𝑖,𝑗)})} (5)

where 𝑁 is the number of the sequences, 1𝐴 is the indicator function of the set 𝐴 and 𝐹 (𝑖) is the family that the 𝑖-th sequence belongs to.

However, 𝑆(𝑤) defined above is not continuous for 𝑤 so it is very complicated to optimize. Therefore, we consider a smooth approximation of 
𝑆(𝑤). Let 𝑓𝑛(𝑥) =

1
𝑥𝑛

, we define

𝑆𝑛(𝑤) ∶=
1
𝑁

𝑁∑
𝑖=1
𝐶𝑖(𝑤) (6)

where

𝐶𝑖(𝑤) ∶=
∑
𝐹 (𝑗)=𝐹 (𝑖),𝑗≠𝑖 𝑓𝑛(𝐷𝑖𝑠𝑤(𝑖, 𝑗))∑

𝑗≠𝑖 𝑓𝑛(𝐷𝑖𝑠𝑤(𝑖, 𝑗))
. (7)

Given a fixed weight 𝑤(0) and a fixed integer 𝑖0, suppose 𝑗0 = argmin
𝑗≠𝑖0

{𝐷𝑖𝑠𝑤(0) (𝑖0, 𝑗)} is well-defined (the nearest neighbor is unique), then we can 

prove that lim
𝑛→+∞

𝐶𝑖0
(𝑤(0)) = 1{𝐹 (𝑖0)=𝐹 (𝑗0)} and therefore lim

𝑛→+∞
𝑆𝑛(𝑤(0)) = 𝑆(𝑤(0)). The proof is simple:

𝐷𝑖𝑠𝑤
(0) (𝑖0, 𝑗0) < min

𝑗≠𝑗0 ,𝑗≠𝑖0
𝐷𝑖𝑠𝑤

(0) (𝑖0, 𝑗)

𝑓𝑛(𝐷𝑖𝑠𝑤
(0) (𝑖0, 𝑗0)) > max

𝑗≠𝑗0 ,𝑗≠𝑖0
𝑓𝑛(𝐷𝑖𝑠𝑤

(0) (𝑖0, 𝑗))

lim
𝑛→+∞

max𝑗≠𝑗0 ,𝑗≠𝑖0 𝑓𝑛(𝐷𝑖𝑠
𝑤(0) (𝑖0, 𝑗))

𝑓𝑛(𝐷𝑖𝑠𝑤
(0) (𝑖0, 𝑗0))

= 0

Therefore, when 𝑛 is sufficiently large, the element 𝑓𝑛(𝐷𝑖𝑠𝑤
(0) (𝑖0, 𝑗0)) becomes much larger than any other elements in the fraction of 𝐶𝑖, rendering 

the other elements negligible. That is, if 𝐹 (𝑖0) = 𝐹 (𝑗0), then lim
𝑛→+∞

𝐶𝑖0
(𝑤(0)) = 1; otherwise, lim

𝑛→+∞
𝐶𝑖0

(𝑤(0)) = 0.

Therefore, we can approximate 𝑆 by 𝑆𝑛 and our goal is to solve the following optimization problem given 𝑛0 , 𝐾 , and 𝑀 :

max 𝑆𝑛0
(𝑤)

s.t. 𝑤𝑘𝑚 ≥ 0, 𝑘 = 1, ...,𝐾; 𝑚 = 0, ...,𝑀.
(8)

The gradient descent method is a traditional optimization algorithm for unconstrained problems. It can also be applied in constrained cases 
by mapping the result in each step to the feasible region. Let 𝑅𝑒𝐿𝑈 (𝑥) = max(𝑥, 0) and this calculation can be broadcast to vectors, then the 
optimization problem (8) can be solved by the iteration below:

𝑤(𝑛+1) =𝑅𝑒𝐿𝑈 (𝑤(𝑛) + 𝑙∇𝑆𝑛0 (𝑤
(𝑛))) (9)

where 𝑙 is the learning rate.

Many modified versions of the gradient descent method such as stochastic modifications like Adam [20] have been proposed. However, we found 
through numerical experiments that utilizing these stochastic modifications in Algorithm 1 did not yield favorable results. Therefore, they were not 
implemented. We adopt the idea of the backtracking line search to this problem and propose the following algorithm.

Algorithm 1 The algorithm that solves the optimization problem (8).

Require: Parameters 𝑛0, 𝐾, 𝑀 , the learning rate 𝑙, patience 𝑃 , and weight magnitude 𝐴𝑘𝑚 .

Ensure: Trained weight 𝑤.

1: Let 𝑖 = 0
2: Randomly generate the weight 𝑤(0) = (𝑤(0)

𝑘𝑚
) (𝑤

(0)
𝑘𝑚

∼𝑈𝑛𝑖𝑓𝑜𝑟𝑚[0, 𝐴𝑘𝑚]).
3: while 𝑖 <= 𝑃 do

4: 𝑣 = 𝑙||𝑤(𝑖)||𝐿1

∇𝑆𝑛0 (𝑤
(𝑖) )||∇𝑆𝑛0 (𝑤(𝑖) )||𝐿1

5: while 𝑆𝑛0 (𝑅𝑒𝐿𝑈 (𝑤(𝑖) + 𝑣)) < 𝑆𝑛0 (𝑤
(𝑖)) do

6: 𝑣 = 1
2
𝑣

7: end while

8: 𝑤(𝑖+1) =𝑅𝑒𝐿𝑈 (𝑤(𝑖) + 𝑣)
9: if 𝑆𝑛0 (𝑤

(𝑖+1)) == 𝑆𝑛0 (𝑤
(𝑖)) then

10: 𝑖 = 𝑖 + 1
11: else

12: 𝑖 = 0
13: end if
2085

14: end while
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Fig. 1. The progression of training and testing accuracy for classification during the training process.

In this paper, we choose 𝑛0 = 45, 𝐾 = 9, 𝑀 = 2, 𝑙 = 0.1, and 𝑃 = 50. We choose 𝑛0 to be sufficiently large, but not excessively so, to prevent 
exceeding the numerical bounds when computing 𝑆𝑛0 . The choice of 𝐾 and 𝑀 is based on previous research [17]. The learning rate 𝑙 represents the 
proportion of updates to the original weights. We select it to be a substantial yet not excessive quantity. For 𝑃 , we opt for a value that is sufficiently 
large.

In addition, we choose 𝐴𝑘𝑚 such that the mean of elements in the initial weight is inversely proportional to the mean of the corresponding 
distance matrix, i.e., 𝐴𝑘𝑚𝐸[𝑑𝑖𝑠𝑘𝑚] = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡, which avoids information to be ignored due to magnitude.

We implement the algorithm in the pytorch framework [21]. The code can be found in both the Supplementary material and the Github repository 
https://github .com /BobYHY /OptimalMetric.

2.4. The phylogenetic analysis

To construct a phylogenetic tree, we utilize the Hausdorff distance to measure the distance between families. The Hausdorff distance quantifies 
the extent of separation between two subsets. Its definition is as follows:

𝑑𝐻 (𝑋,𝑌 ) = max
{

sup
𝑥∈𝑋

𝑑(𝑥,𝑌 ), sup
𝑦∈𝑌

𝑑(𝑋,𝑦)
}
. (10)

Hausdorff distance has been found to perform well between sets of natural vectors in previous studies, and it follows the triangular inequality, 
which makes it a well-defined distance in mathematics [22]. Using the distance matrix obtained from the Hausdorff distance, we employ the BioNJ 
algorithm [23], which is an enhanced version of the neighbor-joining algorithm [24], to construct the tree. Our algorithm is implemented online 
through the following website: http://www .atgc -montpellier .fr /fastme/ [25]. The trees are visualized using iTOL [26].

3. Results

3.1. The classification performance

Our objective is to effectively classify the viruses into their respective families by determining an optimal metric. To achieve this, we calculate 
the optimal weight for each 𝑘-mer and each moment order based on the training set. Subsequently, we apply the metric, which is induced by the 
optimal weight, to the testing set.

The optimization of the weight is achieved through the smooth approximation of the accuracy of the classification. During the training process, 
consisting of 193 iterations, we observe the effectiveness of the approximation. The maximum difference between the training accuracy and its 
approximation during the training process is found to be only 0.005%. This result eliminates the necessity to differentiate between these two 
concepts in subsequent discussions.

The progression of training and testing accuracy during the training process is depicted in Fig. 1. Notably, the training accuracy exhibits a 
remarkable increase, starting from 55.10% and reaching 91.52%. Similarly, the testing accuracy also shows a significant improvement, rising from 
60.12% to 92.73%. The rapid and substantial growth in accuracy is evident. The simultaneous increase of both indicates that the knowledge gained 
about weight selection from the training set is generalizable rather than a result of overfitting. It is noteworthy that the testing accuracy outperforms 
the training accuracy due to the implementation of a leave-one-out strategy in this paper. This strategy entails predicting the outcomes for the 
testing set using all other sequences in both the training and testing sets, mimicking real-world scenarios. Conversely, predictions for the training 
set solely rely on other sequences within the training set to prevent data leakage.

We compare this classification accuracy with other methods. To begin with, we compare it with methods based on NV, but with manually 
determined weights. These methods do not differentiate weights based on different orders but only distinguish between weights for different 𝑘-mers. 
In the notation used in this paper, we can view the corresponding metric as

𝐷𝑖𝑠𝑎 =
𝐾∑
𝑎

√√√√ 2∑
𝑑𝑖𝑠2 . (11)
2086
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Fig. 2. Comparison of classification accuracy between our method and six other alignment-free methods.

Table 1

The number of sequences from each Baltimore class.

Baltimore class The training set The testing set

I 4075 1040

II 1161 308

III 1114 282

IV 1452 349

V 1288 290

VI 68 17

VII 89 26

In previous studies, three types of manually determined weights are commonly used: 𝑎𝑘 =
1
2𝑘 , 𝑎𝑘 =

1
𝑘2

, and 𝑎𝑘 = 1{𝑘=𝐾}. We refer to methods using 
these three weights as NV1, NV2, and NV3, respectively. We evaluated and examined the accuracy of these three methods on the testing set, varying 
𝐾 from 1 to 9. The best result was achieved by the 9-mer NV1 method, with an accuracy of 87.54%. (See Fig. 2.) Notably, the optimal metric 
significantly outperforms manually determined weights.

Then, we compare our method with three other alignment-free algorithms based on different theories. The first method, denoted as the Markov 
method, originates from [11]. It is based on a Markov model and corrects random background information present in 𝐾 -mers using information 
from (𝐾 − 1)-mers and (𝐾 − 2)-mers (𝐾 > 2) from the perspective of probability. The second method, denoted as the Jensen method, is from 
[12] and uses Jensen-Shannon divergence, a concept in information theory, to measure the distance between feature frequency profiles. The third 
method, denoted as the Jaccard method [13], calculates distances based solely on the presence of features using the Jaccard distance. Similarly, 
we conducted an evaluation by varying K from 1 to 9 and examined the accuracy of these three methods on the testing set. The results show that 
the best accuracy was achieved by the 3-mer Jensen method, with an accuracy of 87.85%. (See Fig. 2.) Our method significantly outperforms these 
methods by 4.88%.

3.2. Fine-tuning within the Baltimore classes

Previously, we have verified the reliability of the optimal metric for viral genomes. For specific task scenarios, we can further fine-tune the 
weights of this metric according to requirements to enhance its performance. For example, if we already know the Baltimore class to which a 
virus belongs and need to perform classification within that class, we would need to fine-tune the metric using the dataset specific to that class. 
The fine-tuning process utilizes the same training method employed to obtain the optimal weight for the entire dataset. However, in this case, the 
training set is restricted to a subset of the complete training set, and the process begins from the previously obtained optimal weight.

In this paper, we focus on fine-tuning the optimal weight for 7 Baltimore classes. The Baltimore classification system categorizes viruses into 7 
classes based on the type of genome molecule and replication strategy [27–29]. These classes include double-stranded DNA viruses, single-stranded 
DNA viruses, double-stranded RNA viruses, positive-sense single-stranded RNA viruses, negative-sense single-stranded RNA viruses, single-stranded 
RNA reverse transcriptase viruses, and double-stranded DNA reverse transcriptase viruses. To construct new training and testing sets, we extract 
the sequences belonging to each specific Baltimore class from the original training and testing sets. Table 1 provides the corresponding sequence 
numbers for these subsets.

Table 2 presents the testing accuracy for each Baltimore class using both the initial optimal weight and the weight after fine-tuning for each class. 
For Baltimore class VI and Baltimore class VII, the testing accuracy before fine-tuning is already 100%, indicating that retraining is unnecessary. 
In the case of Baltimore class I, II, III, and V, the testing accuracy before fine-tuning is satisfactory, but retraining can still lead to improvements. 
However, for Baltimore class IV, fine-tuning may result in over-fitting, where the testing accuracy decreases as the training accuracy increases. In 
summary, our findings indicate that the classification performance in subsets is generally good even before fine-tuning. Moreover, we have observed 
2087

that fine-tuning can further enhance the performance in many cases.
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Table 2

The testing accuracy for each Baltimore class before and 
after fine-tuning.

Baltimore class Before fine-tuning After fine-tuning

I 94.03% 95.19%

II 96.90% 97.72%

III 97.12% 97.51%

IV 92.07% 90.83%

V 88.98% 90.00%

VI 100% -

VII 100% -

Fig. 3. The optimal weight for each order and 𝑘-mer.

Fig. 4. The importance corresponding to the optimal weight.

3.3. The optimal weight and the corresponding importance

Now we turn our attention to the optimal weights themselves. The weight 𝑤𝑘𝑚 considered in this study is a 27-dimensional vector assigned 
to the statistical moments for 1-9-mers and orders 0-2. Fig. 3 presents a visualization of the optimal weight before fine-tuning. Normalization is 
performed to ensure that its maximum value is 1. Each row represents the weight for a specific order, and each column represents the weight 
for a particular 𝑘-mer. The visualization reveals that the weights for order 1 and order 2 elements tend to 0 as k increases, while the weight for 
order 0 elements initially increases and then decreases with the growth of k. This optimal weight provides valuable insights into integrating various 
statistical information within a biological sequence.

However, it is important to note that a high weight assigned to an element does not necessarily indicate its significant role in the classification. 
For instance, if two elements have similar weights but their corresponding moments have significantly different magnitudes, their importance in 
the classification task will not be equal. To address this, we introduce the concept of element importance. Let 𝑤𝑘𝑗 denote the weight for 𝑘-mer and 
order 𝑗, and 𝐸[𝑑𝑖𝑠𝑘𝑗 ] represent the mean distance for 𝑘-mer and order 𝑗. The importance 𝐼𝑘𝑗 of each element is defined as the product of its weight 
and mean distance, i.e., 𝐼𝑘𝑗 = 𝑤𝑘𝑗 × 𝐸[𝑑𝑖𝑠𝑘𝑗 ]. We utilize the concept of importance to further investigate the significance of each element. Fig. 4

illustrates that the order 1 elements with large values of 𝑘, particularly 6-9-mers, hold great importance. This observation provides an explanation 
for the notable improvement in classification results with the inclusion of higher 𝑘-mers in previous studies [17].

We also provide visualizations of the weight and the corresponding importance after fine-tuning in Fig. A.7–A.14. We can observe that the weight 
undergoes only slight changes, whereas the corresponding importance exhibits more significant variations. Furthermore, we find that the previous 
observations hold true after fine-tuning. The weight pattern remains consistent with what is shown in Fig. 3, with elements having high 𝑘 values in 
order 1 continuing to exhibit significant importance. The stability of these features indicates that the optimal metric is not merely a result specific 
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to a particular dataset but possesses a degree of generality.
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Fig. 5. The phylogenetic tree for Baltimore class II based on the optimal weight after fine-tuning.

3.4. The phylogenetic analysis for each Baltimore class

The optimal metric we have obtained provides a novel approach to constructing phylogenetic trees. Instead of relying on the identification and 
alignment of a common gene, which is challenging to find for viruses, we can directly utilize the entire genomes and use statistical moments to 
define the distance. Once a suitable metric for the genome is determined, we can extend it to define a metric for virus families using the Hausdorff 
distance. This metric enables us to perform phylogenetic analysis. In our study, we employ the BioNJ method [23] to construct phylogenetic trees 
for each Baltimore class.

Fig. 5 illustrates the phylogenetic tree for Baltimore class II, generated using the optimal weight after fine-tuning. Additional phylogenetic trees 
for other Baltimore classes are shown in Fig. A.15–A.18. It is worth noting that for class VI and class VII, there are insufficient families to construct 
trees. As for class IV, the weight before fine-tuning is applied due to the over-fitting issue.

We compared our phylogenetic results with those of the previous study [30]. At the phylum level, the previous study emphasized the similarities 
between Cossaviricota and Cressdnaviricota, which aligns with our findings. At the family level, most families within the same phylum exhibit close 
relationships in this tree. However, there are a few exceptions; for instance, two families within Hofneiviricota did not cluster together in a single 
branch. Similar phenomena are observed in other Baltimore classes. Overall, while our method can provide phylogenetic results of reference value, 
it does not ensure a comprehensive depiction of relationships between families. This limitation may stem from our optimal weight being trained on 
predicting family labels, which might not fully capture the relationship between families.

3.5. The impact of different taxonomic standards

Our classification of sequences is based on taxonomic standards determined manually. Different standards yield different family classifications 
for sequences, thus affecting the classification accuracy. In our previous analysis, we utilized taxonomic standards as of June 30, 2022, to maintain 
time consistency between the data and its annotations. To further illustrate the effectiveness of our method, we validate its performance under 
alternative taxonomic standards. We update the annotations to adhere to standards as of March 7, 2024 and employ the same data cleaning process. 
This results in 11,422 sequences from 148 families, which can also be found in https://github .com /BobYHY /OptimalMetric. (The variation in the 
number of families results from the splitting or restructuring of certain previous families into smaller units, while the alteration in the number of 
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sequences arises from the cleaning process.)

https://github.com/BobYHY/OptimalMetric
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Fig. 6. Comparison of classification accuracy in the latest taxonomic standard.

We repeat testing accuracy calculations in section 3.1. The testing accuracy achieved using the optimal metric was 77.7%. In comparison, the 
highest accuracy achieved by the NV1, NV2, NV3, Markov, Jensen, and Jaccard methods under different K-values were 74.3%, 74.0%, 69.6%, 
58.6%, 72.6%, and 60.6% respectively. (See Fig. 6.)

We can derive two insights from this comparison. First, our method remains superior to others under the new taxonomic standards, regardless 
of whether based on natural vectors or other approaches. This underscores both the effectiveness of our method and its adaptability to different 
standards. Second, the comparison between different taxonomic standards reveals a lower accuracy under the new standards compared to the 
previous ones. This could be attributed to several factors: Firstly, the increased number of families under the new taxonomic standards makes 
classification more challenging. Secondly, the old taxonomic standards align with the time of data acquisition, suggesting the need to incorporate 
all the latest data for improved classification under the new standards. Lastly, there may be issues with the setup of the new taxonomic standards 
that require improvement.

4. Discussion

In this paper, we started with the idea of maximizing classification capability and utilized the weight training approach to obtain the optimal 
alignment-free algorithm based on statistical moments. Then, we analyzed all viral reference sequences and calculated the optimal metric for viral 
genome space as Formula (12). (Please refer to Fig. 3 for the specific weights.) We validated its excellent classification performance.

𝐷𝑖𝑠𝑤 =
9∑
𝑘=1

2∑
𝑚=0

𝑤𝑘𝑚𝑑𝑖𝑠𝑘𝑚

= 3.5 × 10−2𝑑𝑖𝑠1,0 + ...+ 5.1 × 10−6𝑑𝑖𝑠9,2.

(12)

In future applications of this method, there is no longer a need to retrain the optimal metric. Instead, the weights calculated above can be directly 
applied. For instance, when given an unknown viral sequence, we can utilize these weights to calculate its distance from other sequences in the 
database directly, thus determining its most likely family membership.

Our method has two major advantages compared to mainstream alignment algorithms. Firstly, being alignment-free, this method provides a 
substantial increase in speed. For a sequence set of length N, where each sequence has a length of 𝑂(𝐿), the time complexity of performing multiple 
sequence alignment (MSA) is 𝑂(𝐿𝑁 ), while the time complexity of performing pairwise alignments for all sequences is 𝑂(𝑁2𝐿2). However, with 
our method, computing k-mer natural vectors and generating the distance matrix has a time complexity of 𝑂(𝑁𝐿 +𝑁24𝑘). Even when 𝑘 = 9, this 
complexity is significantly lower than that of using alignment methods on viral datasets. (In our dataset, the average sequence length is 34,872.) 
Secondly, in sequence comparison, we do not depend on conserved segments. Instead, we compare statistical patterns from a higher perspective. 
This allows us to offer high-quality analysis for sequences like viral sequences that do not contain conserved regions.

In comparison to other alignment-free methods, our algorithm also exhibits three major advantages. Firstly, previous alignment-free methods 
extracted valuable features, but the systematic integration of these features has not been thoroughly studied. Our algorithm provides a method for 
integrating information from an optimization perspective, offering new insights for subsequent research on alignment-free methods. Secondly, our 
method can self-adjust weights based on different datasets, reducing the impact of sequence type differences to some extent. Thirdly, experimental 
results demonstrate that our algorithm’s classification performance is significantly superior to previous algorithms.

Finally, from a geometric perspective, the optimal metric itself holds intrinsic significance. Past research on the geometry of genome space 
based on NV methods has extracted a series of geometric principles including the convex hull principle. However, the study of the metric itself has 
remained limited to empirical approaches. The metric serves as the foundation for the geometric structure. The optimal metric we have extracted 
sheds light on the manifold structure of the genome space to some extent.

Certainly, our method currently still has limitations that require further investigation in future studies. First, our objective function used for 
training is non-convex, which means that the uniqueness of the optimal solution and the global optimization cannot be guaranteed. While the 
practical significance of these locally optimal weights has been demonstrated, a more unique determination of the optimal solution in subsequent 
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studies would further enhance the geometric interpretation of this optimal metric. Second, our method is only suitable for relatively complete 
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sequences. If the data collected consists of only small fragments, such as in metagenomics, further research is needed to determine how to use our 
method to identify the types of these fragments.
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Appendix A

Fig. A.7. The optimal weight after fine-tuning (Baltimore class I).

Fig. A.8. The importance after fine-tuning (Baltimore class I).
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Fig. A.9. The optimal weight after fine-tuning (Baltimore class II).

Fig. A.10. The importance after fine-tuning (Baltimore class II).

Fig. A.11. The optimal weight after fine-tuning (Baltimore class III).
2092

Fig. A.12. The importance after fine-tuning (Baltimore class III).
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Fig. A.13. The optimal weight after fine-tuning (Baltimore class V).

Fig. A.14. The importance after fine-tuning (Baltimore class V).
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Fig. A.15. The phylogenetic tree for Baltimore class I based on the optimal weight after fine-tuning.
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Fig. A.16. The phylogenetic tree for Baltimore class III based on the optimal weight after fine-tuning.
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Fig. A.17. The phylogenetic tree for Baltimore class IV based on the optimal weight before fine-tuning.
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Fig. A.18. The phylogenetic tree for Baltimore class V based on the optimal weight after fine-tuning.

Appendix B. Supplementary material

Supplementary material related to this article can be found online at https://doi .org /10 .1016 /j .csbj .2024 .05 .005.
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