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A hybrid and scalable brain‑inspired 
robotic platform
Zhe Zou1, Rong Zhao1, Yujie Wu1, Zheyu Yang1, Lei Tian1, Shuang Wu1, Guanrui Wang1, 
Yongchao Yu2, Qi Zhao1, Mingwang Chen1, Jing Pei1, Feng Chen2, Youhui Zhang3, Sen Song4, 
Mingguo Zhao1,2* & Luping Shi1*

Recent years have witnessed tremendous progress of intelligent robots brought about by mimicking 
human intelligence. However, current robots are still far from being able to handle multiple tasks 
in a dynamic environment as efficiently as humans. To cope with complexity and variability, further 
progress toward scalability and adaptability are essential for intelligent robots. Here, we report 
a brain-inspired robotic platform implemented by an unmanned bicycle that exhibits scalability 
of network scale, quantity and diversity to handle the changing needs of different scenarios. The 
platform adopts rich coding schemes and a trainable and scalable neural state machine, enabling 
flexible cooperation of hybrid networks. In addition, an embedded system is developed using a cross-
paradigm neuromorphic chip to facilitate the implementation of diverse neural networks in spike or 
non-spike form. The platform achieved various real-time tasks concurrently in different real-world 
scenarios, providing a new pathway to enhance robots’ intelligence.

Humans have long aspired to develop an improved ability to handle multiple complex tasks in dynamic environ-
ments. Robots represent a physical manifestation of intelligence, particularly when placed in dynamic complex 
environments to make decisions and predictions. Although the operating principles of the human brain remain 
largely unknown, neuroscientific discoveries provide clues for designing intelligent robotic systems. Brain-
inspired research has thus attracted widespread interest as a promising pathway for developing highly intelligent 
robotic platforms.

Significant breakthroughs have been made in brain-inspired computing paradigms and hardware over the 
past decade1. Inspired by the human brain’s hierarchical topologies and parallel-processing networks, various 
artificial neural networks (ANNs), particularly deep neural networks, have achieved unprecedented success in 
numerous machine learning tasks2. For example, convolutional neural networks (CNNs) have surpassed human-
level performance in image recognition and classification3,4. Inspired by the spike patterns of human brain activ-
ity, spiking neural networks (SNNs) exhibit high bio-fidelity, rich coding with spatiotemporal information, and 
event-driven peculiarity, emerging as a prominent neural computing paradigm in processing dynamic sequential 
information with high energy efficiency5,6. Meanwhile, there is currently a trend toward integrating deep learn-
ing and neuroscience, providing a highly promising pathway to develop artificial general intelligence (AGI)7,8.

In parallel, rapid evolution in neural computing paradigms is also producing a proliferation of new types of 
computing hardware to accelerate computing. Distinct spike and non-spike computing paradigms have led to 
two developmental directions of computing hardware. Neural network accelerators are designed for optimiz-
ing operations in ANNs, such as ShiDianNao9, EIE10, and TPU11, which typically leverage parallel processing 
elements and efficient compression or data reuse. In contrast, neuromorphic chips support rich spatiotemporal 
bio-functionality, including Neurogrid12, TrueNorth13, SpiNNaker14, and Loihi15, providing high energy efficiency 
and event-driven representations. Some novel hybrid chip architectures have emerged, and Tianjic is currently 
the forerunner16,17.

Continued progresses in brain-inspired computing algorithms and hardware have resulted in substantial 
advancements in intelligent robots18,19. The intersection of robotics and neuroscience are endowing robots 
with intelligent perception, flexible movement and natural interactions with environments20. Some real-world 
applications have been demonstrated, including humanoid platforms21, robotic arms22, medical robots23, robot 
navigation24, and automated driving25,26 . These achievements have provided strategic opportunities to advance 
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the design of intelligent robots. Most of these platforms, however, have been designed to be task-specific in 
simplified scenarios and have limited ability to perform multiple tasks simultaneously. Thus, a robotic platform 
with the capability to efficiently handle multiple complex tasks in a dynamic environment would be a valuable 
development.

To promote robotic research by mimicking human intelligence, in the current study we developed a hybrid 
and scalable intelligent robotic platform based on an unmanned bicycle with primary modules including visual, 
auditory, motion and decision-making, which can deal with multimodal tasks simultaneously. Development of 
the platform involved three major challenges. First, because multimodal data-flows are constantly changeable 
and involve various information channels in the time and space, it is difficult to gather and handle different types 
of information from external environments. Second, because the integration of individual modules requires a 
high-level planner, determining how to dispatch them to accomplish comprehensive system-level behaviors is 
a challenge. Third, because evolution and continuous learning are important features of the human brain, intel-
ligent robots require scalability for network scale, quantity and diversity. However, it is difficult for a computing 
system to achieve this scalability due to hardware restrictions.

To overcome the abovementioned challenges, we proposed three design principles to develop the robot 
platform, inspired by the human brain (Fig. 1). First, inspired by the functional specialization of the cerebral 
cortex27 and the rich coding schemes of biological neurons (rate, temporal, and population coding)28, we devel-
oped a hybrid architecture that can implement flexible inter-network cooperation and integrate different coding 
schemes efficiently. In this way, we can leverage the distinctive advantages of spiking and non-spiking neural 
networks in terms of energy efficiency and performance accuracy. Second, to adapt to dynamic environments, 
we developed a high-level decision-making module based on a hybrid neural state machine (HNSM) to inte-
grate different modules flexibly, providing the capability to oversee and schedule different information flows, 
as well the capacity to be extended for dealing with increasing tasks during the implementation process. Third, 
inspired by neocortical regions organized with cortical columns29, we developed a scalable computing system 
based on our cross-paradigm neuromorphic chip, Tianjic, and a customized tool chain for hardware and software 
co-design16,17. The system has the potential to underpin brain-inspired system evolution and growth, similar to 
that exhibited in the human brain30.

On the basis of these design principles, we developed a systematic solution for building a brain-inspired 
robotic platform. The system architecture consisted of full network-based modules to interact with the environ-
ment and a cross-paradigm neuromorphic chip to support seamless integration of different neural networks. 
A set of approaches were implemented to improve the system performance, such as seamless transform for 
blending rich coding schemes, and network-based state machines for module cooperation. We experimentally 
demonstrated that the unmanned bicycle accomplished various real-time tasks concurrently, including object 
detection, tracking, voice command recognition, riding over a speed bump, obstacle avoidance, balance control, 
and decision-making in complex dynamic environments. Collectively, the scalability in both algorithms and 
hardware in terms of network scale, quantity and diversity enables the system-level complexity and continuous 
evolution to cope with the complex and dynamic environment. Such a hybrid and scalable robotic platform could 
enhance the development of intelligent robots.

Figure 1.   Intelligent architecture of the hybrid and scalable brain-inspired robotic platform. Software: 
Microsoft Visio 2019 MSO (16.0.10730.20102) 64-bit https​://www.micro​soft.com/en-us/micro​soft-365/visio​/
flowc​hart-softw​are .Adobe Photoshop version: 2015.0.0 20,150,529.r.88 2015/05/29:23:59:59 CL 1,024,429 × 64 
https​://www.adobe​.com/produ​cts/photo​shop.html.

https://www.microsoft.com/en-us/microsoft-365/visio/flowchart-software
https://www.microsoft.com/en-us/microsoft-365/visio/flowchart-software
https://www.adobe.com/products/photoshop.html
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Results
In the following section, we first present a system-level overview of the robot platform focused on two aspects: 
intelligent architecture and the hardware system. Next, we elucidate three key features, including hybrid network-
based module, flexible module cooperation and scalable neuromorphic computing. Finally, we demonstrate 
several implementations of the unmanned bicycle to evaluate our robot platform in real-world scenarios.

System overview. 

(1) Intelligent architecture. Our robotic platform adopted a hybrid-network modular design for perception, 
planning and execution. It consisted of visual, auditory, motion and decision-making modules as the primary 
configuration (see Fig. 1). Each module was built by a specialized neural network with spiking or non-spiking 
coding according to the spatiotemporal complexity of the data-flow, and can be improved iteratively with 
more training data or advanced learning rules. The HNSM-based decision module integrated multimodal 
information from the basic perception and provided instructions for motion. This hybrid and hierarchi-
cal organization together with the network-based decision module enables multi-network integration, flex-
ible cooperation of multiple modules, rich coding schemes, and system scalability to deal with increasingly 
demanding tasks in a dynamic complex environment, providing the foundation of continuous evolution.
(2) Hardware system. Our brain-inspired robotic platform was built on a modified electric bicycle31 equipped 
with a series of sensors and actuators to form a sensorimotor system with similarities to the human senso-
rimotor system (Fig. 2a). The platform collected multimodal information from its surroundings through a 
camera and a wireless microphone. A set of onboard sensors, including a laser-based speedometer, absolute 
encoder, attitude and heading reference system, worked together to determine the internal motion state of 

Figure 2.   Hardware system overview of the robotic platform. (a) Mechanical structure with key sensors 
and electronic parts. (b) Hardware architecture with communications between the scalable neuromorphic 
computing system and the electronic devices. Software: Microsoft Visio 2019 MSO (16.0.10730.20102) 64-bit 
https​://www.micro​soft.com/en-us/micro​soft-365/visio​/flowc​hart-softw​are.

https://www.microsoft.com/en-us/microsoft-365/visio/flowchart-software
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the platform. The movement control of the bicycle depended on a driving motor for speed change and a steer-
ing motor for balance-maintenance. All sensors and actuators were connected to a scalable neuromorphic 
computing system composed of an onboard Xilinx field programmable gate array (FPGA) and a Tianjic chip 
(Fig. 2b). The FPGA connected to sensors and actuators, and was dedicated to data acquisition, preprocessing 
and control instruction generation. Tianjic was used to implement hybrid architecture with diverse neural 
networks and rich coding schemes. The chip supported parallel processing of large networks or multiple 
networks by adopting a many-core architecture, reconfigurable building blocks and a streamlined data-flow 
with hybrid coding schemes.

It is worth to note that the system can be continuously improved by adding more modules to incorporate dif-
ferent types of sensors. For example, the visual module can fuse light detection and a ranging sensor, a dynamic 
vision sensor and other visual sensors. Moreover, the Tianjic chip is multi-chip extendable, which can upscale 
to support increased computing needs for multi-task implementation and increasingly complex environments.

Hybrid network module.  Efficient processing of multimodal data is challenging because multimodal 
information has different characteristics, such as the spatial nature of image information and the temporal cor-
relation of voice messages. In addition, the arrival time of events, the amount of information, as well as the 
dimensionality of data, are all diverse.

Our hybrid module-based system with different types of networks was compatible with rich coding schemes, 
which can overcome the above challenge and handle multimodal tasks. An illustration of the hybrid architecture 
and network structure is presented in Fig. 3. The system combined hierarchical topology and parallel network 
processing. To deal with spatiotemporal multimodal data, each module was designed according to the charac-
teristics of input data-flow. In general, spiking coding can naturally extract temporal correlations, and is more 
suited to handle sequence problems; in contrast, non-spiking coding, such as CNNs and MLPs, are more suitable 
for tasks with high spatial complexity. Thus, we developed a hybrid architecture that included a CNN-based 
visual module, an SNN-based auditory module and an MLP-based motion module. The HNSM-based decision 
module monitors different states of the platform, schedule diverse neural networks and fuse hybrid information 
flow between different modules.

The data-flow of each module as well as the communication between modules are also illustrated in Fig. 3. For 
the whole system, multimodal information from the external environment was captured through different sen-
sors (camera, microphone), and sent to the corresponding module (visual, auditory) along different data-flows. 
High-level semantic information was then fed into the decision-making module to schedule various functional 
states. Finally, the motion module integrated internal and external signals to control the movement of the bicycle 
platform. Specially, these data-flows were a mixture of spiking and non-spiking coding. To seamlessly integrate 
hybrid coding schemes, we used various methods for signal transformation, which will be described later.

For each module, we opened independent data paths, which were distinct in information representation, 
frequency and throughput. In the visual module, each frame of video was resized to a 70 × 70 gray image and fed 
into a CNN as multi-bit values, enabling rich environmental spatial information to be maintained with limited 
computing resources (Fig. 3a). In contrast, the raw audio stream was transformed into binary spike trains in 

Figure 3.   Networks structure and dataflow of the hybrid robotic platform. (a) Data flow diagram of CNN-
based visual module and the illustration of CNN (input, structure and output). (b) SNN-based auditory 
module and the illustration of intermediate data. (c) HNSM-based decision module. (d) Sub-assemble parts 
and dataflow of motion module, including three function cores and an MLP. Software: Microsoft Visio 2019 
MSO(16.0.10730.20102) 64-bit https​://www.micro​soft.com/en-us/micro​soft-365/visio​/flowc​hart-softw​are.

https://www.microsoft.com/en-us/microsoft-365/visio/flowchart-software
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the auditory module. After end-point detection32,33, the key frequency features were obtained by taking the Mel 
Frequency Cepstral Coefficient (MFCC)34. A Gaussian population35 was used to encode each MFCC feature into 
spike trains as input to a three-layer fully-connected SNN (Fig. 3b). For motion control, sequential signals were 
first generated by functional cores to merge with the steering commands from other modules as the compre-
hensive target angle. Data from all sensors were then integrated via the MLP network for angle control (Fig. 3d). 
The designs and training of each network-based module are described in the Methods.

Flexible module cooperation.  The integration of diverse perception information and the cooperation of 
different functional modules is critical for the intelligent robotic platform. Currently, finite-state machines are 
commonly adopted in building a decision-making module. But they rely on predefined states and rules, lacking 
flexibility and scalability in networks, states and learning transfer rules to handle dynamic information with dif-
ferent time scales, metric levels, and spatiotemporal features.

Here, we designed a hybrid network-based state machine, HNSM, for high-level decision-making, which 
can not only fuse hybrid data-flows of spike and non-spike signals, but also be trained to cope with different 
complexity situations. An illustration of the structure and data-flows of the HNSM-based decision module is 
shown in Fig. 3c. The state machine transferred from one state to another depending on the external stimuli 
and internal state. For each state, relevant modules were activated in response to different situations. We used a 
conversion interface for signal fusion and a network-based model for learning rules so that the HNSM exhibited 
various properties that supported the hybrid and scalable platform.

To merge hybrid signals with different coding schemes, the input and output interfaces to transform different 
signals were designed in a unified form. All signals within HNSM propagated in spikes. The non-spike exter-
nal signals were turned into spike trains to be consistent with the internal signals. For example, the multidigit 
value of the visual module was turned to one or zero by comparing with a threshold, while the spiking data of 
the auditory module remained intact. Thus, the HNSM had an event-driven attribute in response to changes in 
the environment. Furthermore, using a spiking information flow, the model could be reactive to multichannel 
signals with different frequencies. For example, when the operator gave a voice instruction or obstacles suddenly 
appeared, the HNSM received an external trigger and immediately changed to the response state. In addition, the 
accumulation mechanism of spikes was able to reduce interference. During obstacle detection, instead of single 
images, continuous signals are needed to determine whether obstacle recognition is stable, and the avoidance 
instruction is then generated.

The network-based state machine enables scalability to handle tasks with increasing complexity through train-
ing and self-learning. Our HNSM consists of three types of neuron populations: trigger (T), state (S) and output 
(O), and five connection matrices (T-T, T-S, S–S, S-T, S–O) (Fig. 4a). As a network-based model, the weight of 
connection matrices could be trained using sequences of pre-set states and external stimuli. More details regard-
ing the states, triggers and training rules are provided in the Methods. Using this method, when environmental 
changes and new states are added, the model was able to learn transition rules automatically from data. The new 
states were introduced in two ways: (i) the original module with a single network was extended to accomplish 
more tasks; (ii) the HSNM accommodates additional modules. We performed a series of experiments to evaluate 
the scalable platform, starting with basic tasks, and then gradually increasing the network complexity (Fig. 4b). 
The visual module was trained to recognize tracking objects at beginning. The network was then expanding to 
identify obstacles concurrently. Thus, a new state (S4) was supplemented for avoiding obstacles. To promote 
interactions with humans, an auditory module was added for voice recognition. In addition, new states (S2, S3) 
were defined so that the robot could turn and change speed according to a command. Owning to the scalable 
decision module, the bicycle platform was able to continuously develop.

Figure 4c plots the training error curve during the training process, where errors referred to the fault activi-
ties of neurons compared with the supervisor, and were accumulated during each epoch for model evaluation. 
For each epoch, the weights were updated in 100 iterations. The error gradually declined and became zero at the 
end of training (see Methods section for details). The final weights of four matrices are shown in Fig. 4d. Due 
to the one-to-one correspondence between external signals and trigger neurons, the T-T matrix was a diagonal 
matrix. In addition, when there was no trigger or a wrong external signal, the current state should be maintained. 
Hence, the state neurons would continue to fire by themselves and the S–S was displayed in a diagonal matrix too.

Neuron activities were represented by the membrane potentials of both trigger and state neurons under a 
series of external signals, which can indicate state maintenance and transitions (Fig. 4e and f). When the potential 
accumulated and exceeded the threshold (black dotted line), the corresponding neuron fired, activating a trig-
ger signal or a state output respectively. As each state only responded to specific triggers and other signals were 
treated as illegal, disturbances were suppressed leading to well-maintained states (Fig. 4e). Here, we used the 
current state as a switch. By multiplying with the state, the trigger neurons could filter out the illegal interference 
signals. Meanwhile, the state neuron would continue to maintain the current state. To evaluate the perform of 
HSNM and cooperation of networks, we designed a complex task with a transition sequence containing complete 
states to activate all modules of our hybrid robotic platform (Fig. 4f). The task involved all transition rules in 
Fig. 4b and each trigger or transition was executed immediately without any delay in between. This is an extreme 
and challenging test, because usually some states are maintained for a period of time before state trigger or 
transition, which is easier to perform. The results show that the system has flexible and flawless state transitions 
and a strong robustness against noise. When abnormal external stimuli were received (e.g., the blank trigger in 
Fig. 4f), false trigger signals were automatically shielded to ensure correct state transition. Hence, the interference 
disturbance caused by uncertain external stimuli from the environment were avoided, leading to stable outputs.
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Figure 4.   The development of HNSM and its results. (a) Evolution of HNSM in different task complexity. (b) 
Illustration of HNSM, including data flow, neuron definition, relationship of matrices and the whole structure. 
(c) The variation curve of error transfer during training. (d) The weights of T-T, T-S, S–S, S-T matrices. (e) State-
maintenance and disturbance rejection. (f) Showcase of a complex state transition sequence. Software: Microsoft 
Visio 2019 MSO (16.0.10730.20102) 64-bit. https​://www.micro​soft.com/en-us/micro​soft-365/visio​/flowc​hart-
softw​are MATLAB R2017a (9.2.0.538062) 64-bit (win64) https​://ww2.mathw​orks.cn/produ​cts/matla​b.html.

https://www.microsoft.com/en-us/microsoft-365/visio/flowchart-software
https://www.microsoft.com/en-us/microsoft-365/visio/flowchart-software
https://ww2.mathworks.cn/products/matlab.html
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Scalable neuromorphic computing.  To cope with the complex environment and increasing difficulty 
of various tasks, intelligent systems should be able to scale up to accommodate more and/or larger networks. 
Utilizing the flexibility and the scalability provided by the HNSM at the software level, as well as an in-house 
developed tool chain that can map heterogeneous multiple networks, we built a flexible and scalable comput-
ing platform based on our cross-paradigm Tianjic chip. Furthermore, we developed a configuration process 
to transform, map, and execute hybrid models on the Tianjic chip so that the network-based models can be 
implemented on neuromorphic chip through software and hardware co-design. As illustrated in Fig. 5a, the 
implementation architecture had three levels: (1) model level: providing a user interface as well as abstracting the 
coding scheme, structure and weight from the original network; (2) mapper level: transforming the network to 
a hardware-friendly model and mapping it on logic cores; (3) hardware level: generating a hardware configura-

Figure 5.   Scalable computing platform. (a) Three-level implementation architecture of Tianjic tool chain. (b) 
Four hybrid coding configurations for spiking and non-spiking dataflow. (c) Flow diagram of multi-network 
mapping strategy. (d) Illustration of hierarchy router structure. (e) Distribution of communication traffic in 
router for each core. (f) The power consumption for different core numbers. (g) Power consumption distribution 
of various networks. Software: Microsoft Visio 2019 MSO (16.0.10730.20102) 64-bit https​://www.micro​soft.
com/en-us/micro​soft-365/visio​/flowc​hart-softw​are MATLAB R2017a (9.2.0.538062) 64-bit (win64) https​://ww2.
mathw​orks.cn/produ​cts/matla​b.html.

https://www.microsoft.com/en-us/microsoft-365/visio/flowchart-software
https://www.microsoft.com/en-us/microsoft-365/visio/flowchart-software
https://ww2.mathworks.cn/products/matlab.html
https://ww2.mathworks.cn/products/matlab.html
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tion file for running the model on the Tianjic system. Using this architecture, we were able to implement various 
networks on the Tianjic chip automatically.

The computing platform was able to support scalability in network scale, quantity and diversity through: 
(1) unified function cores with reconfigurable units for rich coding schemes and hybrid models; (2) automatic 
soft-hardware tools with flexible mapping strategies for multi-network implementation and incorporation; (3) 
arbitrary routing topology with a hierarchical 2D-mesh structure for large-scale communication and infinite 
extension.

First, for a hybrid network, the input and output of the core can be configured as an ANN or SNN model 
independently. Four types of combination, including ANN, SNN, ANN to SNN and SNN to ANN (A2A, S2S, 
A2S, S2A) can be generated for homogeneous or heterogeneous networks (Fig. 5b). In the bicycle experiment, 
most of the transformation cores (A2S and S2A) were located between two networks and acted as the interfaces.

Second, for multiple networks, they were divided into single networks and each network was deployed step-
wise by the automatic tool chain without disturbance. The flow chart is shown in Fig. 5c. For a single network, 
the mapping complier transformed an original network model (usually a float model) to a hardware-friendly 
form. The parameters of the network were then allocated to multiple cores logically. Finally, the logical distri-
bution was mapped to physical placement. At this stage, routing table configuration, physical layout, working 
mode and all configurations were determined by an automatic tool. After all networks were located, the tool 
added the connections between them. If the coding scheme of the network output was different from the next 
network, transformation cores were added and the target address of router was set as the transformation cores 
or the next network directly.

Third, for large-scale networks, we adopted some optimization mechanisms to ensure that multiple networks 
could run efficiently on the chip. These mechanisms included a point-to-point routing scheme and an adjacent 
multicast routing strategy17. The cores communicated with each other via a 2D-mesh method. Using this archi-
tecture, multiple cores can communicate with each other. In this way, large-scale parallel computing with any 
number and size of networks can be achieved by tiling cores and chips (Fig. 5d). We used a simulated annealing 
algorithm36 to reduce the number of routing packets transmitted on each transmission path and reduce the 
impact of communication transmission on chip computing. Figure 5e shows the distribution of communication 
traffic of routing passes cross cores. The input and output routing packets of each core changed depending on 
time-step. Here, we collected all packets over a period of time and displayed the maximum number of each core. 
All packets on the many-core architecture are almost evenly distributed, avoiding congestion in an individual 
core.

With the above three features, we were able to map the hybrid networks to Tianjic chip and achieve high-
speed and low-power computing performance. The measurement and evaluation are described in the Methods. 
Table 1 lists the implementation performance of different networks in real-word environments. The clock was 
set to 300 MHz. All computations and communications were completed in 16.8 μs during each time phase, 
reflecting the minimum phase latency for guaranteeing accurate running performance. As shown in the table, 
the maximum event frequency did not exceed 200 Hz. Meanwhile, the running time of networks was less than 
the period of external signal, indicating that the system could handle all tasks in real-time. The many-core 
architecture enabled the real-time capability by tiling larger networks on more cores. The power consumptions 
of system with different scales are plotted in Fig. 5f. As core number increased, the system power consumption 
increased approximately linearly. The static power basically remained unchanged and only slightly increased 
when the core number exceeded the capacity of one chip.

For a real-world robotic system, the actual power consumption depends on practical requirements. These 
network-based modules handle different tasks. Hence, the scale of networks is different, which is the key influ-
ence factor on power consumption. In the bicycle experiment, 130 cores within one chip were used and the 
total dynamic power was 237.45 mW (marked as star in Fig. 5f), where the CNN for visual module occupied 
the largest part, about 83% (Fig. 5g). The computing system exhibited a high level of scalability for integrating 
the different scale, quantity and diversity of networks. Moreover, the system also has the potential for on-line 
multi-network reconstruction.

System‑level behaviors.  Robot operation in real world is challenging as it has to cope with many uncer-
tainties. In this work, we evaluated our unmanned bicycle platform through a series of real-world tests, including 
different road conditions, various obstacles, and ambient noise. Figure 6a shows some examples of the real-world 
scenarios. The unmanned bicycle accomplished a comprehensive range of behaviors, including detecting and 
tracking a person, recognizing voice commands, and taking corresponding action.

When road conditions were varied, such as playground, grassland, stone path, and carpet, the bicycle was 
able to maintain balance easily and drive over speed bumps (Fig. 6b), which was benefitted from the robustness 

Table 1.   Implementation results of different networks.

Network Structure Core number Event frequency (Hz) Running time (ms) Power (mW)

MLP 10–256-32–2 4 200 0.07 7.112

CNN 8C3-MP2-16C3-MP2-24C3-MP2-256–10 108 30 1.39 198.242

SNN 80–512-7 13  < 1 1.09 23.251

HNSM 6–9,9–9,9–6,6–6,6–6 5 200 0.07 8.845
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of MLP and the low latency of the system. The bicycle was able to follow a person who ran arbitrarily, and auto-
matically avoided obstacles. The tracking and obstacle avoidance performance is presented in Fig. 6c. If another 
person come into view suddenly, the bicycle was able to keep tracking the original target. Figure 6d shows the 
results of different speed levels and multiple motion patterns. The target angle of inclination was generated from 
instructions. The bicycle executed a circular line, an S curve, and a straight line under different velocities, and 
accomplished stepless switching between different speed levels by only one network.

These tests demonstrate the effectiveness of our robotic platform in handling multiple tasks in dynamic vari-
able environments. In summary, the hybrid intelligent architecture paves the way to enhance robots’ intelligence. 
Flexible multi-network cooperation based on HNSM and scalable software-hardware co-design system are the 
cornerstones for the hybrid and scalable brain-inspired robotic platform. In addition, it is worth to point out 
that this hybrid and scalable platform has the potential for iterative evolution by introducing more uncertainty 
and complexity, such as integrating more sensors and adding more functional modules for complex scenarios.

Discussion
This work reports a hybrid and scalable brain-inspired robotic platform that achieves multiple complex tasks 
simultaneously, involving multimodal perception, high-level decision-making and autonomous motion. The 
fundamental design principles of this platform are inspired by the human brain, including a hybrid architecture 
for integrating different coding schemes, a high-level decision-making module for network cooperation and a 
scalable computing system for evolution. Based on this platform, an unmanned bicycle was developed, which 
accomplished various tasks concurrently, including object tracking, obstacle avoidance, voice command recogni-
tion, balance control, and decision-making in various real-world environments.

Our hybrid and scalable system can bring several unprecedented benefits and potentials. First, the hybrid 
architecture that integrates computer science and neuroscience-oriented approaches will benefit from the tech-
nological advances in these two fields, greatly promoting the development of brain-inspired robotic systems. 
Second, the excellent scalability in the platform, algorithms and computing capability will allow flexible integra-
tion of more sensors and functional modules to deal with complex scenarios. Third, the use of cross-paradigm 
neuromorphic computing system in the robot platform can not only support large-scale and diverse networks, 
but also promote the development of online learning.

In summary, the system can serve as a general platform for a wide range of robotics research from fun-
damental theory to applications, including perception, cognition, auto-control, language comprehension, 

Figure 6.   Illustration of system-level behaviors performance. (a) The actual dynamic and complex environment 
with multiple tasks. (b) Various real-world road conditions and corresponding specifications. (c) The plots of 
relative yaw angles of the bicycle, and the target rotation angles generated by control module. The left y axis 
(yaw angle) is converted from object position predicted by CNN, and the right y axis (target rotation angle) is 
generated by MLP for handlebar control. (d) The performance of MLP-based motion module on different speed 
level, commands and motion patterns. Software: Microsoft Visio 2019 MSO (16.0.10730.20102) 64-bit https​
://www.micro​soft.com/en-us/micro​soft-365/visio​/flowc​hart-softw​are MATLAB R2017a (9.2.0.538062) 64-bit 
(win64) https​://ww2.mathw​orks.cn/produ​cts/matla​b.html.

https://www.microsoft.com/en-us/microsoft-365/visio/flowchart-software
https://www.microsoft.com/en-us/microsoft-365/visio/flowchart-software
https://ww2.mathworks.cn/products/matlab.html
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decision-making, learning and adaptation. In addition, the hybrid and scalable platform can be developed itera-
tively and continuously improved. For example, complex problems with high spatiotemporal information can 
be generated by randomly introducing new variables into the environment, such as different road condition, 
noises, weather factors, multiple languages, and more people. By studying the adaptation to these environmental 
changes, we can investigate some key challenges of AGI, such as generalization, robustness, and autonomous 
learning, promoting the development of AGI.

Methods
CNN‑based visual module.  To accomplish object detection, we follow the idea of the YOLO37 and directly 
infers bounding box coordinates and class probabilities of objects from image pixels. The predicted objects are 
the tracking human and the obstacle. We recorded about one-hour video that contains the outdoor environment, 
humans and the obstacle as the training data. Due to the continuity of video streams, only 1 frame in every 10 
frames is taken to ensure distinctions between two consecutive samples. So, the total dataset contains about 
10 k frames. These frames are labelled by a pre-trained reliable Mask-RCNN38 model to get precise bounding 
boxes and probabilities. Then it is randomly horizontally flipped. The labels contain central coordinates (x, y) are 
augmented correspondingly. The brightness and contrast of the image is randomly adjusted with range [0.875, 
1.125]and [0.5, 1.5], respectively as the training inputs.

Other than the model size, the bit-width of model parameters and intermediate data should also be addressed. 
Since Tianjic2 stores weights and propagate activations in INT8, our model should be quantized accordingly. 
Considering the chip’s hardware constraints, we use WAGE quantization method39 to restrict the bit-width of 
model parameters, where the bit-width of W, A, G, E is set to 8, 8, 32, and 32. Then we split the large convolution 
layer into smaller ones and distribute them into multi-cores.

SNN‑based auditory module.  We establish a three-layer SNN with fully-connected structure. The net-
work consists of the iterative leaky integrate-and-fire (LIF) neuron, which satisfies the neuronal membrane 
potential at time t, o(t) is the neuronal firing state at time t, urest following equation:

where u(t) is the neuronal membrane potential at time t, o(t) is the neuronal firing state at time t, urest is the rest-
ing potential, Vth is the firing threshold and set to 0.5. τ is the membrane decay constant and set to 0.9, which 
makes it compatible with leakage adaption in our hardware soma unit. At the output, we use the one-hot coding, 
which means that each output neuron represents one instruction. And we introduce a background neuron which 
corresponds to the case where network does not issue an instruction.

Since the spike signals not only propagate along the layer-by-layer spatial domain, but also along the temporal 
domain via the well-known leaky-and-integrating mechanism, we adopt the emerging spatiotemporal backpropa-
gation algorithm40 to train our model. This method converts the LIF model into an explicit expression, to be 
friendlier to back propagation, and compute the gradient information along the spatial dimension and temporal 
dimension for further employing the spatiotemporal dynamic of spiking neurons. Also, according to35, we use 
the rectangle function to approximate the non-differential points at spike firing times.

To evaluate the SNN performance, we take the similar mean square error function as loss function to meas-
ure the discrepancy between the averaged output results and the ground true command Y within a given time 
window T, and it yield

where oNt  denotes the output of network in the last layer N at time t. We set the sampling window T to 30 and 
max epoch to 200. Because each instruction has a different number of frames, we used the stochastic gradient 
descent method to train model. Also, we adopt the Adam (adaptive moment estimation method to accelerate 
convergence and set the hyper-parameters β1,β2, � to 0.9, 0.999, 1−10−8 . After quantized in INT8 and deployed 
on neuromorphic chip, the practical accuracy is 90.52%. Results show that the network can gain a high precision 
on both dataset and real environment.

MLP model for motion control.  The controller aggregates information of three motion sensors, one tar-
get angle and one speed coefficient, then outputs one target rotation angle to motor controllers. The descrip-
tions of six signals are shown in in Supplementary Table 1. Inputs were first scaled according to their physical 
domain and then quantized to INT8, followed by the concatenation process. Finally, they were fed into the MLP 
at 50 kHz. The single output was sent to the motor controller to tune the steering for balance maintaining, and 
human tracking or obstacle avoidance. Besides, the voltage coefficient was directly sent to another motor (back 
wheel) controller to adjust the speed. The total response time for a single input is about 60us (not include the 
motor), which we find is a suitable frequency to control the bicycle.

The MLP receives all kinds of sensors signal, and none of any prior knowledge or dynamics of the bicycle are 
used. To bring in historical information, we recall signals from the latest T-time steps and concatenate them as 
the final input for MLP. The length of history recall can reflect the high order information in time dimension. The 
length of history recall is optimized according to both the testing error and the control result on actual bicycle. 

(1)
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When recalling too much historical information (> 10 time steps), the handle bar seems to delay too long for 
turning and results in oscillation, even though its imitation loss (mean-square error) is lower, which indicates 
an overfitting problem of neural networks.

Design and training of HNSM.  In the bicycle experiment, the HNSM consists of 6 states (S0-S5) and 9 
triggers (T0-T8). The definition of states and triggers are shown in Supplementary Table 2. The experiment starts 
from the initial state (S0), where the bicycle goes straight and waits for instructions. When a voice command 
is sent out and recognized, the auditory module generates a trigger signal and automatically switches the state 
according to the command. If the command is “speed up” or “slow down” (T1), the bicycle executes the corre-
sponding command for speed change (S2) and then returns to S0 immediately by generating an internal trigger 
(T5). If the command is “left” or “right” (T2), it will be turning until a “straight” command (T6) is sent out. If the 
command is “follow me” (T0), it switches to the target tracking state (S1) so that the visual module is activated. 
The bicycle will then autonomously follow the person and take action in response to environmental interfer-
ences. For example, if an obstacle is detected, the bicycle will execute a ‘force turn’ instruction for obstacle avoid-
ing (S4). During this period, all stimulations are blocked until the turn is completed. When the tracking object is 
out of view, the bicycle goes straight and seeks people (S5). The state will remain until tracking target is detected.

The HNSM is trained using supervised learning. The training data are collected from real-world experiment or 
generated from simulation environment. They are sequences of states, triggers and outputs, labeled as the ‘super-
visory command’ (command includes state, trigger and output) at every time-step. We proposed a decoupling 
training method to train all matrices separately. For each matrix, the activities of relative neurons are variable 
and other neurons are set to the force command. For example, when training the S-T matrix, the output of S-T 
is compared with ‘supervisory trigger’ and the state is set to ‘supervisory state’ as the input. For each synapse in 
the axon-neuronal matrix, the weights are learned by an STDP-like rule:

where Wij denotes the synapse weight of the i-th input and the j-th output, I ,O, S denotes input, output and 
supervisor respectively, δ denotes the adjustment parameter and set to 0.1. f (·) describes whether the neuron 
is fired, which set to 1 when the neuron fired and set to 0 if not. The training is required to be performed by 
several learning epochs and iteration in each epoch to get stable synapse weights. In the bicycle experiment, the 
maximum number of iterations set to 100. There is a one-to-one correspondence between the state and output, 
so the S–O matrix is an identity matrix and can be omitted.

Characteristics of neuromorphic computing chip.  The scalability of the Tianjic architecture derives 
from its modular many-core structure. When cores are tiled on the chip and connected by a network on chip, 
these small bipartite graphs are combined to form a larger neural network. Each chip consists of 156 reconfig-
urable unified cores. Each core has five building blocks: axon for hybrid activation and spike buffer, dendrite 
for shared integration with a local synapse memory, soma for nonlinear neural transformation, and router for 
inter-core connection. These building blocks can be flexibly reconfigured to support different NN modes, and 
the resources are greatly shared. The unified routing packet scheme transmitted between cores can be parsed 
as either a multi-value activation data in ANN mode or a binary spiking event in SNN mode. Tianjic chip was 
fabricated using a 28-nm high performance low power technology. It has a on chip memory with total number 
of roughly 22 KB static random-access memory (SRAM) in each core. The max power of one chip is around 
1.1 W when clock is 300 MHz and voltage is 0.9 V, where consumption of single core is 5.56mW (SNN mode) 
and 6.27mW (ANN mode). The specification indexes show high performance of the Tianjic chip compared with 
existing neural network platforms, which is suitable to realize high-speed and low-power computing system.

Evaluation of network hardware implementation.  The computing system of bicycle is based on a 
single-chip PCB equipped with an Altera Cyclone 4 FPGA and communication interfaces like USB and SPI. 
We mapped the MLP, CNN, SNN and HNSM on Tianjic successively. To evaluate the performance of network 
implementation, we built a platform which provides input to the computing system and can test the power 
consumption. During the test, we first turned on different networks separately to test their consumption of 
processing single task. Then we measured the overall consumption of the network. According to requirements 
of bicycles in real-world, MLP and HNSM for control were producing 200 Hz control signals, CNN for visual 
were processing images at the speed of 30 fps, and the SNN for audio were recognizing voice commands received 
every second. In actual experiment, the system runs at 0.9 V, 300 M working conditions, and the total energy 
consumption is less than 0.4 W.
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