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Purpose: Metabolic reprogramming, as one of the hallmarks of cancer, shows promising translational potential for cancer diagnosis,
treatment and prognostic prediction. This study aims to construct and validate a prognostic prediction model for osteosarcoma based
on glutamine metabolism-related genes.
Materials and Methods: A group of glutamine metabolism-related genes was identified from a public database and intersected with
a list of osteosarcoma survival-related genes, and a risk score model based on sixteen glutamine metabolism-related genes was
developed by using LASSO penalized Cox regression analysis.
Results: The prognosis of patients in the high-risk group was significantly worse than that of patients in the low-risk group in the
training dataset (high- vs low-risk, 5-year overall survival: 11% vs 88%, p < 0.0001) and in two other external validation cohorts
(high- vs low-risk, 5-year overall survival: 39% vs 81%, p = 0.015; 50% vs 94%, p = 0.011).In addition, a novel nomogram was
constructed by integrating the risk score and clinical characteristics, including age, sex, metastasis status and chemotherapy response.
This nomogram had superior predictive power compared with a nomogram composed of only conventional factors. Gene set
enrichment analysis indicated that several well-known malignancy-associated gene sets, including MYC targets V1, DNA repair,
and unfolded protein response, were enriched in the high-risk subgroup.
Conclusion: A novel glutamine metabolism-related prognostic prediction model and nomogram for osteosarcoma was developed and
validated in the present study, which could predict the survival of patients with osteosarcoma and may facilitate individualized clinical
decision-making for patients.
Keywords: bone tumor, survivorship, amino acid metabolism, nomogram

Introduction
Osteosarcoma is a rare but highly malignant tumour arising most commonly in children and young adolescents.1

Advances in clinical treatments for this disease have almost completely halted in the four decades (since the 1980s),2

thus making a precise prognostic prediction model valuable for clinical counselling and guiding patient management to
potentially improve the survival of patients with osteosarcoma. Due to the complexity and heterogeneity of the
mechanisms of tumorigenesis and tumour development in osteosarcoma, traditional prognostic predictive factors, such
as age, sex, response to chemotherapy, and Enneking stage, are not highly efficient in predicting the survival of patients
with osteosarcoma. Thus, investigating a novel effective tool for robustly predicting the prognosis of patients with
osteosarcoma is of high importance.

Metabolic reprogramming, as one of the crucial hallmarks of cancer, plays a critical role in cancer survival and growth.3

In the 1920s, Warburg et al revealed that tumour tissues consumed much more glucose than surrounding normal tissues4 and
that tumour cells were characterized by excessive activation of anaerobic glycolysis as well as impaired aerobic respiration,5

which were also found in osteosarcoma.6,7 In addition to glucose, recent research has suggested that glutamine is also an
essential fuel for cancer, and relevant studies have promising translational value in the war against cancer.8,9
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In recent years, bioinformatic analysis combined with artificial intelligence has emerged as a powerful combination in
helping clinicians make precise diagnoses and prognostic predictions for patients with cancer.10–12 Interestingly, we
found that several prognostic prediction models constructed with metabolism-related genes have achieved excellent
predictive effects in glioma and gastric cancer.13,14 To date, however, no research has used glutamine metabolism-related
genes to assist in predicting the prognosis of patients with cancer. Given the essential role of glutamine in cancer cell
survival, we hypothesized that a model constructed with glutamine metabolism-related genes would be a valuable tool for
predicting the prognosis of cancer patients. Therefore, in the current study, we aimed to identify a group of glutamine
metabolism-related genes to construct a novel and practical predictive model for facilitating the clinical management of
patients with osteosarcoma.

Materials and Methods
Data Collection
The workflow chart of the current study was plotted in Figure 1.

To identify glutamine metabolism-related genes in osteosarcoma, we downloaded the GSE59931 datasets, which
profile the gene expression changes in the U2OS cell line (a human osteosarcoma cell line) under glutamine deprivation,
from the Gene Expression Omnibus (GEO) database (https://www.ncbi.nlm.nih.gov/geo/).

To construct the prognosis prediction model, we searched for the gene expression profiling of clinical osteosarcoma
samples from the GEO database. The inclusion criteria including 1) Datasets containing human sample of osteosar-
coma; 2) Datasets including clear follow-up information. The exclusion criteria including 1) Datasets derived not from
gene expression profiling. A total of three datasets (GSE21257, GSE39055, and GSE16091) were finally included in
current study. The demographic data of the included GEO datasets was presented in Table 1.

Data Cleaning
All of the above four datasets contained microarray data. The expression values of each gene were log2 transformed
(if not in raw data files). The probe identifications were then converted to gene symbols according to the annotation
file of each corresponding platform, and the average value was used as the final expression value if multiple probes
corresponded to the same gene symbol.

Identification of Glutamine Metabolism-Related Genes in Osteosarcoma
By using the Limma Package in R software, glutamine metabolism-related genes in osteosarcoma were identified as the
differentially expressed genes (DEGs) between U2OS cells growing in glutamine-containing or glutamine-depleted
medium. The threshold criteria for DEGs were set as |fold change| > 2 and adjusted p-value < 0.05.

Construction and Validation of the Glutamine Metabolism-Related Gene Signature
To obtain the best fit for prognostic prediction, we chose the GSE21257 dataset as the training cohort because it had the
largest sample size (n=53). First, all of the genes were divided into the high and low expression groups based on the
median expression values, survival-related genes were then extracted by using the univariate analysis (Log rank test, p <
0.05, “survival” package in R), and they were further intersected with glutamine metabolism-related genes. The
intersecting genes were then considered the candidate covariates in the final prognostic model. The least absolute
shrinkage and selection operator (LASSO) algorithm, which can provide good predictive accuracy by removing and
shrinking coefficients and eliminating irrelevant variables, was used to select the most important genes for predicting the
overall survival of patients with osteosarcoma (“glmnet” package in R).

Ten-fold cross-validation was applied to select the shrinkage penalty parameter lambda (λ). Two λ values (λ-min and
λ-1se) are highlighted by the vertical lines on the plot of λ versus the partial likelihood deviance. The genes selected by
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LASSO regression were then used to develop a formula comprising the gene expression value (expv) multiplied by the
corresponding coefficient:

Risk score ¼ ∑
n

i
Expv of gene ið Þ � coefficient of gene ið Þ

Patients in the training dataset were then divided into high- and low-risk groups by the median value of the risk score.
The optimal λ value was chosen by comparing the 5-year OS status through the Wilcoxon test. The genes under the
optimal λ value were then used to establish the glutamine metabolism-related signature.

Next, we applied this glutamine metabolism-related risk score model to the training cohort and two external
validation cohorts to assess its credibility by using time-dependent receiver operating characteristic (ROC) curve
(“ROCR” package) analysis. Finally, multivariate Cox regression analysis was performed to determine whether the

Figure 1 The workflow chart of the current study. DEG, differentially expressed gene; Lasso, least absolute shrinkage and selection operator.
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risk score is an independent prognostic factor for osteosarcoma. The proportional hazards (PH) assumption of the Cox
regression model was also tested.

Prognostic Prediction Nomogram for Osteosarcoma
To reinforce the predictive ability of the model, a nomogram was constructed by integrating the clinical characteristics
and the risk score derived from the novel glutamine metabolism-related gene signature to predict the three- and five-year
OS probabilities of patients with osteosarcoma. Next, calibration curves and the C-index values obtained by bootstrap
analysis with one thousand replicates were applied to assess the discriminative ability of the nomogram. The interactive
nomogram was then plotted using the R package “regplot”.

GSEA and Immune Cell Infiltration Analysis
To obtain better insight into the molecular features of the high- and low-risk groups, we used the hallmark gene set (h.all.
v7.3.entrez.gmt) as the gene set database and performed Gene set enrichment analysis (GSEA) to investigate the
enrichment of the featured gene set in the high- and low-risk subgroups (“clusterProfiler” package in R). In addition,

Table 1 Demographic Features of the Included GEO Datasets

Category GSE21257 (n=53) GSE16091 (n=34) GSE39055 (n=42)

Age (mean, range) 19 (3–97) 14 (5–47) 15 (4–71)

Gender

Male 34 17 22

Female 19 13 20

Not recorded 0 4 0

Histological Subtype

Osteoblastic 32 Not available Not available

Chondroblastic 6

Fibroblastic 5

Other 10

Location

Upper Extremities 8 8 Not available

Lower Extremities 44 20

Other 1 6

Huvos Grade

I/II 29 Not available 29

III/IV 18 13

Not recorded 6 0

Metastasis at diagnosis

Yes 14 3 Not available

No 39 31
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the immune cell infiltration patterns and immune status of the high- and low-risk groups were assessed by using the
CIBERSORT, TIMER and xCELL algorithms.

Statistical Analysis
All statistical analyses were performed in R (version 4.0.4, http://www.r-project.org). The correlation between the risk
signature and immune cell infiltration was assessed by Spearman correlation analysis. Statistical significance was defined
as a p value < 0.05 by a 2-sided test. All graphs were generated using the “ggplot2” package in R.

Results
Construction of the Glutamine Metabolism-Related Gene Signature
A total of 2427 DEGs related to glutamine metabolism were identified in the GSE59931 dataset, and 1184 genes were
associated with survival in the GSE21257 dataset. After intersecting these two gene groups, 78 genes were selected for
further LASSO penalized Cox regression analysis.

First, by using the ten-fold cross-validation method, two optional λ values (λ-min: 0.0876, λ-1se: 0.2802) were
calculated from the vertical lines while minimizing the partial likelihood deviance (Figure 2A and B). Risk score models
were then constructed according to the gene lists selected by LASSO regression with the two optional λ values, and the
survival status was further predicted based on the risk score groups. As shown in Figure 2C, the sixteen-gene risk score
model based on the λ-min value (Wilcoxon test, p = 5e−09) could effectively distinguish the survival status of patients
within the five-year follow-up period. However, with the model constructed with the λ-1se value (Figure 2D), no
statistically significant difference was observed (Wilcoxon test, p > 0.05), suggesting that the sixteen-gene risk score
model constructed with λ-min was suitable for further external validation.

The coefficient and expression pattern of each gene included in the sixteen-gene risk score model are plotted in
Figure 2E and F. The relationships between the expression levels of these 16 genes and the survival status are shown in
Figure 3. The final formula to calculate the risk score were as follows:

Risk score = ARL14*(−6.04) + CEACAM21*(−2.71) + NIN*(−1.79) + ANXA10*(−1.57) + TGFB2(−1.48) +
ZNF467*(−0.25) + HOXD11*(−0.17) + MAN1C1*(−0.09) + ALDOC*(0.02) + TCF4*(0.03) + NFKBIB*(0.62) +
KRT14*(0.72) + UBE20*(0.96) + TRAP1*(1.30) + CLGN*(2.47) + RGSL1*(5.53)

External Validation of the Glutamine Metabolism-Related Gene Risk Score Model
Based on the risk score formula, a risk score was calculated for each patient. The median value of the risk score was then
set as the cut-off value to stratify the patients in the datasets into the high- and low-risk groups. In the subsequent Kaplan-
Meier survival analysis, the prognosis of patients in the high-risk group was significantly worse than that of patients in
the low-risk group (GSE21257, 5-year OS: 11% vs 88%, p < 0.0001, Figure 4A). Similarly, we divided the patients in the
other two external validation cohorts (GSE16091 and GSE39055) into high- and low-risk groups based on the
corresponding median risk scores and found that patients in the high-risk group also exhibited significantly worse
survival than those in the low-risk group (5-year OS: 39% vs 81%, p = 0.015, Figure 4B; 5-year OS: 50% vs 94%, p =
0.011, Figure 4C).

To further validate the prognostic value of the risk score, multivariate Cox regression analysis was conducted, and the
results suggested that the risk score group remained an independent prognostic factor in the training cohort (GSE21257,
HR = 13.0, 95% CI: 3.5–48.7, p < 0.001; Table 2) and the external validation cohorts (GSE16091, hazard ratio (HR) =
5.6, 95% CI: 1.1–27.1, p = 0.034; GSE39055, HR = 12.6, 95% CI: 1.1–139.8, p = 0.039; Table 2) after adjusting for age,
sex, Huvos grade, and metastasis status at diagnosis. All of the above Cox regression models met the proportional
hazards assumption (Supplementary Table 1).

Subsequently, the predictive efficiency of the risk score model for three- and five-year OS was estimated by ROC
curve analysis. As shown in Figure 4D, the area under the ROC curve (AUC) in the training cohort was greater than 0.9.
Moreover, the AUC in both of the two external validation cohorts was greater than 0.75 (Figure 4E and F), indicating that
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the sixteen-gene-based risk model had high sensitivity and specificity and thus could serve as a useful tool for predicting
the prognosis of patients with osteosarcoma.

Construction and Evaluation of a Novel Predictive Nomogram
To reinforce the predictive power of the prediction model, a nomogram was constructed to predict the three- and five-
year OS probabilities by integrating all of the available clinical characteristics in the training cohort (Figure 5A). The
calibration plot shown in Figure 5B and C indicates the good performance of the nomogram in predicting the OS status.
Furthermore, we applied the nomogram to a randomly selected patient (GSM531287) in the GSE21257 dataset
(Figure 5D and E). In the latest follow-up of patient GSM531287, he was still alive 45 months after initial diagnosis.
According to the nomogram including the risk group as a predictive factor, the probability of patient GSM531287 dying
within 36 months of diagnosis was 11.1%, markedly lower than the probability of death predicted by the nomogram

A

B

C D

E

F

Figure 2 Establishment of the glutamine metabolism-related gene prognostic model by Lasso regression analysis. (A and B) Lasso coefficient profiles of the 78 candidate
genes. Two optimal lambda (λ) values (λ-min and λ-1se) were estimated according to the vertical lines with a minimizing partial likelihood deviance. The vertical axis
represents the partial likelihood deviance, while the horizontal axis represents the value of log(λ). (C and D) The scatter plot of the 5-year survival status of patients with
osteosarcoma based on the selected model based on λ-min (left, p = 5e-09, Wilcoxon test) and λ-1se (right, p > 0.05, Wilcoxon test). (E) Coefficients of the final selected
sixteen genes. (F) Expression profiles of the sixteen genes in GSE21257 dataset.

https://doi.org/10.2147/IJGM.S352859

DovePress

International Journal of General Medicine 2022:151002

Wan et al Dovepress

Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


Figure 3 Kaplan-Meier curves showing that patients with different expression level (divided by the median expression value) of the sixteen-glutamine metabolism-related
gene had significant different overall survival.
Abbreviation: expr, expression level.
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without the risk group (38.4%). These findings indicated that using the risk group as a covariate significantly enhanced
the credibility of the predictive model.

GSEA and Immune Infiltration Analysis
To investigate the potential heterogeneity of biological processes and pathways between the low-risk and high-risk
subgroups, we applied GSEA to the external training cohort GSE16091 and set adjusted p < 0.05, FDR q < 0.25, and |
NES|≥1 as the threshold criteria for significantly enriched gene sets (Figure 6A). The results revealed that several well-
known signaling pathways and processes that promote tumorigenesis, such as the Myc pathway, DNA repair, and
unfolded protein response, were enriched and activated in the high-risk group (Figure 6B–D). In contrast, several
biological processes and functions that can suppress tumour growth, including apoptosis and the interferon-γ response,
were inhibited in the high-risk group (Figure 6E–G). Similar results were found in GSEA of the GSE21257 and
GSE39055 datasets (Supplementary Figure 1A and B), in which the Myc pathway-, oxidative phosphorylation-, and
DNA repair (G2M checkpoint)-related genes were enriched in the high-risk group. These findings might reflect the
biological reasons for the different prognosis in the high- and low-risk groups.

Finally, to understand how the risk score reflects the immune environment of osteosarcoma, we uploaded the gene
expression matrices of the GSE21257 and GSE16091 datasets to the CIBERSORT and xCELL databases, which returned

A B C

FED

Figure 4 Validation of the sixteen-glutamine metabolism-related gene-based risk score model. Patients were divided into high- or low-risk groups according to the median
risk score. K–M survival curves showing the difference in OS between high- and low-risk patients in the (A) GSE21257 dataset (Log rank test, p < 0.0001), (B) GSE16091
dataset (Log rank test, p = 0.015), and (C) GSE39055 dataset (Log rank test, p = 0.011). Time-dependent ROC curve analysis for the prediction of survival in (D) GSE21257,
(E) GSE16091 and (F) GSE39055 datasets using the sixteen-gene prognosis model. The AUCs of 3-, and 5-year OS are shown in the figure.
Abbreviations: OS, overall survive; ROC, receiver operating characteristic; AUC, area under the curve.

Table 2 Multivariate Cox Regression Analyses of the Overall Survival in the Training and External Validation Cohort

Variable GSE21257 GSE16091 GSE39055

HR (95% CI) p HR (95% CI) p HR (95% CI) p

Age 1.0 (0.9–1.1) 0.634 1.0 (0.9–1.1) 0.619 1.0 (1.0–1.1) 0.649

Gender (male vs female) 1.0 (0.3–3.7) 0.962 1.0 (0.2–4.6) 0.988 1.6 (0.4–6.1) 0.488

Metastasis at diagnosis (yes vs no) 3.7 (1.0–13.6) 0.049 5.6 (0.8–36.9) 0.074 NA NA

Huvos grade (poor vs good) 2.1 (0.7–6.1) 0.175 NA NA 5.3 (0.6–44.1) 0.125

Risk group (high vs low) 13.0 (3.5–48.7) <0.001 5.6 (1.1–27.1) 0.034 12.6 (1.1–139.8) 0.039
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A

B

C

Figure 5 Construction and validation of the prognosis prediction nomogram. (A) The nomogram that integrated the risk score and age, gender, metastasis at diagnosis and
Huvos grade (poor indicates tumor necrosis > 90% after chemotherapy). (B and C) The calibration curves for three and five-year overall survival. (D and E) The predicted
survival chance in three and five years of patient GSM531287 in GSE21257 dataset by the nomogram integrating risk score or not. *p<0.05, ***p<0.001.
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Figure 6 GSEA of the GSE16091 dataset. (A) Bubble plot of the enriched terms (adjust p < 0.05, FDR q < 0.25, |NES|≥1, category = 10). Ridge plot of the top three
enriched terms in high-risk group (B–D) and low-risk group (E–G).

https://doi.org/10.2147/IJGM.S352859

DovePress

International Journal of General Medicine 2022:151006

Wan et al Dovepress

Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


the proportions of 22 subtypes of immune cells and the immune scores of the tumour samples, respectively. Interestingly,
there was no significant difference in either the immune cell composition or immune score between the high- and low-
risk groups, except for M1 macrophages, which were more abundant in the high-risk group in the GSE21257 dataset
(Figure 7A) but not in the GSE16091 dataset (Figure 7B). Similar results were also found in the correlation analysis of
the risk score and immune cell infiltration. No type of immune cell was correlated with the risk score in the GSE16091

A

B

Figure 7 Immune infiltration analysis. The immune score and immune cells proportion in the tumor microenvironment of patients in the (A) GSE21257 dataset and (B)
GSE16091 dataset.
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dataset, while only B cells (r = −0.328, 0.016) and macrophages (r = −0.408, 0.003) were inversely correlated with the
risk score in the GSE21257 dataset (Supplementary Figure 2). These results suggested that the immune status was almost
the same within the tumor microenvironment in patients in the high- and low-risk groups.

Discussion
No significant improvement in the treatment of osteosarcoma has been achieved in the past five decades.15 However,
recently, within the popularity of bioinformatics tools, prognostic models based on radiomic data or gene signatures
combined with clinical features have emerged as powerful tools for precisely grouping patients with different prognoses
and biological phenotypes;10–12 these tools could be used to optimize the clinical management of patients and may
therefore improve their outcomes.

Glutamine metabolism is essential for tumour growth,8,9 and several prognostic models based on metabolism-related
genes have shown excellent predictive effects in glioma and gastric cancer,13,14 Therefore, we hypothesized that
a glutamine metabolism-related gene signature could be used to predict the prognosis of patients with osteosarcoma.

Although no specific gene sets were marked as glutamine metabolism-related genes, we found that the GSE59931
dataset was appropriate for identifying glutamine metabolism-related genes in osteosarcoma, as it was designed for
comparing gene expression changes after glutamine deprivation in U2OS cells,16 a commonly used human osteosarcoma
cell line. Based on the identified glutamine metabolism-related genes in osteosarcoma, a sixteen-gene signature was
discovered by LASSO regression analysis. Unlike studies of previously reported prognostic models for osteosarcoma,
such as models using autophagy-related genes,17 super enhancer-related genes,18 and immune-related genes,19,20 our
study was the first to use two external validation datasets rather than only one validation cohort to evaluate the model’s
predictive accuracy, which is expected to substantially improve the model’s reproducibility and generalizability to new
and different patients. Most importantly, the risk score calculated from the sixteen-gene signature had excellent
performance in predicting the three- and five-year OS probabilities for all of the available osteosarcoma datasets in
the GEO database. Multivariate Cox regression analysis also showed that the risk score was an independent risk factor
for OS. Moreover, the nomogram integrating the clinical features and risk group had higher predictive accuracy than the
nomogram lacking the risk group. These results suggested that the prognostic model based on the sixteen-glutamine
metabolism-related genes had robust credibility.

Among the sixteen-glutamine metabolism-related genes, several have been found to be associated with glucose or
glutamine metabolism in other cancer types. UBE2O deletion in breast and prostate cancer models can switch off
metabolic reprogramming in tumour cells by activating AMPKα2a,21 In lung cancer cells, inhibition of TRAP1 increases
glutamine synthetase activity,22 consistent with the downregulation of TRAP1 expression when U2OS cells were
deprived of glutamine. A recent study also demonstrated that TRAP1 disruption in a panel of cell lines dysregulates
OXPHOS by inducing the anaplerotic utilization of glutamine metabolism to replenish TCA cycle intermediates,23

Considering that these genes were associated with the survival rate of osteosarcoma patients, it would be interesting to
further research how these genes affect the progression of osteosarcoma.

After establishing the prognostic prediction model, the biological heterogeneity of the high- and low-risk groups was
analyzed by GSEA. Not surprisingly, several important tumorigenesis pathways and processes, including Myc gene
targets, DNA repair, and the unfolded protein response, were enriched in the high-risk group, while apoptosis and
interferon-γ response were suppressed. This finding was in line with previous reports that glutamine metabolism had
a close relationship with the above-mentioned pathways or biological processes. Oncogenic Myc can upregulate
glutamine synthetase through DNA demethylation24 and protect endocrine-resistant breast cancer cells from the effects
of glucose deprivation by regulating the unfolded protein response and glutamine uptake.25 Moreover, a recent study
revealed that increased glutamine anabolism promoted radioresistance by facilitating nucleotide metabolism and sub-
sequent DNA damage repair.24 This result was also consistent with previously published researches in osteosarcoma.
Chen et al found that MYC was significantly upregulated in metastatic osteosarcoma samples and that high MYC
expression indicated shorter survival times in osteosarcoma patients; targeting MYC-regulated genes, including CDK6
and TGFB2, which were included in the sixteen-gene signature, could effectively suppress the malignant behaviour of
osteosarcoma cells.26 A recent finding also suggested that the c-Myc/TXNIP axis can induce the Warburg effect and then
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fuel osteosarcoma growth.27 DNA repair occurs continuously within regions of DNA damage induced by endogenous
and exogenous sources and is important for removing genetic aberrations and suppressing oncogenesis.28 However, once
a tumour has developed, enhanced DNA repair activity reduces the cytotoxicity of several commonly used chemother-
apeutic agents, including cisplatin and doxorubicin,29–31 both of which are classical agents used in osteosarcoma,32 and
thus might facilitate the growth of osteosarcoma. The unfolded protein response (UPR) is also a pro-survival mechanism
in cancer induced by disruption of protein homoeostasis that causes endoplasmic reticulum (ER) stress.33,34 Activation of
the UPR pathway was confirmed in four pairs of clinical osteosarcoma samples by proteomic analysis.35 In addition, the
UPR can protect tumour cells against cisplatin-induced apoptosis.36 These studies suggested that the risk group identified
by the sixteen-gene signature could well reflect the heterogeneity in the molecular biological features of patients.
Therefore, differentiating and treating patients according to the grouping of this model may improve the prognosis of
patients with osteosarcoma.

Another interesting finding was that the immune status was almost the same in the high- and low-risk groups,
suggesting that the risk score was not correlated with the immune status. This seems contrary to recent findings that
glutamine metabolism inhibition in tumor cells and myeloid-derived suppressor cells (MDSCs) enhance antitumor
immune response in preclinical breast cancer models.37,38 However, in the context of osteosarcoma, limited clinical
effects have been seen in osteosarcoma patients treated with immune checkpoint inhibitors (ICIs).39–41 The immune-
genomic landscape of osteosarcoma also indicates that the median immune infiltrate level is lower in osteosarcoma than
in other tumour types where ICI therapy is effective,42 suggesting that there is an insufficient amount of immune infiltrate
to elicit a meaningful response in osteosarcoma cells; thus, it not surprising that the immune status did not differ between
the high- and low-risk groups, although the risk scores is based on glutamine metabolism related genes. However, we
must note that the assessment of immune infiltration was conducted with in silico algorithms and biopsy samples, which
might not be enough to obtain a reliable evaluation of the immune microenvironment in osteosarcoma.

The limitation of this study is that the sample size of the included dataset is relatively small, therefore, if conditions
permit, it is best to validate the prognostic prediction model established in this study with a large sample of data, and
perform wet experiment to gain a deep understanding of the molecular mechanism behind the gene signature.

Conclusion
This was the first study that used a LASSO model to identify prognostic factors from the profile of glutamine
metabolism-related genes. We used all of the available osteosarcoma datasets containing follow-up information in the
GEO database to construct and validate our model. Therefore, the sixteen-gene-based signature as well as the nomogram
constructed from it may be used as novel clinical tools for grouping patients and designing specific treatment strategies,
thus improving the outcomes of patients via personalized therapy.
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