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ABSTRACT

The various roles of versatile non-coding RNAs typ-
ically require the attainment of complex high-order
structures. Therefore, comparing the 3D structures
of RNA molecules can yield in-depth understanding
of their functional conservation and evolutionary his-
tory. Recently, many powerful tools have been de-
veloped to align RNA 3D structures. Although some
methods rely on both backbone conformations and
base pairing interactions, none of them consider the
entire hierarchical formation of the RNA secondary
structure. One of the major issues is that directly ap-
plying the algorithms of matching 2D structures to
the 3D coordinates is particularly time-consuming.
In this article, we propose a novel RNA 3D structural
alignment tool, STAR3D, to take into full account the
2D relations between stacks without the complicated
comparison of secondary structures. First, the 3D
conserved stacks in the inputs are identified and then
combined into a tree-like consensus. Afterward, the
loop regions are compared one-to-one in accordance
with their relative positions in the consensus tree.
The experimental results show that the prediction of
STAR3D is more accurate for both non-homologous
and homologous RNAs than other state-of-the-art
tools with shorter running time.

INTRODUCTION

Non-coding RNAs (ncRNAs) play diverse cellular func-
tions in biological systems (1–4). Unlike mRNAs whose
primary sequences are genetic codes for protein synthesis,
the regulatory information of most ncRNAs is encoded
in their architectures: the secondary structures defined by
the hierarchical assembly of double-stranded stacks and
higher-order three-dimensional (3D) structures consisting
of packed secondary structure modules interlinked by ter-
tiary interactions (5,6). Therefore, the structural alignments
of such ncRNAs can provide essential insight to their func-
tional and evolutionary relationships. However, compared
to the development of the computational methods for RNA

secondary structure analysis, the progress of RNA 3D
structural alignment has been limited. Although the pro-
tein 3D structural alignment has been studied for years and
many sophisticated methods have been proposed (7–11), it
is hard to apply them directly to ncRNAs due to the differ-
ent properties of their secondary structures.

Recently, with the rapid growth of RNA deposition in the
Protein Data Bank (PDB) (12), a number of tools have been
developed specifically for the alignments of RNA 3D struc-
tures. Generally, they can be categorized into two groups.
In the first group, the base pairing interactions in the in-
puts are ignored or degraded into sequential information.
Then the RNAs can be compared using the quadratic-time
alignment algorithms. For example, both iPARTS (13) and
LaJolla (14) represent RNA backbones as sequences of let-
ters derived from the features of nucleotide torsion angles.
iPARTS continues to apply conventional pairwise align-
ment methods to the encoded linear sequences, while La-
Jolla searches the similar ‘n-grams’ (substrings of length n)
in the RNAs by using hash tables. Similar to LaJolla, FRIEs
(15) also uses the matching of k-mer RNA fragments. In
this method, a large set of training fragments from the PDB
are clustered into tens of classes based on their structural
properties. Each k-mer in an RNA can be labeled with the
probabilities in these classes, and thus the similarity of two
fragments can be measured with the dot product of their
probability vectors. Rclick (16) is another RNA 3D struc-
tural alignment tool based on the detection of local similar-
ity. The matches between n-body cliques (in which n mem-
ber nucleotides satisfy that all pair-wise spatial distances
are within a threshold) are determined by the superimpo-
sition of their atomic coordinates. With this local structural
equivalence, the optimal global alignment is generated by
using 3D least squares fitting. Unlike the previously men-
tioned tools, DIAL (17) incorporates base pairing interac-
tions into its dynamic programming scoring function, which
also accounts for sequence and torsion angle information.
A penalty is assigned if the pairing attributes (paired or
unpaired) of two aligned nucleotides are different. Elastic
Shape Analysis (ESA) models the RNA 3D structures not
as sequences but as curves in a four-dimensional space: the
atomic coordinates are in 3D space and the sequence infor-
mation is encoded as an additional dimension (18). Then
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the similarity between two RNAs can be evaluated by min-
imizing their geodesic distance with a quadratic-time dy-
namic programming algorithm.

The other group of RNA 3D structural alignment tools
relies on the comparison of base pairing interactions in the
molecules. In ARTS (19), two successive base pairs are used
together as a seed. The optimal matching of seeds in two
RNAs is extended globally to the unpaired regions and the
result is refined with the least squares fitting technique. Sim-
ilar to ARTS, the final results of R3D Align (20) are assem-
bled from the alignments of local neighborhoods. Neigh-
bors are the spatially closest nucleotides in one RNA, which
may imply interactions such as base pairs, tertiary interlinks
and stacking contacts. The structurally similar neighbors
in two RNAs are detected and the optimal combination
of these local alignments is determined by employing max-
imum clique finding algorithm on a compatibility graph.
SARA (21) does not discriminate the paired and unpaired
regions in RNAs. Inspired by a protein 3D structural align-
ment method named MAMMOTH (22), SARA describes
the backbone of an RNA as a series of unit-vectors. The
distances between the unit spheres of inputs can be mea-
sured with URMS (unit-vector root mean square) and the
corresponding global alignment is identified by using dy-
namic programming. The same procedure is applied only
to base pairs if the pairing information is provided. The
3D structural alignment of entire RNAs can be optimized
based on the mapping of pairing interactions. SETTER (23)
integrates stacks and loops into the RNA 3D structural
alignment method. It splits the RNA sequences into GSSUs
(generalized secondary structure units), each of which has
a loop, a neck and a stem. The highly similar GSSU pairs
are used as seeds to guide the alignment of other GSSUs. To
simplify the computation, the exact mapping of nucleotides
is ignored in this method.

It can be seen that the RNA secondary structural infor-
mation, in particular the hierarchical topology of stacks, is
not used in the reviewed methods. However, the enclosing
and juxtaposing relations between stacks provide more de-
tailed structural information than what has been used in the
existing tools, such as ‘paired’ or ‘unpaired’ attributes, base
pairing interactions and stack positions. The issue is the
difficulty of integrating the conventional RNA secondary
structure alignment algorithms into the RNA 3D structural
comparison. Given the high time complexity of these algo-
rithms [at least O(n3)] (24–27), applying them directly to the
relatively complicated atomic coordinates will increase the
computational complexity significantly.

Here, we propose a novel RNA 3D structural alignment
tool called STAR3D that explicitly makes use of the conser-
vation of secondary structures with high efficiency. It aims
at finding the consensus of stacks by using 2D topology and
3D geometry first, and then uses it to guide the alignments
of the loop regions. To achieve this goal, first, the sub-stacks
with similar 3D structures are detected and assembled into
conserved stack pairs. Then, a compatible graph is con-
structed based on their secondary structural relations and
spatial distances. In this graph, the maximum clique can be
converted into a tree-like consensus structure of two RNAs.
After that, the loop regions are ordered by the common tree.
Each of them only needs to be compared with its partner

by using 3D information. STAR3D has been implemented
in Java. The benchmarking results show that STAR3D out-
performs the state-of-the-art RNA 3D structural alignment
tools with high efficiency.

MATERIALS AND METHODS

Preprocessing

The inputs of STAR3D are the atomic coordinates of two
polymer RNA chains, which are presented in the corre-
sponding PDB files. They are preprocessed to obtain the
RNA secondary structures to guide the 3D structural align-
ment. All plausible pairing interactions are identified by us-
ing MC-Annotate (28,29). Among them, the Watson–Crick
base pairs (A↔U, C↔G) and wobble base pairs (G↔U) are
retrieved to form the RNA secondary structures (30). Other
pairing interactions are considered during the loop align-
ment. In order to avoid excessive computation, we eliminate
the crossing base pairs in the secondary structures by using
the program RemovePseudoknots (31) in the RNAstructure
package (32). The discarded stems are used as pairing inter-
actions in the loops.

Stack decomposition

Helical structured stacks are formed by consecutively
nested Watson–Crick base pairs and wobble base pairs. To
detect the 3D structural conservation in the stacks effi-
ciently, the double-stranded regions in the pseudoknot-free
secondary structures are decomposed into consecutive sub-
stacks of size k, namely k-stacks. A stack with l base pairs (l
≥ k) can be divided into l − k + 1 overlapping k-stacks. All
the possible k-stacks are collected for further processing.

Based on the definition of k-stack, we introduce some ba-
sic notations. Given an RNA A, the 3D coordinates of the
i-th residue are denoted as A[i]. At the secondary structure
level, the set of k-stacks in the pseudoknot-free structure
is denoted as P A. For a specific k-stack pA ∈ P A, the in-
dex of the leftmost base (5′ end) is represented as b(pA) and
the index of the rightmost base (3′ end) is represented as
e(pA). Thus the 3D coordinates of the double-stranded sub-
sequences in pA are A[b(pA). . .b(pA) + k − 1] and A[e(pA) −
k + 1. . .e(pA)], which are defined as 3D(pA).

Detecting the conserved stack regions

STAR3D identifies the stack components conserved in 3D
structures as anchors and uses them to constrain the global
alignment. Similar approaches have been applied in nu-
merous computation-efficient tools for genome alignment
(33,34) and RNA secondary structure alignment (35,36).
The difference is that STAR3D uses the 3D coordinates of
atoms to detect the potential homologous regions. Given
the fact that RNA stacks adopt an A-form helical confor-
mation, a major issue needs to be addressed: whether the 3D
structural similarity of conserved stack regions is significant
enough to distinguish them from the random ones. To an-
swer the question, we have conducted a statistical research
on the matched stacks in a hand-crafted alignment (37). The
survey results in Figure 1 indicate that the orthologous sub-
stacks have highly similar 3D structures, and they can be
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Figure 1. The normalized ranks of the matched stacks in two 23S rRNAs
(PDB 2j01, chain A and PDB 2aw4, chain B). The structure similarity is
measured with RMSD. For a stack of size k in 2j01, its RMSDs to all the
size-k stacks in 2aw4 are computed.

detected by evaluating RMSD. In our method, the k-stacks
(default value of k is 3) in the inputs are retrieved as the
building blocks for the larger conserved regions. Shorter he-
lices are not considered because of their low occurrence in
the real RNAs.

Given two input RNAs A and B, the two sets of k-stacks
P A and PB are sorted in ascending order by the leftmost
bases. The three-dimensionally conserved k-stacks in A and
B are determined by their RMSDs. Ci, j, the indicator of
conservation for pA

i and pB
j , is computed using the follow-

ing function:

Ci, j =
{

1 RMSD(3D(pA
i ), 3D(pB

j )) < rc

0 otherwise
(1)

The function RMSD measures the average spatial distance
between the superimposed residues in 3D(pA

i ) and 3D(pB
j ),

with rc being the RMSD cutoff (default value is 4 Å) (21).
In our implementation, the RMSD values are computed
with the Kabsch method (38) by using the geometric cen-
ter of six backbone atoms C3’, C4’, C5’, O3’, O5’ and P
(39). The indicators for all pairs of k-stacks (P A × PB)
are stored in a matrix. Then, we extend the consecutive
matches of k-stacks to form larger ungapped alignments.
For instance, pA

i , pA
i+1 and pB

j , pB
j+1 can be merged into two

aligned stacks of size k + 1, if Ci, j = Ci + 1, j + 1 = 1, b(pA
i ) =

b(pA
i+1) − 1, e(pA

i ) = e(pA
i+1) + 1, b(pB

j ) = b(pB
j+1) − 1 and

e(pB
j ) = e(pB

j+1) + 1. This procedure continues through the
diagonals of the matrix until all the constructed alignments
can not be extended any further. The two stack compo-
nents in an assembled alignment are called extended stacks,
written shortly as e-stacks. Correspondingly, the aligned e-
stacks form e-stack pairs. We define the sets of e-stacks in
A and B as QA and QB, and the set of e-stack pairs as
S. According to the definition of e-stack, the cardinalities
of QA, QB and S are identical. As a result, we denote the
members of a specific e-stack pair si(∈ S) as q A

i (∈ QA) and

q B
i (∈ QB) (si = (q A

i , q B
i )). Note that e-stacks may overlap

with each other [see Figure 2A]. Unlike k-stacks, the sizes
of e-stacks are not fixed. Therefore, we define a new nota-
tion l(qA) to represent the number of base pairs in qA. Hence
3D(qA) are A[b(qA). . .b(qA) + l(qA) − 1] and A[e(qA) − l(qA)
+ 1. . .e(qA)].

For some large RNAs, the numbers of e-stack pairs are
too large for computation. To determine the highly signifi-
cant ones, we consider two criteria: the RMSD between two
e-stacks and their size. The significant scores of e-stack pairs
are defined using the formula RMSD(3D(q A

i ), 3D(q B
i )) −

0.1 × l(q A
i ). They are sorted in ascending order and only 200

top-ranked pairs are retained for further processing. Based
on our study, 200 high-scoring e-stack pairs are sufficient to
cover most of the conserved helical regions in 23S rRNAs,
the largest RNAs in PDB. More e-stack pairs may be used
by setting the parameter if more complex structures are pre-
sented.

Assembling the consensus of stacks

To generate a consensus of stacks, the positions of e-stack
pairs in the secondary structures and 3D space are ana-
lyzed. In the pseudoknot-free secondary structure of A,
two e-stacks q A

i and q A
j may have one of the three follow-

ing relations: (i) q A
i and q A

j are overlapping (denoted by
q A

i ⊗ q A
j ); (ii) q A

i encloses q A
j (denoted by q A

i ≺E q A
j ); (iii)

q A
i is before and juxtaposed to q A

j (denoted by q A
i ≺J q A

j ).
In our algorithm, q A

i directly encloses q A
j if q A

i ≺E q A
j and

�k(q A
i ≺E q A

k ≺E q A
j ) (denoted by q A

i <E q A
j ). Similarly, we

say q A
i is directly before and juxtaposed to q A

j if q A
i ≺J q A

j

and �k(q A
i ≺J q A

k ≺J q A
j ) (denoted by q A

i <J q A
j ).

Notice that both ≺E and ≺J are strict partial orders, so
the non-overlapping e-stacks in an RNA can form a di-
rected acyclic graph. It is well-known that the RNA sec-
ondary structures have a tree-like topology (40–43). Thus
we model the non-overlapping relations of e-stacks in A as
a tree:

(i) Assign a pseudo stack q A
• (b(q A

• ) = 0, e(q A
• ) = |A| +

1, l(q A
• ) = 0) to the root node.

(ii) Connect q A
i to q A

j if q A
i <E q A

j .
(iii) Order the children nodes of q A

i in ascending order based
on ≺J.

We also define the compatible e-stack pairs: si and sj are
compatible if (q A

i , q A
j ) ∈ R, (q B

i , q B
j ) ∈ R, and R ∈ {≺E, 	E,

≺J, 	J}. The non-compatible e-stack pairs can not be in the
consensus together because their members are disordered in
the secondary structures.

Furthermore, we can prove the following lemma:

LEMMA 1 . For a non-empty set S ′ ⊆ S, if any two of e-
stack pairs si = (q A

i , q B
i ) and s j = (q A

j , q B
j ) ∈ S ′ are compat-

ible, the corresponding two e-stack sets have the same tree
structure.

PROOF . Without loss of generality, we assume that q A
i is a

child of q A
• and q B

i is not a child of q B
• . Then q B

i must be on
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A B C

Figure 2. A description of the basic data structures used in STAR3D. (A) The e-stack pairs in two artificial RNAs. The gray boxes show the e-stacks and
the dashed lines show the matching between them. e-stack 3 and e-stack 4 are overlapped with each other. (B) The compatible graph of e-stack pairs in (A).
Red color marks the enclosing relations and blue color marks the juxtaposing relations. The solid lines show the edges in the maximum clique. To simplify
the presentation, the 3D similarity requirement is not considered in the figure. (C) The tree-like consensus of e-stacks obtained from the clique in (B).

a subtree rooted at one child of q B
• . Thus at least two stacks,

q B
• and q B

j , enclose q B
i . However q A

i has only one ancestor
q A

• . It is a contradiction to the conditions, because si and sj

are not compatible. So the children of q A
• and q B

• are from
the same set of e-stack pairs. Based on Step (iii) of the tree
construction procedure, the orders of their children should
be the same. Then it is proved that the lemma holds for the
top two levels of the trees. Assume it is also true for the top
n levels. Then for an e-stack q A

i ′ at n-th level, its partner q B
i ′

must also be at n-th level and their relative positions on the
trees are the same. Assume an e-stack q A

j ′ is a child of q A
i ′

and q B
j ′ is not a child of q B

i ′ . First q B
j ′ must be on a subtree

rooted at q B
i ′ . Otherwise si ′ and s j ′ are not compatible. Sec-

ond, q B
j ′ can not be at (n + 2)-th or lower levels, otherwise the

numbers of the ancestors of q A
j ′ and q B

j ′ are different, which
is a contradiction to the conditions. So the children of q A

i ′

and q B
i ′ are also from the same set of e-stack pairs, and they

can be sorted by the juxtaposing relation. By induction, we
know the lemma is true.

Lemma 1 indicates how to find the 3D structural con-
sensus of the stack regions in two input RNAs. Thus, to
detect the e-stack configuration for the consensus, we con-
struct a compatible graph. The vertices are the e-stack pairs.
A vertex si is connected to another one sj if they meet
two requirements. First, si and sj are compatible, which en-
sures the e-stacks in them are well-ordered in the secondary
structures. Second, si and sj must satisfy RMSD(3D(q A

i ) ◦
3D(q A

j ), 3D(q B
i ) ◦ 3D(q B

j )) < rc, which implies that si and sj

share similar rigid transformation (‘◦’ means the concatena-
tion operation which joins the lists of 3D coordinates end-
to-end). Based on the graph properties, the optimal stack
configuration can be inferred from the maximum clique in
the graph, which is detected by using the Bron-Kerbosch al-
gorithm (44). After that, the 3D structural alignment in the
double-stranded regions is determined by the topology of
these vertices in the clique. Note that the e-stacks are the
maximal 3D conversed regions in the helices (they can not
be extended any more). Therefore, the 3D similarity require-
ment will filter most of the improper edges, and make the
compatible graph very sparse. Although normally finding
the maximum clique takes exponential time, it is solved very

efficiently in our method. Figure 2B and C show a compat-
ible graph and the corresponding consensus of stacks. The
detected consensus is the ‘core’ of the 3D structural conser-
vation and it will work as an anchor for the following loop
alignment. The double-stranded regions not in the consen-
sus, such as stack 4 in Figure 2A, are considered as loops
in the following computation. The corresponding Watson–
Crick base pairs and wobble base pairs are also used as in-
teractions in the loop regions to assist the alignment.

Loop alignment using 3D information

With the tree-like consensus of stacks, all the other regions
not in it can be divided into ordered loops. For one leaf
node, two hairpin loops enclosed in two e-stacks can be
identified. For the internal nodes, their enclosed regions are
split by their children nodes into internal loops, bulges, or
multi-loops. Hence, the numbers of loops in the inputs are
the same, and we can find the mapping of them by traversing
the tree. This approach has two benefits. First, the compu-
tational efficiency of loop alignment can be improved sig-
nificantly for large RNAs, because only the matched loops
need to be aligned together. Second, the superimposition of
stack regions can be used to guide the 3D structural align-
ment of loop regions. For the functional RNAs, the stack
regions are more conserved than the loop regions. Thus, any
RMSD computation during the loop alignment uses the ro-
tation and translation of the stack alignment.

A dynamic programming algorithm with quadratic-time
complexity is applied to the 3D structural alignment of two
loops. Assume the 3D structures of k-th pair of matched
loops are A[ik . . . ik + nk1 − 1] and B[ jk . . . jk + nk2 − 1]. To
simplify the description and computation, we denote them
as LA

k [1 . . . nk1 ] and LB
k [1 . . . nk2 ], whose starting index is 1.

Thus, the recursive function is (1 ≤ i ≤ nk1 , 1 ≤ j ≤ nk2 ):

Ii, j = max{Mi−1, j + εo + εe, Ii−1, j + εe, Di−1, j + εo + εe}
Di, j = max{Mi, j−1 + εo + εe, Ii, j−1 + εo + εe, Di, j−1 + εe}
Mi, j = max{Ii−1, j−1, Di−1, j−1, Mi−1, j−1} + α(i, j ) + β(i, j )

(2)

Here, εo and εe are the gap open penalty and gap extension
penalty. I, D, M denote the optimal alignment scores for
insertions, deletions and substitutions, respectively. These



PAGE 5 OF 10 Nucleic Acids Research, 2015, Vol. 43, No. 20 e137

functions are initialized with M0, 0 = I0, 0 = D0, 0 = 0, Mi, 0 =
M0, j = −∞, Ii, 0 = εo + εe × i, D0, j = εo + εe × j, I0, j = Di, 0
= −∞. The optimal score is max(Ink1 ,nk2

, Dnk1 ,nk2
, Mnk1 ,nk2

)
and the exact 3D structural alignment for the two loops can
be found by using traceback.

The scores for substitution contain two parts: �(i, j) and
�(i, j). The function �(i, j) is based on the 3D distance be-
tween two bases. The corresponding formula is:

α(i, j ) =

⎧⎪⎨
⎪⎩

−∞ di, j ≥ 2 · rc
mismatch score 2 · rc > di, j ≥ rc
0.5 × match score rc > di, j ≥ 0.5 · rc
match score 0.5 · rc > di, j

(3)

where di, j denotes the RMSD between two nucleotides LA
k [i ]

and LB
k [ j ]. Note that they are superimposed with the trans-

formation of aligned stack regions. To capture the backbone
conformation, STAR3D uses 3-nt regions, LA

k [i − 1, i, i +
1] for LA

k [i ] and LB
k [ j − 1, j, j + 1] for LB

k [ j ], in the compu-
tation of di, j. The possible values of di, j can be categorized
into three groups. The two nucleotides are not allowed to be
aligned if the spatial distance is too large (≥2 · rc). Other-
wise, they are defined to be ‘matched’ or ‘mismatched’ and
the matched nucleotides may be assigned with two different
scores.

The second function �(i, j) calculates the bonus scores for
the base pairs in loop regions. Pseudoknots, non-canonical
base pairs and canonical base pairs in the unaligned stack
regions are considered in the computation. Due to the po-
tential crossing in pseudoknots and non-canonical base
pairs, finding the optimal matching of these pairing interac-
tions is an NP-hard problem. To reduce the running time,
we propose a heuristic algorithm to solve the problem. Gen-
erally, each base has three possible pairs: Watson–Crick
base pair, Hoogsteen base pair and Sugar base pair (45).
All the predicted base pairs of two nucleotides LA

k [i ] and
LB

k [ j ] are compared in 3D space by using a similar approach
of comparing nucleotides in �(i, j). The match of two base
pairs is valid if the corresponding RMSD is less than rc. The
maximum number of matched pairs is returned as the result
of �(i, j). Thus the problem is converted into bipartite graph
matching, which can be solved by dynamic programming.

RESULTS

Benchmarking tools

STAR3D is benchmarked with ARTS, LaJolla (v2.2),
SARA (v1.0.7) and R3D Align in this section. Their batch
programs are available and widely used for performance
testing. In addition, they can output the exact one-to-one
mapping of nucleotides, which is important for the an-
alyzing of specific alignments of homologous and non-
homologous RNAs. R3D Align is dedicated to homologous
RNAs. To make the comparison fair, it is only used in the
experiments for homologous rRNAs. An in-house modi-
fication of LaJolla is implemented to output not only the
rigid transformation but also the exact alignments. All the
experimental results were performed with default parame-
ters. To evaluate the secondary structure similarity and opti-
mize the superimposition, ‘-b’ and ‘-s’ options are specified
for SARA. Both ARTS and LaJolla generate ‘disordered

alignments’, e.g. ai is aligned to bj, ak is aligned to bl, while
i < k and j > l. For ARTS, the largest proper alignment is
retrieved; for LaJolla, the improper alignment is discarded
since only one result is returned from the modified imple-
mentation.

Alignment quality assessment with R-FSCOR dataset

The R-FSCOR dataset (46) contains 192 chains collected
from the SCOR database (47). In SCOR, the chains with at
least three base pairs and unique function annotations are
clustered at 90% identity. The representative in each clus-
ter is selected into the R-FSCOR dataset. The performance
of four tools is compared by calculating PSI (percentage
of structural identity) and PSS (percentage of aligned sec-
ondary structure) values of the all-to-all alignments for
the R-FSCOR dataset. PSI is defined as the percentage of
aligned nucleotides in 4 Å with respect to the length of the
shorter sequence. PSS is defined as the percentage of aligned
base pairs in 4 Å with respect to the smaller number of base
pairs of two aligned RNA sequences. PSI and PSS have been
used as replacement for RMSD to evaluate the quality of
the 3D structural alignment (21,23). The base pairs in the
tested chains, including both canonical base pairs and non-
canonical base pairs, are predicted using MC-Annotate. All
programs in this experiment were executed on a CentOS
cluster with 100 nodes.

None of the tools can find alignments for all the inputs.
ARTS outputs 11 385 proper alignments, LaJolla outputs
7771 proper alignment, SARA outputs 18 335 alignments
and STAR3D outputs 17 455 alignments, respectively. For
STAR3D, no alignment is generated if the sizes of all po-
tential e-stacks in the inputs are less than k(=3). However,
the alignments for these inputs can be detected if a smaller
k (e.g. 2) is specified. In addition, RNAMotifScanX (48),
which is also designed by our lab for searching RNA 3D
structural motifs in the single-stranded regions, can be ap-
plied since those RNAs are relatively short and are domi-
nated by loops. STAR3D was compared with ARTS, SARA
and LaJolla one by one. To make the comparison fair, the
inputs are not considered if STAR3D or the corresponding
benchmarking tool can not generate alignments for them.
Table 1 summarizes the mean PSI and PSS values of four
tools in the experiments. It can be seen that STAR3D out-
performs the other three tools by a large margin: the PSIs
are increased by 13 to 30% and the PSSs are increased by
10 to 190%. The low PSS values of LaJolla may be caused
by ignoring of the secondary structural features. ARTS and
SARA have relatively high PSS values because the base
pairing information is integrated. For SARA, the optimiza-
tion step after the backbone alignment may contribute to
its better performance than ARTS. By considering the sec-
ondary structures of two input RNAs, STAR3D accurately
predicts the matching of the stack regions, which is demon-
strated by the high PSS values. And guided by the consen-
sus of stacks, STAR3D provides best global alignments in
all four tools without an optimization step, which is shown
by the high PSI values. We also find that the running time of
STAR3D for the whole procedure is much shorter (at least
1/10) than the other three tools. A detailed discussion about
the computational efficiency will be shown in a later section.
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Table 1. The comparison of mean PSI and PSS values between STAR3D and three other tools by using the R-FSCOR dataset

# of overlapped alignments ARTS SARA LaJolla STAR3D

PSI PSS PSI PSS PSI PSS PSI PSS

ARTS versus STAR3D 11 054 0.538 0.485 0.682 0.632
SARA versus STAR3D 17 454 0.601 0.580 0.679 0.638
LaJolla versus STAR3D 7397 0.580 0.251 0.754 0.729
Consensus 4451 0.600 0.549 0.683 0.668 0.627 0.318 0.764 0.729

The total number of inputs is 18 336. ARTS, SARA, LaJolla and STAR3D output 11 385, 18 335 , 7771 and 17455 alignments, respectively. Best performance
is set to bold.

A B

C D

Figure 3. The cumulative frequencies of the PSI and PSS values of STAR3D, ARTS, SARA and LaJolla in different experiments. (A) STAR3D versus
ARTS. (B) STAR3D versus SARA. (C) STAR3D versus LaJolla. (D) All four tools.

Figure 3 shows the cumulative frequencies of the PSI and
PSS values in different comparisons. Figure 3D is based on
the valid inputs for all tools. It can be seen that some align-
ments of SARA and LaJolla may not contain any base pair.
On the other hand, the PSS values of ARTS and STAR3D
are all greater than zero, because ARTS extends the base
pair mapping and STAR3D relies on the stack mapping.
What’s more, from Figure 3D, we can see that PSI curves
between 0.0 and 0.2 are very similar for all tools. The ma-
jor performance difference between STAR3D and the other
three tools is at the range from 0.4 to 0.7, which indicates
STAR3D may be more sensitive to the local conservation
of RNAs.

Structural alignments of non-homologous RNAs

Identifying the conserved regions in non-homologous
RNAs is a major aim of the RNA 3D structural alignment
tools. In this section, we will analyze the different strate-
gies of STAR3D and three other tools by showing the align-

ments of non-homologous RNAs. The RNAs in the exam-
ples are obtained from the R-FSCOR dataset.

The first example is the alignment between a GNRA mo-
tif (PDB 1zih, chain A) and a Deinococcus radiodurans (D.
radiodurans) 23S rRNA (PDB 1njo, chain 0). The aligned
regions and the corresponding secondary structures are
shown in Figure 4. Although it has a decent stack map-
ping (residue 2526 is paired with residue 2540 and residue
2527 is paired with residue 2539), the alignment produced
by LaJolla is disordered: residue 2526–2527 should be at the
5′ side of residue 2539. For SARA, the aligned region of
the rRNA is highly conserved with a segment of the mo-
tif. However, only one strand of the motif is aligned and
the corresponding loop regions are very different. One pos-
sible reason is that the unit-vectors used by SARA only
describe the conformation of the backbone. Furthermore,
the alignments of base pairs and the whole 3D structures
are computed separately. Thus it may overlook the pair-
ing information if the partial structure alignment achieves
the maximum score. ARTS finds the matching of base pairs
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A B C D

Figure 4. The alignment results for the GNRA motif (PDB: 1zih, chain A) and the 23S rRNA (PDB: 1njo, chain 0). (A) The result of LaJolla. (B) The
result of SARA. (C) The result of ARTS. (D) The result of STAR3D. The blue ribbons show the 3D structure of the GNRA motif and the red ribbons
show the 3D structures of the aligned regions in the 23S rRNA. The secondary structural alignments are listed below the 3D structure figures and the base
pairs are predicted by MC-Annotate. The green letters in the LaJolla alignment mark the disordered nucleotides (2526–2527).

Figure 5. The alignment result of STAR3D for the sarcin-ricin motif
(PDB: 483d, chain A) and the 23S rRNA (PDB: 1qvg, chain 0). The blue
ribbon shows the 3D structure of the sarcin-ricin motif and the red ribbon
shows the 3D structure of the 23S rRNA. The base pairs in the aligned
regions are predicted by MC-Annotate.

first and then extends it to both 5′ and 3′ directions of the
RNA strand. In Figure 4C, it can be seen that three base
pairs are matched very well, while the 3D structures of the
loop regions are distinct. This may be caused by the dif-
ferent treatment of stacks and the corresponding loops in
the computation of ARTS. For STAR3D, the entire mo-
tif (residue 1–12) is aligned to the residues 130–141 in the
rRNA. The tetraloop of the rRNA has the common struc-
tural characteristics of the GNRA motif: the four residues
are ‘GUAA’ and the loop is closed by a ‘C↔G’ pair. The
3D structural alignment in Figure 4D also shows that the
detected region in the 23S rRNA has a very high probability
to be a GNRA motif. Similarly to the strategy of ARTS, the
conserved stack regions are detected first in STAR3D. How-
ever, STAR3D ensures that the corresponding loops should
have similar rigid transformation with the stacks, otherwise,
the entire alignment will be assigned a low score.

The sarcin-ricin motif is an important structural motif
involved in the interaction between rRNAs and the elon-
gation factors (49). In the R-FSCOR dataset, there is one
chain of 23S sarcin-ricin motif (PDB: 483d, chain A) and
22 23S rRNAs, 11 from Haloarcula marismortui (H. maris-
mortui) and 11 from D. radiodurans. The 3D structural
alignments of the motif and all the 23S rRNAs are an-
alyzed. Compared with the GNRA motif, sarcin-ricin is
more complex: it contains 27 residues, 6 canonical base
pairs and 4 non-canonical base pairs. For ARTS and La-
Jolla, no highly conserved region is found in those rRNAs.
SARA can detect potential motifs in all the H. marismor-
tui 23S rRNAs, but none in the D. radiodurans 23S rRNAs.
STAR3D not only finds the motif candidates in H. maris-
mortui 23S rRNAs, but also in 6 of 11 D. radiodurans 23S
rRNAs. To verify the detected motifs, the docking results
of the alignments are analyzed. An example alignment of
the sarcin-ricin motif and one H. marismortui 23S rRNA
is shown in Figure 5. From the base pair profiles and the
3D structures, it can be seen that the hairpin loop (residues
2684–2710) has a high probability to be a sarcin-ricin motif.
By checking the base pair annotation of all the D. radiodu-
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Table 2. Running time (in seconds) of ARTS, LaJolla, SARA, R3D Align and STAR3D for the homologous alignments of 16S and 23S rRNAs

rRNAs ARTS LaJolla SARA R3D Align STAR3D

H. marismortui and E. coli 23S 117.2 119 886.7 27 035.2 751.7 1.7
H. marismortui and T. thermophilus 23S 98.5 125 835.9 26 184.8 573.4 2.0
E. coli and T. thermophilus 23S 79.7 152 635.6 27 467.3 653.2 1.4
E. coli and T. thermophilus 16S 20.1 16 209.3 4714.4 308.9 1.1

Best performance is set to bold. The preprocessing time is not included for ARTS, SARA, R3D Align, and STAR3D.

Table 3. Summary of alignments between the T. thermophilus and E. coli 16S RNAs (PDB: 1j5e, chain A and PDB: 2avy, chain A)

Manual 3D structural alignment

Crystallographer Composite ARTS LaJolla SARA R3D Align STAR3D

Number of aligned nucleotides 1488 1414 1116 1106 1343 1400 1466
Agreeing with Composite 1401 1414 1056 1101 1240 1362 1362
Agreeing with Crystallographer 1488 1401 1081 1030 1276 1354 1414

Best performance is set to bold.

rans 23S rRNA, we can find the structural variance in the
motif regions. For the five rRNAs in which STAR3D can
not detect the motifs, only four base pairs are annotated in
the helix of the motif regions. The different annotation be-
tween these regions and the sarcin-ricin motif, which has
five base pairs in the stack, disallows STAR3D to make the
correct prediction.

Structural alignments of homologous rRNAs

We also tested the performance of STAR3D on aligning
the 3D structures of homologous 16S and 23S rRNAs.
The benchmarking dataset includes three 23S rRNA chains
from three different species: H. marismortui (PDB 1s72,
chain 0), Escherichia coli (E. coli; PDB 2aw4, chain B) and
Thermus thermophilus (T. thermophilus; PDB 2j01, chain
A); and two 16S rRNA chains from two species: T. ther-
mophilus (PDB 2avy, chain A) and E. coli (PDB 1j5e, chain
A). We also used the two manually generated alignments of
these 16S rRNAs as references. The first one is the Crys-
tallographer alignment, which is implied in the numbering
system used by the crystallographers; the second one is the
Composite alignment, which is hand-crafted and based on
comparative analysis. They have been used as benchmark-
ing dataset before (15,20) (note that no such alignments are
available for 23S rRNAs). R3D Align is also included in this
benchmarking. All the tools are installed locally on a DELL
XPS Desktop with Intel i7-4770 CPU at 3.40 GHz with 16
GB of RAM. To make the comparison fair, only one thread
is allowed in the experiments.

First, we compare the running time of five tools for the
rRNA alignments (see Table 2). It can be seen that STAR3D
improves the time efficiency of the other tools by ten to a
thousand folds. The adoption of the MaxSub algorithm (50)
to refine the original 3D structural alignments may cause
the huge time consumption in SARA. For STAR3D, the
major running time reduction comes from the computation
of loop alignments. Assuming the total lengths of loop re-
gions for two RNA sequences are n1 and n2, the time com-
plexity of loop alignment is O(n1 × n2). In STAR3D, one
loop region only needs to be compared with another one
marked by the e-stacks. Thus the time complexity is O((n1

× n2)/m), where m denotes the number of e-stack pairs in
the consensus. With the relatively large number of stacks
in RNAs with complex structures, our method can signifi-
cantly improve the efficiency of the loop alignments.

Based on manually generated alignments of two 16S
rRNAs, the accuracy of five tools is also examined. The
results are shown in Table 3. It can be seen that both
R3D Align and STAR3D achieve the maximum true pos-
itive number if the background dataset is the Composite
dataset. The accuracy of STAR3D is slightly lower than
R3D Align because it detects more nucleotide matches
in the two sequences. However, for the Crystallographer
dataset, STAR3D outperforms the other three tools. So
STAR3D is not only highly efficient but also an accurate
algorithm when it is used to align large homologous RNA
molecules.

DISCUSSION

In this article, we have proposed a novel tool, named
STAR3D, for RNA 3D structural alignment. First it detects
the conserved double-stranded regions in two input RNAs
by joining the matches of small stack components. Then the
consensus of stacks is assembled based on the 3D structural
similarity and 2D compatible relationship. Its underlying
tree-like topology leads to the ordering of loop regions. In
addition, the rigid transformation of the aligned stacks can
guide the 3D alignment of the loop regions. As a result, each
loop only needs to be compared with its partner in the other
sequence by using the superimposition of the conserved
stacks. Finally, we combine the stack alignment and all the
loop alignments as the final result. This ‘two-step’ strategy
is derived on the basis of three observations. First, inser-
tions and deletions are rarely seen in the conserved helical
regions, which means that the ungapped extension is appli-
cable to the stacks; second, the 3D structural similarity of
conserved stacks is higher than that of random stacks; third,
the stack regions are easier to annotate, even for low resolu-
tion PDB structures, so the stack alignment can be used as
an anchor for the loop alignment. By integrating these prop-
erties into the design, STAR3D avoids the complex com-
putation of secondary structure comparison. Furthermore,
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the one-to-one loop alignments, which replace the all-to-
all base matching in entire single-stranded regions, reduce
the running time of STAR3D for large RNAs significantly.
The benchmark results show that the prediction accuracy of
STAR3D outperforms the state-of-the-art tools, and does
so with higher efficiency. What’s more, STAR3D can be eas-
ily implemented with multi-thread support. The detection
of e-stack pairs depends on ungapped alignment. The com-
putation at each diagonal can be performed at an individual
thread. For maximum clique finding, the Bron–Kerbosch
algorithm can be implemented in parallel too. In the last
step, the alignments of loop regions are independent, and
can be deployed in different threads as well.

A potential expansion of STAR3D is to implement a
local alignment version of the tool. From the experiment
of aligning the GNRA motif and the 23S rRNA, it can
be seen that STAR3D is sensitive to local similarities in
RNA 3D structures. On the other hand, it is natural to con-
vert STAR3D into finding local alignments. In the original
method, only the maximum clique in the compatible graph
is chosen to build the structural tree. To develop a local
alignment approach, we can change STAR3D to deal with
multiple cliques. For each one, a local alignment can be gen-
erated by only comparing the loops covered by the aligned
stacks. With this new method, we anticipate that more struc-
tural motifs will be found in the functional ncRNAs.

Another direction for future study is to incorporate com-
parative methods into STAR3D. There are two approaches.
The first one is to use the comparative methods to im-
prove the alignments of the RNAs with low resolution co-
ordinates. The excessive flexibility of atomic positions chal-
lenges the prediction of base pairing interactions, which
may affect the performance of STAR3D. To solve the prob-
lem, we plan to design an iterative pipeline to find the base
pairs in the low resolution RNA structures. First, we need
a homology of the target that has high resolution 3D struc-
tural data. Hence a better annotation of base pairs for the
target can be inferred by aligning two RNAs with STAR3D.
In the following run, these predicted base pairs can be used
as the secondary structural information in STAR3D to gen-
erate a more precise alignment. This procedure is continued
until no new base pairs can be detected for the target. Con-
sidering the high efficiency of STAR3D, the time consump-
tion of the pipeline should be practical. In addition, the low
resolution RNAs can be aligned to other RNAs more ac-
curately with the inferred base pairs. The second way is to
find the 3D structural conservation among the RNAs in one
family by using comparative methods. A hierarchical clus-
tering based method, which is similar to CLUSTALW (51),
is adopted. A 3D consensus structure of two RNAs can be
constructed by connecting the centroids of the mapped nu-
cleotides. Then, by merging the sub-clusters we can find the
consensus for the whole family and its corresponding mul-
tiple sequence alignment.

AVAILABILITY

http://genome.ucf.edu/STAR3D.
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