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Abstract: Passivated-carbon quantum dots (P-CQDs) have been attracting great interest as an an-
timicrobial therapy tool due to their bright fluorescence, lack of toxicity, eco-friendly nature, simple
synthetic schemes, and possession of photocatalytic functions comparable to those present in tra-
ditional nanometric semiconductors. Besides synthetic precursors, CQDs can be synthesized from
a plethora of natural resources including microcrystalline cellulose (MCC) and nanocrystalline cel-
lulose (NCC). Converting MCC into NCC is performed chemically via the top-down route, while
synthesizing CODs from NCC can be performed via the bottom-up route. Due to the good sur-
face charge status with the NCC precursor, we focused in this review on synthesizing CQDs from
nanocelluloses (MCC and NCC) since they could become a potential source for fabricating carbon
quantum dots that are affected by pyrolysis temperature. There are several P-CQDs synthesized
with a wide spectrum of featured properties, namely functionalized carbon quantum dots (F-CQDs)
and passivated carbon quantum dots (P-CQDs). There are two different important P-CQDs, namely
2,2′-ethylenedioxy-bis-ethylamine (EDA-CQDs) and 3-ethoxypropylamine (EPA-CQDs), that have
achieved desirable results in the antiviral therapy field. Since NoV is the most common dangerous
cause of nonbacterial, acute gastroenteritis outbreaks worldwide, this review deals with NoV in
detail. The surficial charge status (SCS) of the P-CQDs plays an important role in their interactions
with NoVs. The EDA-CQDs were found to be more effective than EPA-CQDs in inhibiting the NoV
binding. This difference may be attributed to their SCS as well as the virus surface. EDA-CQDs
with surficial terminal amino (-NH2) groups are positively charged at physiological pH (-NH3+),
whereas EPA-CQDs with surficial terminal methyl groups (-CH3) are not charged. Since the NoV
particles are negatively charged, they are attracted to the positively charged EDA-CQDs, resulting
in enhancing the P-CQDs concentration around the virus particles. The carbon nanotubes (CNTs)
were found to be comparable to the P-CQDs in the non-specific binding with NoV capsid proteins,
through complementary charges, π-π stacking, and/or hydrophobic interactions.

Keywords: microcrystalline cellulose; nanocrystalline cellulose; carbon quantum dots; functionalization;
passivation; antiviral therapy; norovirus
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1. Introduction
1.1. Nanocelluloses (NCs)

The most prevalent renewable organic substance on Earth is cellulose [1–4]. It can be
extracted from plants, algae, and bacteria. Higher plants have primary and secondary cell
walls that are made up of cellulose, hemicelluloses, lignin, and pectin. The distinctions
between primary and secondary cell walls in terms of chemical make-up and structure are
what give rise to the plant kingdom’s variety [1].

Several distinct types of nanoscale cellulosic fillers are possible due to the hierarchical
and multilevel structure of cellulose. In addition to its nanocrystalline forms, cellulose also
exists in an amorphous state that is randomly arranged in a spaghetti-like configuration,
giving it a lower density. On the other hand, because they are vulnerable to intense acid
attack, amorphous parts can be eliminated while leaving crystalline regions intact under
certain circumstances [1,3,5].

As shown in Figure 1, the anatomical structure of a typical wood tissue is clear
(Figure 1a), besides showing some macerated fibers (MFs), as presented at Figure 1b, which
are the famous natural resource of the cellulose precursor for the MCCs and NCCs products.
Furthermore, cellulosic microfibrils are confirmed to be a consequence of crystalline and
amorphous regions.

Cellulose-rich sources such as wood contain amorphous regions (Figure 1c) of cel-
lulosic microfibrils that are degraded by acid hydrolysis to produce highly crystalline
nanoparticles. Self-organization into a chiral nematic (cholesteric) liquid crystal phase with
a helical configuration is a remarkable feature of NCCs. With the help of this remarkable
property, dried NCC film can be utilized for security documents, mirrorless lasing, and
liquid crystal displays (LCDs and LEDs). Size, dimensions, and other NCCs’ geometrical
properties are also influenced by the composition of the cellulose precursors [2–11].

The amorphous regions are less dense than the crystalline domains and are constructed
in a random manner like a spaghetti pattern (Figure 1c). As a result, the crystalline
regions may remain unharmed while the amorphous regions are vulnerable to acid attack.
Depending on their precursors, the majority of cellulosic materials contain crystalline
and amorphous areas in varying proportions. The way that the cellulose molecules are
organized has a significant impact on the physicochemical characteristics of the material.
The majority of chemical reagents can only enter amorphous regions and can interact with
crystallite surfaces [3,5] to create MCC and/or NCCs (Figure 1d–k).

The MCC is a partially hydrolyzed cellulose [2,4]. It can be obtained industrially from
wood or lignocellulosic residues including linters, flosses, stalks, straw, rags, or shells of
agricultural crops. The MCC is favorable in pharmaceutical, food, and cosmetic industries
due to its high content of crystalline domains of the cellulosic microfibrils [2]. The MCC is
one of the most important tableting excipients due to its outstanding dry binding properties
of tablets for direct compression.

The nanometer range encompasses sizes larger than a few atoms and smaller than
the visible light spectrum [4,11]. Due to their distinct mechanical characteristics, chirality,
sustainability, and accessibility, colloidal NCCs rods with high aspect ratio (100–250 in length
and 4–10 nm in width) have gained significant popularity in international markets [3,5,11].

Illustrating the large scale of the NCCs noticed in Figure 1, it is arisen from a so-called
novel crystallographic phenomenon termed as crystal growth (Figure 1a–j). When NCC
particles are approaching each other in an acidic aqueous atmosphere at a relatively warm
temperature condition, they are susceptible to agglomerating electrostatically up to mi-
croscale particles, termed as pseudo-microcrystalline cellulose (PMCCs), which differ from
ordinary MCCs in terms of their origin. For more illustration, the PMCC is agglomerated
directly from NCC upon its crystal growth, while the ordinary MCCs are ingrained directly
from cellulosic microfibrils harvested from plant’s cell wall. Despite both PMCCs and
MCCs being situated within the microscale zone, they differ in their internal construction,
especially crystallographic properties, namely crystallinity index (CI), crystallite size (CS),
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and lattice spacing (LS). It is worth mentioning that the NCCs have higher CI and CS, and
lower LS than the MCCs, as examined by XRD.
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Figure 1. Formation of sulphated nanocrystalline cellulose (SNCCs): (a) SEM micrograph of anatomi-
cal structure of a typical wood tissue. (b) An optical image of macerated fibers. (c) The crystalline
and amorphous domains within a microfibril. (d) SNCCs crystallite grafted by sulphated groups.
(e) A monomeric molecule of SNCC. (f) TEM micrographs of SNCCs colony, and (g) Close-up
image the SNCCs colony. (h) SEM micrographs of spreading and converging of the SCMCs.
(i) A single colony with wider particles due to agglomeration. (j) SCMCs aggregation of single
and multiball-shaped microcrystalline cellulose (SMCCs). (k) Desulphated cellobiose unit.

For the sulphate groups (Figure 1e), grafted as a result of the acid hydrolysis of
cellulosic microfibrils or MCC using sulfuric acid, we think that these functional groups
may play an essential role in the agglomeration (upon crystal growth) and dissociation
of micrometric particles (upon ingraining the NCCs from MCCs). Before synthesizing
the CQDs from the SNCCs, they are desulphated using sodium hydroxide, as is seen in
Figure 1k [12].
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The nature of the cellulose precursors as well as the hydrolysis circumstances, such as
duration, temperature, ultrasound treatment, and material purity, affect the geometrical
properties of the NCCs, such as size, dimensions, and form [13–15]. The rod-like struc-
ture of the charged NCCs creates an anisotropic liquid crystalline phase above a critical
concentration [4].

For the medicinal applications of the NCs, cellulose nanocrystals have the potential
to be cutting-edge nanomaterials, according to Marpongahtun, et al. [11]. Due to their
exceptional qualities, including good mechanical capabilities, low density, and an inherent
renewable nature, nanocelluloses have gained a lot of attention in recent years [7]. These
qualities make them ideal candidates for use as reinforcing nanofillers for various polymers.
Additionally, CNCs have a number of benefits as starting materials for the creation of
carbon structures, including a high fixed carbon content, low cost, and the exceptional
ability to assemble into various morphologies (such as single nanoparticles, films, filaments,
or aggregates). Then, specific carbon structures can be created by thermally decomposing
these various CNC assemblies [16–21].

1.2. CQDs

The CQDs are small carbon nanoparticles (less than 10 nm in size) with some form of
surficial passivation [22–24]. They possess the following properties: brightly fluorescent,
non-toxic, ecofriendly, made with simple synthetic techniques, and have photocatalytic
skills comparable to those of nanoscale semiconductors [11,25–27]. They have also attracted
a lot of attention because of their stable photoluminescence properties, wide ranges of
excitation and emission spectra, excellent biocompatibility, and little cytotoxicity effects on
biological components. C-Dots are crucial in a number of applications [11]. The chemical
modification of CQDs by adding organic molecules to their surfaces has created a novel
class of materials with unique characteristics [23,28]. Valuable applications cover chemical
and biological sensing, bioimaging, nanomedicine, photocatalysis, and electrocatalysis [25].
Among their unique properties is also their photo-catalytic antimicrobial function [27,29].
The CQDs with visible light illumination were found to be highly effective in inhibiting
Escherichia coli cells, which can be attributed to their photodynamic effect [30].

1.3. P-CQDs

The surface modification of CQDs is an important target for selective application such
as bioimaging and can be performed by either passivation (Figure 2a–d) or functionaliza-
tion (Figure 2e) processes. The passivation process is the infliction of an outer layer of a
shield material over a core material via a chemical reaction. This process is performed
by constructing a core-shell model combined from passivation agents (such as EDA and
EPA) that surround the hard fluorescent core of the CQDs and improve fluorescence emis-
sions [31]. The process of surface functionalization (Figure 2e) involves adding functional
groups to the surface, such as carboxyl, carbonyl, and amine groups, which can act as
surface energy traps and change the fluorescence emission of CQDs. Surface chemistry or
interactions such as coordination, interactions, covalent bonding, etc., can result in surface
functionalization. The oxygenous characteristic of carbon quantum dots makes covalent
bonding with functionalizing chemicals possible.

Functionalized carbon quantum dots have superior photoreversibility, high stability,
strong biocompatibility, and minimal toxicity when compared to naked carbon quantum
dots. Occasionally, a small number of molecules can serve as both passivating and function-
alizing agents, requiring no extra post-synthesis modifications [29,32,33]. To compete with
their rivals, such as organic dye molecules and inorganic semiconductor quantum dots,
carbon quantum dots must have a high emission quantum yield. In addition to surface
passivation and functionalization, one can use the heteroatom and nitrogen doping of
carbon quantum dots to increase the quantum yield by up to 83%.
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Figure 2. Schematic construction of surface modification of carbon quantum dots (CQDs): a surface
passivation. (a) The spherical core and the thin layer shell of CQDs, (b) chemical structure of
2,2′-ethylenedioxy-bis-ethylamine (EDA) and 3-thoxypropylamine (EPA) which will be grafted on
the CQD surface, (c) passivated CQDs, where MW is molecular weight of the surface molecule, TG is
the terminal group of the surface molecule, FGY is fluorescence quantum yield, and PS is particle size.
(d) 3D-ilustration schematic model for the grafted EDA and EPA, and (e) surface functionalization.

1.4. Applications of CQDs
1.4.1. Industrial Field

CQDs have numerous applications in industrial fields [34] due to their enormous
surface area, high electric conductivity, and quick electric charge transfer, as well as high
physiochemical properties including crystallization, dispersibility in different liquids, and
photoluminescence. In particular, the small size, superconductivity, and rapid electron
transfer of CQDs endow the CQDs-based composites with improved electric conductivity
and catalytic activity. In addition, CQDs have huge surficial functional groups that could
facilitate the preparation of electrical active catalysts, which plays an important role in
electrochemistry due to promoting charge transfer within and/or between molecules of
these composites. By adjusting the size, shape, surface functional groups, and heteroatom
doping of CQDs, it is possible to tailor their distinctive electrical and chemical structures.
Rich organic groups that have been grafted onto the surface of CQDs make it possible
for water molecules to easily adsorb there while also providing active coordinating sites
for metal ions to produce CQD hybridized catalysts. The engineering of the electronic
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structures of the nearby carbon atoms within CQDs is greatly aided by the heteroatoms
(such as N, S, and P) doped in CQDs [35].

Moreover, CQDs have been utilized to fabricate thin-film composite membranes
for forward osmosis derived from oil palm biomass into polysulfone, which increased
water flux and improved antibacterial performance [36] and nanofiller [37], packaging
sheets [38,39], and lubricant additives [40].

Furthermore, there are many applications of CQDs in the field of electrocatalysis such
as the reduction and/or evolution of oxygen, hydrogen, or CO2, as well as bifunctional
catalysts, drug delivery, bioimaging, biosensing, optronic, solar cells, light-emitting diodes
(LEDs), and fingerprint recovery [35].

1.4.2. Medicinal Field

The CQDs were reported to have medicinal therapeutic effects [15,16,24,40–55]. It was
indicated that all these biomass-derived CQDs contain the nitrogen element, which might
be from the proteins, amino acids, and nucleic acids in the biomass [34]. Furthermore, metal-
containing CQDs (Figure 3) are divided into four types that can be used as antimicrobial
agents: metal ion-doped CQDs, metal nanoparticle-decorated CQDs, CD/metal oxide
nanocomposites, and CQD/metal sulfide nanocomposites [34]. For photoresponsive CQD,
photosensitive agents (photosensitizers) are sensitized by light in the presence of oxygen to
generate ROS, such as free radicals and singlet oxygen [56,57]
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Bacterial Field

Several mechanisms were proposed to illustrate the effects of CQDs on typical bacterial
cells [38,41,58–62]. The antimicrobial CQDs have been leveraged for coating the surface of
orthopedic implant materials [58].

Positively charged CQDs (p-CQDs) effectively combat multidrug resistant (MDR)
bacteria and can prevent the formation of biofilms, whereas n-CQDs significantly enhanced
bone regeneration [41].

Incorporating water-dispersible and photoluminescent CQDs into bacterial nanocellu-
lose (BNC) film was found to have protective activities against microbes, oxidants, and ul-
traviolet, making it suitable for food packaging [38]. The behavior of this biocomposite can
be revealed by the hydrogen bonding interaction between CQDs and the surficial carboxyl,
hydroxyl, and carbonyl groups of BNC, leading to the formation of the CQD–BNC film.

Bacterial biofilm (BB) is a key issue in the medical industry. The BBs were found to be
colonized and to damage a wide range of medical implants and devices [59].
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In addition, biofilms have major efficacy in many industries including oil, gas, and
water production [60] due to causing metal corrosion in engineered systems.

In the complex process of biofilm formation, microorganisms grow and attach to
surfaces in an irreversible manner. They also secrete extracellular polymeric substances
(EPS) that help the formation of an extracellular matrix (ECM) and alter the phenotype of
the organisms in terms of growth rate and gene transcription [61].

Although numerous conventional antimicrobial treatments have been employed to
stop the development of mature biofilms or to remove them, these agents frequently require
high dosages and are toxic, which poses serious risks to ecological and environmental
systems as well as public health. Recent research on the newly created CQDs has had a
substantial impact on efforts aimed at both prevention and eradication [11].

There are three general mechanisms illustrating the effects of CQDs on bacterial cells,
namely electrostatic interaction, the disruption of the cytoplasm in which the internalization
and intercalation occur in the bacterial membrane of the cytoplasm as a result of the charge
alteration on the cell surface, and photodynamic inactivation with reactive oxygen species
(ROS) production and DNA damage [62].

Viral Field

The semiconductor quantum dots can be used in labeling enveloped viruses for single
virus trafficking [63]. Due to the importance of human noroviruses (NoVs), this review was
focused on novel technical therapy using CQDs. NoVs are known for acute gastroenteritis
outbreaks [64–66]. Great considerations were directed towards chemical and physical
disinfection methods of human pathogens, especially norovirus (NoV) known as virus-like
particles (VLPs) GI.1 and GII.4 [67,68]. This is due to the fact that there are currently no
licensed vaccines or therapeutics for the prevention or treatment of human noroviruses.
Moreover, a lack of well-defined infection models for such viruses, either in vitro or in vivo,
has limited the development of their countermeasures [69]. Finally, these viruses are known
for their resistance against traditional sanitizers and disinfectants [70]. However, most of
these methods have been used for antibacterial applications and have been extended to be
antiviral agents.

In the last couple of years, the use of nanoparticles as an antiviral strategy has gained
much attention [14,15], which includes, but is not limited to, silver nanoparticles [71], gold-
copper core-shell [72], TiO2 coupled with the illumination of low-pressure UV light [73],
and passivated-carbon quantum dots (P-CQDs) which should be pithily considered [74].

A group of viruses known as NoVs (family: Calicivirdae) is distinguished by their
single-stranded RNA and lack of an envelope. They consist of six genogroups (GI-GIV),
which can be further divided into various genetic genotypes based on the sequencing of
their capsids [64]. Examples of these are GI, which has nine genotypes, and GII, which has
22 genotypes [64]. It is worth mentioning that human infection is caused by the genogroups
GI, GII, and GIV [75].

Gastroenteritis is a common cause of morbidity and mortality among all ages of
individuals, and it results from a large variety of bacteria, parasites, and viruses [66].
Serovar is a distinct variation that may occur within a species of bacteria, virus, or immune
cells, which can be used for classifying them according to their cell surface antigens.

It was reported by Patel et al. [66] that developing protocols for direct serovar pur-
poses will be an important area of studying NoVs due to these viruses having not yet
been cultivated. Expressed VLPs from different NoV strains were found to be useful as
immunogens to produce hyperimmune animal sera, and as antigens to assess serum anti-
body responses to infection. Identifying a cellular NoV receptor and researching potential
host–cell interactions have both been performed using VLPs. Human histo-blood group
antigens (HBGAs) have been shown to function as NoV infection receptors.

It is known that histo-blood group antigens (HBGAs) determine the host’s susceptibil-
ity to NoV infection. Protection from viral infection is provided by antibodies that prevent
NoVs–HBGAs binding [76]. The NoVs engage in strain-specific infection interactions with
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HBGAs in intestinal tissues as receptors or attachment factors [77,78]. It is important to
note that HBGAs are terminal assemblies of glycan chains that are complex and highly
polymorphic carbohydrates. They mostly consist of the ABO, secretor, and Lewis groups.
Moreover, HBGAs are widely distributed on the mucosal epithelia of the gastrointestinal
tract, where they serve as anchors for NoVs to begin infection [79]. According to earlier
research, intestinal bacteria that express HBGA or synthetic HBGAs may promote NoV
infection in B cells [80].

2. Material and Methods
2.1. Synthesis of CQDs

For the synthesis of the CQDs, their precursor differs according to the synthesis route
(Figure 4), either a top-down [25] or bottom-up route [81], and whether natural materials
(Tables S1 and S2), especially nanocelluloses (MCC and NCC), are used, as shown in
Table S2, or synthetic based precursors (Table S3). As shown in Figure 4, the ‘top-down’
synthetic route breaks down larger carbon assemblies such as graphite, carbon nanotubes,
nano-diamonds, or carbon nano-powders [25] into CQDs below 10 nm. On the other hand,
the ‘bottom-up’ synthetic route is a building process that begins from small precursors such
as glucose, carbohydrates, citric acid, and polymer–silica nanocomposites [81].
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The ‘top-down’ synthetic route breaks down larger carbon structures such as graphite,
carbon nanotubes, nano-diamonds, or carbon nano-powders [25] into CQDs below 10 nm
using laser ablation [59,74], arc discharge [82], high energy ball milling [83], and electro-
chemical techniques [84]. In addition, chemical oxidation with acid reinforces quick CODs
with good characteristics [85–87].

On the other hand, the ‘bottom-up’ synthetic route is a building process that begins
from small precursors such as glucose, carbohydrates, citric acid, and polymer–silica
nanocomposites [81]. There are several synthesis methods via the bottom-up route,
namely combustion/thermal/hydrothermal [88–93], plasma treatment [94], supported
synthesis [95–97], solution chemistry approaches [91,92,98–100], and the cage-opening of
fullerenes [101]. Regardless of their synthesis procedure, the resulting CQDs have different
particle sizes, and thereby require complex separation processes to obtain mono-dispersed
CQDs. Some of the explored post-synthesis separation techniques include dialysis [89],
chromatography [84,102], gel electrophoresis [103], and ultra-filtration [104].

Synthesis of CQDs from Natural Resources

CQDs can be ingrained from plethora of macro-natural resources, as shown in
Table S1 [11,16,105–140], as well as nano-natural resources of MCC and NCC
(Tables S1 and S2) [3,6–9,141–174]. It was reported by Marpongahtun, et al. [11] that
due to the fragmentation of the cellulose structure into tiny bits that carbonize to produce
the CDs, CQDs were probably created during the thermal decomposition of the NCCs.
Through a straightforward thermal pyrolysis method without any surface passivation,
this work has successfully demonstrated the conversion of cellulose nanocrystals from oil
palm empty fruit into fluorescing CQDs. The materials produced by pyrolysis at various
temperatures exhibit various fluorescence and morphological characteristics.

Through a straightforward thermal pyrolysis method without any surface passivation,
this work has successfully demonstrated the conversion of cellulose nanocrystals from oil
palm empty fruit into fluorescing CQDs. The materials produced by pyrolysis at various
temperatures exhibit various fluorescence and morphological characteristics.

Synthesis of Microcrystalline Cellulose (MCC)

The MCC can be synthesized by different processes such as reactive extrusion, enzyme
mediated, steam explosion, and acid hydrolysis. The latter process is performed using min-
eral acids such as H2SO4, HCl, and HBr as well as ionic liquids (Table S2) in order to dissolve
the amorphous regions, and, subsequently, the remaining the crystalline domains [6–9].
The degree of polymerization (DP) of the MCC is typically less than 400, while that for
NCC is more than 400 extending to several thousands of (1→4)-β-d-glucopyranose units.

After synthesizing MCC (Figure 5), CQDs were ingrained from MCC (Figure 6) and
prepared under hydrothermal conditions [16].
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Synthesis of Nanocrystalline Cellulose (NCC)

I. Ordinary Synthesis Methods

NCCs were synthesized by Hindi [3,5] by macerating cellulosic fibers with H2SO4, 64%
w/w at 70 ◦C and stirring continuously for an hour. Deionized water was used to dilute
the solution up to 20 times in order to stop the reaction. The unhydrolyzed fibers were
removed from the suspension by centrifuging it at 1500 rpm, then for 20 min at 14,000 rpm
to extract the NCCs. The precipitate was recovered, centrifuged again, and dialyzed until
neutralized against deionized water. The NCC synthesis did not undergo any sonication
exposure [3,5–10].

II. Cryogenic Synthesis Methods

A novel procedure for synthesizing NCCs, issued in December 2018, was invented
by Hindi and Abohassan [6]. The patentability cornerstone of this patent is using liquid
nitrogen vapors and/or its liquor for cooling the resultant NCCs to force them to be agglom-
erated, and, subsequently, precipitated. This cooling technique is termed as the lyophilizing
process or cryogenic method. SEM and TEM analyses revealed that the obtained forced
precipitates are nanoscale constructions (50–100 nm), although the agglomerated particles
may reach up to several micrometers in diameter via the crystal growth phenomenon [6].

To obtain these NCCs, oven-dried MFs powder (10 g) is indirectly subjected to liquid
nitrogen vapor. Then, once the frozen concentrated sulfuric acid (98.06%) is melted, it is
allowed to saturate the lyophilized MFs powder in a ratio of 1:1 (wt/wt) by suction. A
series of successive vacuums and releasing vacuums was performed as an alternative to the
blending process to assist and accelerate the complete penetration of the acid into all interior
pores of the MF structure. The acid-saturated MFs were re-lyophilized to maintain the
synthesized crystalline particles from corrosion by the acid. Once the hydrolysis process
had finished, a mixture of cold distilled water with tiny flakes in a ratio of 1:1 wt/wt
was added to the NCCs synthesized. Then, two subsequent vacuum filtration steps were
performed immediately after the dilution of the NCCs, namely primary filtration and
secondary filtration. The primary filtration was performed using a textile (mesh), while
the secondary filtration was applied using the Gooch crucible filter [6]. The simplicity of
this patent is extended to cover the collection of the NCCs without needing to use the
centrifugation process, obtaining nutrients’ NCCs via an ordinary washing process without
needing to use the dialysis process, and using simple machinery helpful for cheap mass
production of the NCCs.

III. Removal of NCCs’ sulfate groups

Sulfate groups were hydrolytically cleaved from CNCs following established proce-
dures [12]. About 1% wt. dispersions of CNCs were treated with 1 M NaOH at 60 ◦C for 5 h.
Then, the reaction was quenched by a 10-fold dilution with distilled water and centrifuged
at 12,000 rpm at 4 ◦C for 20,121 min. Consequently, desulfated CNCs were re-dispersed
and dialyzed against distilled water for one week to remove traces of NaOH.

Converting MCC into NCC

A simple, fast, economical, and ecofriendly method was invented for producing
NCC from MCC using frozen concentrated H2SO4 and cooling with hair-shaped ice [10].
There are many benefits of using MCC as a starting material instead of cellulosic fibers
for the synthesis of NCC, such as using less of the cellulosic precursor. As it consumes
less concentrated acid, the MCC precursor can be easily handled within the synthesis
apparatus because it is a powder, compared to the fibrous cellulose, and, finally, MCC is
less susceptible to degradation by acid hydrolysis compared to other cellulosic precursors.

Other limitations of conventional NCC production processes include the requirement
for the use of expensive machinery, such as sonication baths, sonication props, centrifuges,
dryers, lyophilizers, and spray-driers or a complicated series of process steps such as
requirements for centrifugation, sonication, neutralization, dialysis, and/or subsequent
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drying of an NCC product. Consequently, there is a need for a less complicated process
that produces NCC in less time and at a lower cost.

After synthesizing NCCs, they are converted to CQDs in the manner illustrated in
Figures 5 and 6 [11,16].

2.2. Synthesis of CQDs from Synthetic Resources

Besides the possibility of synthesizing CQDs from natural resources, they can be
produced from synthetic precursors such as suitable organic acids, salts, or carbonaceous
materials, as presented in Table S3 [14,74,75,83–86,173,175–192]. Moreover, the CQDs can
be synthesized from carbon nanopowders by the top-down route using nitric acid (8 M)
under reflux for 48 h (Figure 7). After cooling the reaction liquor and centrifugation at
1000× g, the supernatant is discarded, while the precipitate is dispersed in water. The
new liquor is dialyzed and centrifuged at 1000× g to retain the supernatant. Upon the
subsequent dehydration, nanometric CQDs can be collected and are used in the subsequent
functionalization process [15,29,32,33].

Polymers 2023, 15, x FOR PEER REVIEW 14 of 34 
 

 

dehydration, nanometric CQDs can be collected and are used in the subsequent function-

alization process [15,29,32,33]. 

 

Figure 7. Synthesis of CQDs from carbon nanopowders. 

2.3. Syntheses of P-CQDs 

The difference between the functionalization and passivation processes of a CQD to 

produce P-CQDs is shown in Figure 2. For the passivation process, two different P-CQDs 

can be synthesized, namely EDA-CQDs using 2,2′-ethylenedioxy-bis-ethylamine [15,29], 

and EPA-CQDs using 3-ethoxypropylamine, as presented in Figure 2b–d [15,29,32,33]. 

Furthermore, the surface functionalization of CQDs can be achieved by gifting chemical 

groups such as carboxyl, hydroxyl, oxygen atom, etc., to the CQDs’ surface (Figure 2e). 

Figure 7. Synthesis of CQDs from carbon nanopowders.



Polymers 2023, 15, 2660 13 of 32

2.3. Syntheses of P-CQDs

The difference between the functionalization and passivation processes of a CQD to
produce P-CQDs is shown in Figure 2. For the passivation process, two different P-CQDs
can be synthesized, namely EDA-CQDs using 2,2′-ethylenedioxy-bis-ethylamine [15,29],
and EPA-CQDs using 3-ethoxypropylamine, as presented in Figure 2b–d [15,29,32,33].
Furthermore, the surface functionalization of CQDs can be achieved by gifting chemical
groups such as carboxyl, hydroxyl, oxygen atom, etc., to the CQDs’ surface (Figure 2e).

As shown in Figures 2 and 8, the synthesized CQDs are chemically passivated to yield
either EDA- or EPA-CQDs [40]. First, the CQDs are allowed to react with SOCl2 in order
to form the acid chloride intermediates which are more active than their carboxylic group
precursors, and form amides by a reaction with the amine-terminated molecules [15].
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2.3.1. Characterization of Nanocelluloses

There are huge studies that were conducted to characterize the suitability of different
natural precursors for the synthesis of CQDs [190,191].

In order to evaluate the MCC quality, several characteristics were tested, including
particle size, density, compressibility index, angle of repose, powder porosity, hydration
swelling capacity, moisture sorption capacity, moisture content, crystallinity index, crystal-
lite size, and mechanical properties such as hardness and tensile strength. Furthermore,
thermogravimetric analysis (TGA) and differential thermal analysis (DTA) or differential
scanning calorimetry (DSC) are also important properties to evaluate the thermal behavior
of the MCC under thermal stresses.

2.3.2. Characterization of CQDs

Several techniques are used to characterize the CQDs such as nuclear magnetic reso-
nance (NMR), X-ray diffraction (XRD), transmission electron microscope (TEM), Fourier
transform infrared spectroscopy (FTIR), fluorescence spectrophotometer, ultraviolet (UV)
spectroscopy, UV–vis absorption spectra, and atomic force microscopy (AFM), as reported
by Xu et al. [192], Singh et al. [59,193], and Joo et al. [63]. Moreover, the interactions of
various polypeptides with individual carbon nanotubes (CNTs), both multiwall (MW) and
single wall (SW), were investigated by Li et al. [194] using atomic force microscopy (AFM).
The characterization procedures were performed to test for bacteria [13,61,195–197] and
viruses [15,16,24,197–209].

2.3.3. Evaluation of Viral Therapeutic Efficacy of P-CQDs

Briefly, saliva samples from healthy adult volunteers, including blood type A, B, and O,
are collected [15]. The pretreatment process is performed using phosphate-buffered saline
(PBS). The plates are blocked with Super-Block T20 (PBS) blocking buffer as shown in Figure
S5. Collected saliva samples from individuals with blood types A, B, and O are collected
and pretreated with phosphate-buffered saline (PBS). The samples are immediately boiled
for 5 min and centrifuged at 10,000× g for 5 min. The collected supernatant is diluted to
1:2000 in PBS. For coating the plates with HBGAs, an aliquot of 50 µL saliva dilution was
used to coat 96-well plates at 4 ◦C overnight. Unbound saliva was removed and the wells
were rinsed three times with super-block T20 (PBS) buffer to yield a high signal-to-noise
ratio in the detection system [15]. Noticeably, a similar difference in effectiveness between
EDA-CQDs and EPA-CQDs was found in their antiviral function [27], where EDA-CQDs
were more effective than EPA-CQDs in inhibiting norovirus virus-like particles binding
to histo-blood group antigen receptors, due primarily to the difference in surface charge
status between the two CQDs.

The final solution is treated with 3,3′,5,5′-tetramethylbenzidine (TMB) peroxidase
developer, and the absorbance is measured at the wavelength of 450 nm using a microplate
reader (Figure S2).

As presented at Figure S3 [15,77,79], the enzyme-linked immunosorbent assay (ELISA)
test is used to evaluate the binding capacity between the EDA-CQDs and EPA-CQDs and
human NoVs–VLPs antibody (GI.1 or GII.4) using two standard antibodies: (1) primary
antibody, namely mAb 3901 for the strain ‘GI.1’, or mAb NS14 for the strain GII.4, and
(2) secondary antibody such as horseradish peroxidase (HRP) having 44,173.9-dalton
glycoprotein with 6 lysine residues for labeling goat anti-mouse IgG antibody [15]. It
produces a colored, fluorometric, or luminescent derivative of the labeled molecule when
incubated with a proper substrate, allowing it to be detected and quantified [194].

The sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) test
and Western blotting protocol (Figure S4) are used for evaluating the effect of EDA- and
EPA-CQDs on VLP capsid protein. Different concentrations of EDA- and EPA-CQDs (20 or
60 µg/mL) are applied to treat VLPs (GI.1 or GII.4) [15].

On medium-binding 96-well polystyrene plates, EDA- and EPA-CQDs at various
doses ranging from 0 to 60 g/mL are employed to treat either GI.1 or GII.4 VLPs. The
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reaction solutions are removed and the wells are twice washed with phosphate-buffered
saline (PBS) following the addition of a specific amount of PBS, agitation, and incubation
for 30 min.

For one hour, PBS-blocking buffer is used to block the wells. Each well is twice washed
with phosphate buffered saline with tween 20 (PBST) buffer after the blocking solution has
been discarded. After that, 50 aliquots of 1 g/mL anti-GI are added. To interact with the
bound GI.1 or GII.4 VLPs, 1 VLP antibody (mAb 3901) or anti-GII.4 VLP antibody (mAb
NS14) is added to each well. Each well is put into a solution containing goat anti-mouse
IgG that has been HRP-labeled before being incubated at 37 ◦C for 1 h. The wells are then
twice rinsed with PBST. PBST is used to wash the plates. Tetramethylbenzidine (TMB)
peroxidase is used to create the end product, and its absorbance is measured at 450 nm.

The gel containing the VLPs-treated P-CQDs (GI.1-VLP/EDA-CQDs and GI.1-VLP/EPA-
CQDs) is used for staining (Figure S5) and Western blotting (Figure S6). The gel used for
staining was previously prefixed with a 50% methanol and 7% acetic acid solution, stained
by GelCode Blue stain, and imaged using an infrared imaging system as explained.

For 30 min, 1.5 mL centrifuge tubes were continuously shaken at the setting level
of 2 at an ambient temperature. Following the CQDs treatments, 5 µL of 1 × NuPAGE
LDS sample buffer, 2 µL of 1 M DTT, and 3 µL deionized water were added to each tube.
After 10 min of incubation at 70 to 80 ◦C, all of the samples were placed onto 2 precast
1.0 mm × 10-well NuPAGE® 4–12% Bis-Tris gels (Life Technologies, Grand Island, NY,
USA). For each well, the loading volume was adjusted to be 10 L.

The gels were run for one hour at 200 V in 1 MOPS SDS running buffer. One gel was
used for Western blotting, and the other was used for staining. The gel for staining was
pretreated for 15 min with a solution of 50% methanol and 7% acetic acid, and then washed
three times for 5 min with deionized water. The GelCode Blue stain was applied to the
gel and shaken continuously for 1 h before being washed with deionized water for 1 h to
remove the stain. Infrared imaging equipment was then used to image the gel (Figure S5).

As presented at Figure S6, regarding Western blotting, the gel is treated with NuPAGE®

Transfer Buffer and 10% MeOH packaged within the nitrocellulose membrane using Hoefer
Semi-Dry Transfer Apparatus. The membrane is blocked with blocking buffer and PBS.

The gel was transferred to a nitrocellulose membrane for Western blotting (Figure S6),
which is blocked using blocking buffer and PBS at room temperature for one hour. Both
GI.1/antibody mAb 3901 and GII.4/antibody mAb NS14 underwent primary antibody
treatment using PBST and blocking buffer. After incubating the antibody solution at 4 ◦C
with gentle shaking for the entire night, it was discarded. The membrane was treated
with 0.5 µg of goat anti-mouse IRDye® 800CW antibodies in PBST and blocking buffer
at ambient temperature for 1 h after being rinsed 5 times with PBS plus 0.05% Tween 20
(PBST) for 5 min each time. The membrane was first washed with PBST five times for
approximately five minutes each while being shaken, followed by a soak in deionized
water, and then an IR imaging system was applied (Figure S6).

3. Results and Discussion

The properties of ordinary CQDs as well as P-CQDs (EDA- and EPA-CQDs) and their
inhibitory rate on microbial defense are presented in Table 1 (for viruses) and Table 2 (for
bacteria and fungi).
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Table 1. Estimated mean values 1 of the P-CQDs for inhibition of the NoVs.

Property of the
CQDs

2 HBGA’s
Type

Concentration
µg.mL−1

VLS
Strains

P-CQDs

EDA EPA

Inhibitory rate of
CQDs on NoVs, %

8 90 8
16 92 24
32 88 26

Inhibition of HBGA
binding, %

A
2

GI.1 93.6 53.3
GII.2 88 61.2

5
GI.1 100 93
GII.2 100 100

B
2

GI.1 74.5 36.4
GII.2 78.2 38.2

5
GI.1 99.1 75.5
GII.2 100 81.8

O
2

GI.1 79.1 54.4
GII.2 59.5 38.9

5
GI.1 100 77.2
GII.2 100 79.3

1 Mathematically-estimated from Dong et al. [15]; 2 Histo-blood group antigens.

Table 2. Mean values of the P-CQDs for inhibition of bacteria.

Property of the CQDs

1 AT
Hour

2 Conc.
µg.mL−1 P-CQDs CQDs

Reference
EDA EPA 3 HT 4 IR

Particle size, nm 4–5 4–5

[200]

Molecular weight 148 103
Surficial terminal group -NH2 -CH3
Fluorescence quantum yield, % ~20 ~20

Viable cell number of bacteria, CFU/mL
0 11 × 106 11 × 106

0.1 9 × 103 5 × 106

0.2 0.4 × 103 1.5 × 106

Inhibitory effect OF ADE-CQDs
on a bacterial biofilm formation, %

10 95.86

[13]

1 20 100
30 100

2
10 72.2
20 96
30 100

3
10 34.25
20 41
30 50

Minimum inhibitory
concentration, µg/mL

5 Gram+-bacterium 250 350
[16]6 Gram−-bacterium 100 300

7 Unicellular fungi 350 400
1 Addition time, 2 Concentration, 3 Hydrothermally-synthesized, 4 Infrared-assisted synthesized, 5 Staphylococcus
aureus, 6 Escherichia coli, 7 Candida albicans.

3.1. Viral Therapy of P-CQDs on NoVs
3.1.1. Absolute Efficacy

P-CQDs have an inhibitory effect on the binding of VLPs to HBGA receptors. Human
HBGAs are recognized by NoVs as attachment factors or receptors having a significant
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impact on the host’s susceptibility to NoV infection [200,201]. It has been discovered that
norovirus binding to HBGAs is extremely varied but strain-specific.

Based on the binding of different norovirus strains to HBGAs, several binding patterns
have been discovered and divided into two primary binding groups [206], and a model of
norovirus/HBGA binding has also been put forth [78]. Other studies revealed that Norwalk
VLPs lacked the binding to saliva samples obtained from nonsecretors, and that saliva
from type B individuals did not bind or only weakly bound to the Norwalk virus [199]. A
retrospective study revealed that type O individuals had a significantly higher infection
rate than those with other blood types [198].

The approximate mean values obtained from studying the impact of EDA- and EPA-
CQDs on the binding of GI.1 and GII.4 VLPs to salivary HBGAs from blood type A, B,
and O are reported in Table 1. The binding to type ‘A’ salivary HBGA receptors was
entirely blocked for GI.1 VLPs treated with EDA-CQDs at 5 g/mL (100% inhibition),
demonstrating a highly effective inhibition impact of EDA-CQDs on GI.1 VLP’s binding to
HBGA receptors.

When GII.4 VLP bound to type A HBGA receptors was treated with 5 g/mL EDA-
CQDs, the same quantitative inhibition (100%) was seen (Table 1). Even at lower CQD
concentrations, the inhibitory effect persisted, as seen by the more than 80% inhibition in
GI.1 and GII.4 VLP bindings after treatment with 2 g/mL EDA-CQDs (Table 1).

The findings revealed that the diverse strains of VLPs had a similar inhibitory effect
to EDA-CQDs on HBGA receptor binding. Although slightly less potent on a rising
concentration basis, EPA-CQDs were still quite effective in the same inhibition.

As seen in Table 1, treatment with EPA-CQDs at concentrations of 5 g/mL and 2 g/mL
inhibited the binding of GI.1 VLPs to type A HBGA receptors by 91% and 51%, respectively.
A similar suppression of GII.4 VLPs was seen after treatment with EPA-CQDs (Table 1).
These results demonstrate that EDA- and EPA-CQDs had equally potent inhibitory effects
on the two strains of VLPs’ ability to bind to type B and type O HBGA receptors. Inves-
tigating the inhibition to type A HBGA receptors, shown in Table 1, also exhibited the
dot concentration dependence and difference between the two types of CQDs (EDA- and
EPA-CQDs). The findings for the two different strains of VLPs indicated that EDA-CQDs
were more efficient than those for EPA-CQDs in preventing VLP binding to all three types
of HBGA receptors.

The differing surface charge status and hydrophobicity characteristics between the
two types of CQDs may be to blame for the different effectiveness. While EPA-CQDs with
surface methyl (-CH3) terminal groups are not charged, EDA-CQDs with surface amino
(-NH2) terminal groups tend to be altered positively at physiological pH (-NH3

+).
Even though the mechanistic details of the interactions of the CQDs with the VLPs and

the resulting inhibition effects are probably very complex [78,80], the negatively charged
VLPs should be more attractive to the positively charged EDA-CQDs, leading to a higher
“local concentration” of the dots around the VLP particles. One of the potential explanations
for the CQDs’ observed strong inhibitory effects is that they bind to the surface of the VLPs
and physically block the binding sites for the HBGA receptors.

According to the X-ray crystal structure of the NoVs prototype GI.1 [207], it has two
domains, namely the shell (S) domain and the protrusion (P) domain. The HBGA receptor
binding interfaces are found at the top of the ‘P’ domain and contain pockets for binding
carbohydrates. The binding of HBGAs to the viral capsid protein is stabilized by these
pockets, which include many dispersed amino acid residues that form large hydrogen
bond networks with individual saccharides [208,209]. However, some of the complexities
in the HBGA binding interactions have been reported [11], including capsid P domain
loop movements, alternative HBGA conformations, and HBGA rotations. This is because
the binding of norovirus to human HBGA is a typical protein–carbohydrate interaction
in which the protruding domain of the viral capsid protein serves as an interface for the
oligosaccharide side-chains of the HBGAs40.
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In fact, employing sera from immunized animals or sick humans aids the blockage
of NoV HBGA binding sites and has been employed as a proxy for a NoV neutralization
experiment [202,203]. It was discovered that protection against infection in NoV-vaccinated
chimpanzees and against sickness in infected human volunteers could be connected with
the serum’s capacity to prevent VLP–HBGA interactions [65,76]. These investigations
suggest that a promising method for avoiding HuNoV infection is to inhibit the HuNoV
capsid from recognizing its binding sites on host cells. As a result, the CQDs reported
efficient inhibition of the NoV VLPs, as shown in Table 1; it may be viewed as an application
of this tactic.

In addition, the antiviral activities of the P-CQDs are summarized in Figure 9. NoV
infects the host cell via surficial cell receptors leading to the formation of syncytium and
subsequent gradual degradation, which are responsible for spreading viral infection. With
the recent advances in nanotechnology, NoV infection can be detected and inactivated
specifically through different pathways such as targeted tagging or by blocking surficial
viral proteins.
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It is well known that HBGAs, as receptors, play an essential role for host susceptibility
to NoV infection [189,210]. Although the binding between NoVs and HBGAs is highly
diverse, it is strain-specific. Numerous patterns of such binding have been identified and
classified into two major groups, proposing a suitable model [73]. It was indicated by
Hutson et al. [198] that type O individuals had a significantly higher infection susceptibility
rate than those with other blood types. On the other hand, other studies showed that
Norwalk VLPs did not bind to saliva samples collected from nonsecretors, especially for
type B individuals [198].

Both EDA- and EPA-CQDs showed a strong inhibition effect in the binding between
the two strains of VLPs and the HBGA samples collected from type B- and type O-individual
receptors [15]. Furthermore, the EDA-CQDs were found to be more effective than EPA-
CQDs in inhibiting VLPs’ binding to HBGA receptors. This difference may be attributed to
the quality (positive, negative, or neutral) and amount of surficial charge for the P-CQDs as
well as the virus surface. EDA-CQDs with the surficial terminal amino (-NH2) groups are
positively charged at physiological pH (-NH3+), whereas EPA-CQDs with surficial terminal
methyl (-CH3) groups are not charged. As VLPs are negatively charged, they are perhaps
more attractive to the positively charged EDA-CQDs, leading to a higher accumulation
of the P-CQDs around the NoV particles. However, the mechanism of the interactions
between the P-CQDs and viruses is likely very complex [78,80].

The strong inhibitory effects of P-CQDs against the NoVs can be attributed to the
physical blocking that occurred as a result of the binding between the P-CQDs and the
surficial active sites on the virus. XRD investigations revealed that the NoV strain ‘GI.1’
contains two domains: (1) the shell domain (SD), and (2) the protruding domain (PD) which
contains the HBGA–carbohydrate complex formed via a hydrogen bond network [198]. Ac-
cordingly, the binding between the human HBGA and P-domain is a carbohydrate–protein
complex [211]. Some of these complexes include movements of the binding interaction
as well as conformations and/or rotations of the HBGA. The blocking of NoVs’ binding
sites by using sera from immunized individuals could be classified under such a strat-
egy [80,201,202]. Moreover, Dong et al. [15] showed that the EDA-CQDs are more effective
in the inhibition of the NoVs (GI.1), binding to the first antibody (mAb 3901) compared
to binding to the GII.4-mAb NS14. This difference between EDA- and EPA-CQDs may be
attributed to their difference in surficial charge status.

In addition, for both EDA- and EPA-CQDs treatments using different concentrations,
the NoV-strain ‘GI.1’ was inhibited in its binding to mAb3901 antibodies more effectively
than the strain ‘GII.4’ in its binding to mAb NS14 [15]. This might be due to the capsid
structure difference in the two strains of NoVs (GI.1 and GII.4), involving in NoVs–antibody
interactions. Furthermore, no significant difference was detected in the P-CQDs inhibitory
effect on the binding of both strains of NoVs to HBGA receptors [15].

After the P-CQDs treatments, the quantity of NoVs fragments found by Western
blotting was found to be unchanged. It is known that mAb 3901-antibody may bind to both
the full-lengths of 58 KDa and a 32 KDa of the protein fragments found in the P domain
of the NoVs strain (GI.I) protein bands [203–205], identifying a continuous epitope on the
C-terminal of the capsid protein [205]. Furthermore, the lowest band in the Western blot
is probably a fragment that contains this sequence because the antibody mAb 3901 also
identifies a domain between amino acids 453 and 495. The mAb NS 14-antibody binds to
the capsid protein and additional protein fragments that contain the identified epitopes, just
like it does for the other NoVs strain (GII.4). Obviously, the protein band patterns found in
Western blotting for both strains of the NoVs (GI.1 and GII.4) were nearly identical to those
found in SDS-PAGE found by GelCode Blue staining. Therefore, the findings portray that
the viral proteins were not degraded by the P-CQDs, since these proteins still retained their
virgin sequences of the amino acids and were able to react with their antibodies again [15].
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3.1.2. Comparative Efficacy for Other Carbon Nanomaterials (CNMs)

The most crucial characteristics governing the behavior of CQDs and subsequent ap-
plications are absorption, photoluminescence (PL), and electroluminescence [28]. Generally,
the optical absorption peaks of CQDs in the UV-visible region are usually estimated as
the π-π* transition of sp2 conjugated carbon and n-π* transition of hybridization with a
heteroatom such as N, S, P, etc. Surface passivation or modification processes can be used
to modify the absorption property [35].

The PL is one of the most wonderful features of CQDs. Generally, the distinct depen-
dence of the emission wavelength and intensity is one of the uniform features of the PL for
CQDs. The reason for this unique phenomenon may be the optical selection of nanoparticles
with a different size, or CQDs with different emissive traps on the surface. The variation in
particle size and PL emission can be reflected from the broad and excitation-dependent PL
emission spectrum [73,74].

Zhang et al. [79] studied the emission behaviors of CQDs at 470 nm wavelength
with various concentrations. It was found that the PL strength of the CQDs solution first
increased and then decreased with the increase in their concentration [35].

Similar to semiconductor nanocrystals, CQDs can display electroluminescence (ECL),
which can be used in electrochemical fields [35]. It was reported by Zhang et al. [79] that a
CQDs-based light-emitting diodes (LED) device could be used, in which the emission color
ranging from blue to white can be controlled by the driving current.

In order to comprehend the luminescence process of CQDs based on the band gap
emission of the conjugated p domain and the edge effect generated by another surface
defect, two models of CQDs were put forth by SK et al. [19]. The quantum confinement
effect (QCE) of p-conjugated electrons in the sp2 atomic framework is the source of the
photoluminescence (PL) features of the fluorescence emission of CQDs from the conjugated
p domain, which may be modified by altering their size, edge configuration, and shape.
The sp2 and sp3 hybridized carbon and other surface defects of CQDs cause fluorescence
emission, and even the fluorescence intensity and peak position are connected to this defect.

At low pHs, the interaction is dominated by adhesion forces resulting from electrostatic
interactions between the protonated amine groups of polylysine and carboxylic groups on
acid-oxidized multi-wall carbon nanotubes (Ox-MWCNTs), whereas at high pHs, adhesion
forces via hydrogen bonding between the neutral -NH2 groups of polylysine and the
-COO− groups of the Ox-MWCNTs are detected [193].

Furthermore, it was discovered that the adhesion force for oxidized multiwalled
carbon nanotubes (Ox-MWCNTs) increased with the oxidation time, while it was negligible
for oxidized single-wall carbon nanotubes (Ox-SWCNTs) because the latter had carboxylate
groups attached only to the nanotube tips as opposed to both the sidewall and the tips.
Additionally, it was shown that proteins with aromatic moieties, such as poly-tryptophan,
exhibited a stronger adhesion force with Ox-MWCNTs than polylysine because of the
additional pi-pi stacking interaction between the polytryptophan chains and CNTs. [193].

The binding ability between various CNMs and viral capsid proteins has been re-
ported [17,18,20,21,193]. The CNTs and P-CQDs can be non-specific binders to NoVs’
capsid proteins through complementary charges, π-π stacking, and/or hydrophobic inter-
actions [17,18,194].

It was reported that van der Waals forces are responsible for the binding between
fullerene (C60) and lysozyme, whereas polar solvation and entropy were reported to be
detrimental to this binding [20]. Furthermore, C60 was reported to inactivate HIV-proteases
by integrating with proteins to form hybrid functional assemblies [21]. Similarly, the
inhibition of NoVs’ capsid protein by the P-CQDs may occur due to the combination of
several driving forces for blocking the active sites on NoVs with the HBGA receptors [15].

The van der Waals force was found to be the primary driving factor responsible for
the binding between fullerene and lysozyme, whereas polar solvation and entropy are
detrimental to such bindings [20]. It was shown that C60 might suppress the activity of HIV
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proteases by integrating with proteins to form hybrid functional assemblies [21], which is
more pertinent to the blockage of receptor sites.

As a result, a conceptually similar explanation for the observed inhibition of NoVs-
VLPs could be that the CQDs interact with the capsid protein of VLPs by combining
several driving forces, which then prevents the active sites on NoVs-VLPs from binding to
HBGA receptors.

In addition, a similar surface charge effect has been reported on silver nanoparti-
cles’ antimicrobial activity, where positively and negatively charged silver nanoparticles
exhibited the highest and lowest bactericidal activities, respectively [29]. As such, there
have been recent studies on inducing charges onto the surface of silver nanoparticles for
higher antimicrobial efficacy [32,33,200]. The results reported here suggest that the same
strategy may be exploited in the design and preparation of CQDs with higher antibacterial
efficacy [15].

3.2. Bacterial Therapy Efficacy of P-CQDs

Biofilm formation is a complex process in which microorganisms irreversibly attach to
and grow on a surface and produce extracellular polymeric substances (EPS) that facilitate
the attachment and formation of an extracellular matrix (ECM), resulting in the altered
phenotype of the organisms with respect to growth rate and gene transcription [61].

Important characteristics of EDA-CQDs and EPA-CQDs are listed in Table 2. A Gram-
positive laboratory model bacteria, Bacillus subtilis, was used to evaluate the antimicrobial
efficiencies of each of the CQDs with different surface passivation (EDA-CQDs and EPA-
CQDs) for probing the surface charge effect. As is clear in Table 2, EDA- and EPA are
small molecules, with molecular weights of 148 and 103 g/mol, respectively, and they are
structurally similar but their corresponding CQDs differ in terms of terminal groups on
the dot surface, -NH2 in EDA-CQDs vs. -CH3 in EPA-CQDs. The former can be positively
charged at physiological pH as -NH3

+, but not the latter. The observed fluorescent quantum
yields of the EDA-CQDs and EPA-CQDs used in the study were both ~20% [196].

Additionally, it is evident from Table 2 that EPA-CQDs and EDA-CQDs at 0.1 and
0.2 mg/mL to Bacillus subtilis cells have antibacterial action in terms of a reduction in viable
cell counts after treatments with light illumination for one hour. At 0.1 mg/mL, EPA-CQD
treatment minimally reduced the number of viable Bacillus subtilis cells, but EDA-CQD
therapy was significantly more successful, causing a 3.26 log drop in viable cells.

EPA-CQD treatment reduced the number of viable Bacillus subtilis cells by about
0.84 log at a CQD concentration of 0.2 mg/mL, whereas EDA-CQD treatment reduced the
number of viable cells by around 5.8 log at the same concentration. EDA-CQDs consistently
outperformed EPA-CQDs in terms of their antibacterial action toward Bacillus subtilis cells
at both tested CQD doses, as was to be expected.

These findings demonstrated how crucial surface charge is for CQD interactions with
bacteria and the performance of their antibacterial activity. Stronger binding-like interac-
tions between EDA-CQDs and the bacterial cells will result in a higher “local concentration”
of EDA-CQDs on the bacterial surface, making them more effective in antibacterial actions
against the bacterial cells [196]. The negatively charged bacterial surface must favor the
positively charged end groups (-NH3

+) on EDA.
As is clear from Table 2, using 10 µg/mL of the EDA-CQDs is very effective in

inhibiting the biofilm formation for all the addition times used (1, 2 and 3 h) compared
to 20 and 30 µg/mL, as is also indicated by Dong et al. [13]. When the 10 µg/mL CQDs
were added at 1, 2, and 3 h after the initiation of biofilm growth, the inhibitory effect on
the final biofilm formation was decreased from 95.86% (at 1 h) to 72.2% (at 2 h) reaching to
about 34.25% (3 h), as indicated by different researchers [13,61,197]. Furthermore, the time
of CQDs’ addition during biofilm growth had a significant effect on the process of biofilm
formation up to the final product stage.

These results are logical when considering the interactions between EDA-CQDs and
bacterial cells during biofilm formation. At the early stage during biofilm formation, no
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thick extracellular polymeric substances (EPS) are produced around the bacteria, and most
of the bacterial cells are still planktonic so that the added EDA-CQDs can bind and interact
with bacteria efficiently to inactivate the cells before they can form a biofilm; thus, this
explains the observed high inhibitory effects on biofilm formation.

In addition, these findings demonstrated how crucial surface charge is for CQD
interactions with bacteria and the performance of their antibacterial activity. Stronger
binding-like interactions between EDA-CQDs and the bacterial cells will result in a higher
“local concentration” of EDA-CQDs on the bacterial surface, making them more effective
in antibacterial actions against the bacterial cells [196]. The negatively charged bacterial
surface must favor the positively charged end groups (-NH3

+) on EDA.
Bacterial cells multiply and the extracellular matrix (ECM) gradually becomes stronger

with the development of biofilm if CQDs are added 4–5 h after the start of biofilm growth.
As the bacteria expand, the development of an ECM network may make it more difficult
for CQDs to enter the biofilm and for EDA-CQDs to interact directly with the bacterial cells.
These contacts and interactions are especially important to the light-activated EDA-CQDs’
antibacterial function.

The production of electrons and holes, which are trapped at various stabilized surface
defect sites, requires quick charge transfers and separation for a better representation
of photoexcitation of the EDA-CQDs. Due to the short half-lives of these redox species,
these separated redox pairs are attributed with making significant contributions to the
observed antibacterial activities [13,197], largely in the near-neighbor manner due to the
short-lived nature of these redox species. Their radiative recombinations produce emissive
excited states that are responsible for the fluorescence’s noticeable brightness and color, as
well as the production of traditional reactive oxygen species (ROS), which also aid in the
antibacterial effect. Although the ROS are still transient, the poor diffusion circumstances
caused by the ECM network during the biofilm formation may also interfere with their
antibacterial properties.

Due to the restriction associated with the requirement for the CQDs to penetrate into
the biofilm, EDA-CQDs with light activation are therefore more effective in preventing
biofilm formation before the bacterial cells have the chance and time to form the network
structure toward the biofilm, and are less effective when the biofilm formation is already
well underway. This restriction was made clearer in an investigation of the removal of
mature biofilms using EDA-CQDs and the same visible light exposure [13].

Moreover, based on the investigation performed by Mogharbel et al. [16] who exam-
ined the microbicide potency for the embedded CQDs against three distinct bacterial strains,
including a Gram-positive bacterial strain (Staph. aureus), Gram-negative bacterial strain
(Escherichia coli), and fungal strain (C. albicans), as shown in Table 2, the superior microbicide
potency of CQDs against several bacterial strains has been confirmed [13,16,61,197]. This
effect was attributed to the decorative hydroxyl groups: (i) decorative oxygen-containing
groups are responsible for the mortal effects of the prepared CQDs against the tested micro-
bial cells through the generation of reactive oxygen species (ROS); (ii) the liberated ROS act
by killing the microbial cells, as ROS adhere to them and then penetrate the microbial cell
wall to motivate the oxidative stress by deteriorating DNA and RNA.

Additionally, ROS contribute to mitochondrial dysfunction, lipid peroxidation, in-
hibition of intracellular protein synthesis, progressive deterioration of the cell wall, and,
ultimately, apoptotic cell death. The efficiency of hydrothermal conditions in the formation
of small and size-controllable CQDs that are easily able to penetrate the microbial cell wall
for eventual cell demise is attributed to the fact that CQDs-HT demonstrated significantly
higher microbicide potentiality [16].

4. Conclusions and Future Perspectives

Biomass has a carbon chain which is why it is considered as an excellent option for the
production of carbon materials. Nanocrystalline cellulose could become a potential source
for fabricating carbon quantum dots which are affected by pyrolysis temperature.
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The large surface area, good electric conductivity, and fast electric charge transfer of
carbon quantum dots endow them with a great potential for a wide spectrum of applica-
tions. Luminescent carbon quantum dots are interesting newcomers in the category of
nanomaterials, emerging with more and more advanced applications in the fields of chem-
ical sensors, bioimaging, nanomedicine, drug delivery, and electrocatalysis. The unique
electronic and chemical structures of carbon quantum dots can be tuned by controlling
their size, shape, surficial functional groups, and heteroatom doping.

The 2,2′-ethylenedioxy-bis-ethylamine-carbon quantum dot and 3-ethoxypropylamine-
carbon quantum dot were found to be highly effective to inhibit noroviruses from binding
to histo-blood group antigens receptors on human cells with inhibition efficiencies of 100%
and 85–99%, respectively.

In the future, we hope to discover more precursors and invent more economic, simple,
and innovative synthetic methods and novel promising applications to increase the poten-
tial of these valuable carbon materials. In addition, more efforts must be made to simplify
the traditional machinery used for the synthesis process of carbon quantum dots, especially
in the collection of the nanometric dots by centrifugation, the neutralization of the dot’s
supernatant by dialysis, and the standardization of the dot size. Furthermore, the good
findings in regard to using chemically-passivated carbon quantum dots for the prevention
and therapy of norovirus must be extended to cover other epidemic pathogens, especially
coronaviruses (COVID-19).
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Nomenclature

Symbol Definition Symbol Definition
CNM Carbon nanomaterials NCC Nanocrystalline cellulose
CNT Carbon nanotubes n−-CQD Negative carbon quantum dot
COD Carbon quantum dots NMR Nuclear magnetic resonance
DP Degree of polymerization NoVs Noroviruses
DSC Differential scanning calorimetry NuPAGE LDS Gel electrophoresis contains lithium dodecyl sulfate
DTA Differential thermal analysis Ox-MWCNTs Oxidized multiwalled carbon nanotubes
ECL Electroluminescence Ox-SWCNTs Oxidized single walled–carbon nanotubes (Ox-SWCNTs)
ECM Extracellular matrix (ECM) PBS Phosphate-buffered saline
EDA 2,2′-ethylenedioxy-bis-ethylamine PBST Phosphate buffered saline with tween 20
ELISA Enzyme-linked immunosorbent assay P-CQD Passivated-carbon quantum dot
EPA 3-ethoxypropylamine p+-CQDs Positive carbon quantum dot
EPS Extracellular polymeric substances (EPS) PL Photoluminescence
FGY Fluorescence quantum yield PS Particle size
FTIR Fourier transform infrared spectroscopy QCE Quantum confinement effect
GI.1, GII.4 Types of VLPs ROS Reactive oxygen species (ROS
GelCode Blue stain for protein SCS Surficial charge status

HBGA Histo-blood group antigens SDS-PAGE
Gel electrophoresis containing sodium dodecyl
sulphate polyacrylamide

HRP Horseradish peroxidase SEM Scanning electron microscope
KDa Kilodaltons, a molecular weight unit TEM Transmission electron microscope
LCD Liquid crystal displays TG Terminal group of the surface molecule
LED Light-emitting diodes TGA Thermogravimetric analysis
MCC Microcrystalline cellulose TMB 3,3′,5,5′-tetramethylbenzidine
MDR Multidrug resistant UV Ultraviolet
MeOH Methanol VCN Viable cell number
MIC Minimum inhibitory concentration VLP Virus-like particles

MOPS SDS
Running buffer: 3-(N-morpholino)

WB Western blotting
propanesulfonic acid

MW Molecular weight of the surface molecule XRD X-ray diffrection
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