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Aryl hydrocarbons such as 3-nitrobenzanthrone (NBA), 4-aminobiphenyl (ABP), acetylaminofluorene

(AAF), benzo(a)pyrene (BaP), and 1-nitropyrene (NP) form bulky DNA adducts when absorbed by mam-

malian cells. These chemicals are metabolically activated to reactive forms in mammalian cells and prefer-

entially get attached covalently to the N2 or C8 positions of guanine or the N6 position of adenine. The

proportion of N2 and C8 guanine adducts in DNA differs among chemicals. Although these adducts block

DNA replication, cells have a mechanism allowing to continue replication by bypassing these adducts:

translesion DNA synthesis (TLS). TLS is performed by translesion DNA polymerases—Pol η, κ, ι, and ζ

and Rev1—in an error-free or error-prone manner. Regarding the NBA adducts, namely, 2-(2'-deoxygua-

nosin-N2-yl)-3-aminobenzanthrone (dG-N2-ABA) and N-(2'-deoxyguanosin-8-yl)-3-aminobenzanthrone

(dG-C8-ABA), dG-N2-ABA is produced more often than dG-C8-ABA, whereas dG-C8-ABA blocks DNA

replication more strongly than dG-N2-ABA. dG-N2-ABA allows for a less error-prone bypass than dG-C8-

ABA does. Pol η and κ are stronger contributors to TLS over dG-C8-ABA, and Pol κ bypasses dG-C8-

ABA in an error-prone manner. TLS efficiency and error-proneness are affected by the sequences sur-

rounding the adduct, as demonstrated in our previous study on an ABP adduct, N-(2'-deoxyguanosine-8-

yl)-4-aminobiphenyl (dG-C8-ABP). Elucidation of the general mechanisms determining efficiency, error-

proneness, and the polymerases involved in TLS over various adducts is the next step in the research on

TLS. These TLS studies will clarify the mechanisms underlying aryl hydrocarbon mutagenesis and car-

cinogenesis in more detail.
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INTRODUCTION

Some mutagens have reactive groups such as aldehyde

and methyl in their structures, covalently bind to naked or

cellular DNA via a nucleophilic reaction, and are called

direct mutagens. Other mutagens are metabolically trans-

formed to reactive intermediates in the detoxification pro-

cess after mutagens are absorbed by cells, get covalently

attached to cellular DNA, and are called indirect mutagens.

In DNA, mutagens covalently bind to one of several posi-

tions mostly in guanine and adenine. Alkylating agents,

such as methyl methanesulfonate, N-methyl-N'-nitrosoguani-

dine, and N-methyl nitrosourea, preferentially donate methyl

groups to the N7 or N3 position of guanine or adenine or

the O6 position of guanine. Aryl hydrocarbons such as

benzo(a)pyrene (BaP) and 1,8-dinitropyrene are metaboli-

cally activated, and their metabolites preferentially get

attached covalently to the N2 or C8 position of guanine.

There are numerous kinds of mutagens in the environment;

however, their molecular pathways to DNA adduct forma-

tion have not yet been clarified in detail.

In this review, the mechanisms underlying the mutations

caused by environmental aryl hydrocarbons, particularly 3-

nitrobenzanthrone (NBA) and 4-aminobiphenyl (ABP), are

described. These compounds are biotransformed into reactive

forms by phase I and II cellular metabolic enzymes. The

formation and repair of their DNA adducts in cells are also

described. Although these DNA adducts block DNA repli-

cation, cells have a mechanism allowing to continue replication

by bypassing these adducts by means of specific DNA poly-

merases, and this process is called translesion DNA synthesis

(TLS). TLS over the adducts derived from NBA and ABP

is discussed using data obtained by our original TLS assay.

FORMATION AND REPAIR OF BULKY
DNA ADDUCTS

Most aryl hydrocarbons known as environmental pollut-

ants are indirect mutagens, which are transformed to reac-

tive forms by detoxification enzymes in some cells. The

process of biotransformation of BaP, which is abundant in

the atmosphere and released during oil combustion, has

been elucidated in detail (1). BaP binds to aryl hydrocarbon

receptors, and functions as a transcription factor to induce

CYP1 family genes in cells. Induced CYP1A1 and CYP1B1

enzymes hydroxylate a benzene ring and eventually trans-

form B(a)P to (±)-anti-benzo[a]pyrene-7,8-diol-9,10-epox-

ide (BPDE). BPDE mainly binds covalently to the N2

position of guanine (2-4).

NBA is an air pollutant that originates from the diesel

exhaust of cars and factories and a strong mutagen like 1,8-

dinitropyrene in the Ames bacterial mutation assay (5).

NBA is primarily processed by cytosolic nitroreductases,

followed by activation by N-acetyltransferase and sulfo-

transferase, leading to the formation of a reactive intermedi-

ate, N-acetoxy-3-aminobenzanthrone (N-Aco-ABA), which

forms covalent bonds with guanine and adenine (6,7). These

adducts are 2-(2'-deoxyguanosin-N2-yl)-3-aminobenzanthrone

(dG-N2-ABA), N-(2'-deoxyguanosin-8-yl)-3-aminobenzan-

throne (dG-C8-ABA), and 2-(2'-deoxyadenosin-N6-yl)-3-

aminobenzanthrone (dA-N6-ABA), listed in the order of

their amounts (8,9) (Fig. 1). NBA causes lung cancer in

experimental animals (10).

ABP is mainly generated by cigarette smoking and com-

bustion of fossil fuels and is also a byproduct of the rubber,

coal, textile, and printing industries (11). ABP has been

identified as a major etiological agent of human bladder

cancer and is a potent urinary-bladder carcinogen in experi-

mental animals (12,13). ABP is metabolically activated by

cellular N-acetyltransferase and forms a major DNA adduct,

N-(2'-deoxyguanosine-8-yl)-4-aminobiphenyl (dG-C8-ABP)

(Fig. 1). The mutation of the p53 tumor suppressor gene in

bladder carcinomas of patients who are occupationally

exposed to ABP has been examined, and p53 mutation hot

spots coincide with the ABP-adducted sites of the p53 gene

in cells experimentally exposed to ABP (14).

In the cell, bulky DNA lesions including NBA and ABP

adducts are removed by the nucleotide excision repair

(NER) pathway, which involves dual incisions of adducted

DNA strands, removal of the incised strand, and semicon-

Fig. 1. Structures of dG-C8-ABA, dG-N2-ABA, dA-N6-ABA, and dG-C8-ABP.
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servative filling (DNA synthesis) of the gap (removed region).

NER is performed by several proteins including various

xeroderma pigmentosum (XP) family proteins, the tran-

scription factor TFIIH complex, DNA helicase, polymerase

δ/ε, and ligase with their accessary proteins (15,16). Small

lesions such as alkyl and hydroxyl adducts are removed by

another pathway, base excision repair (BER) (17,18). In

BER, the damaged base is excised by DNA glycosylase.

The excision of an abasic deoxynucleotide from the DNA

strand is performed by apurinic/apyrimidinic (AP) endonu-

clease, and a correct deoxynucleotide is inserted into the AP

site by DNA polymerase β and some accessary proteins.

Both NER and BER fix damaged DNA accurately without

induction of mutations during their processes.

TLS SYSTEM FOR BYPASSING DNA ADDUCTS

When genomic DNA containing bulky adducts proceeds

to replication, the replication fork is stalled at each adduct,

leading to cell death. To avoid cell death, cells have mecha-

nisms to complete DNA replication by bypassing these

adducts. There are two mechanisms for DNA replication

bypass: one is damage avoidance including replication fork

regression and recombination repair, which are error-free

mechanisms; the other is TLS, which is either error-free or

error-prone depending on the adduct structure and the DNA

polymerases involved (19,20). The DNA polymerases par-

ticipating in TLS are translesion DNA polymerases, which

are different from the replicative DNA polymerases δ and ε.

The major translesion DNA polymerases are Pol η, κ, ι, and

ζ and Rev1 (21,22). When a DNA replication fork is stalled

at a DNA adduct, mono-ubiquitination of proliferative cell

nuclear antigen (PCNA) by Rad6/Rad18 proteins triggers

the replacement of Pol δ or ε with Pol η, κ, ι, or ζ or Rev1,

which continues DNA synthesis over the adduct (19,20).

Given that translesion DNA polymerases are deficient in 3'

to 5' exonuclease activity (proofreading activity), these

polymerases readily insert an incorrect nucleotide opposite

the adducted nucleotide and cause a base-change mutation.

CELL-FREE TLS ANALYSIS (IN VITRO TLS ASSAY)

To measure the activity of each polymerase in terms of

TLS over various bulky adducts, in vitro cell-free assays

have been performed in many studies (23-28). Such an

assay is composed of an oligonucleotide containing a bulky

adduct at a specific site, a 5' [32P]labeled primer, four types

of deoxynucleotides, and one purified DNA polymerase.

Semiconservative DNA extension from the [32P]labeled

primer across the adduct, extension arrest at the adduct, and

incorporated nucleotides opposite the adduct are visualized

by polyacrylamide gel electrophoresis and autoradiography.

In vitro TLS assays have revealed that Pol η and ι enable

a slow bypass over an N2 adduct of BPDE or 2-amino-3-

methylimidazo-[4,5-f]quinoline (IQ) with guanine; these

adducts result in high frequencies of nucleotide misincorpo-

ration (28-30). IQ is a heterocyclic aromatic amine formed

by cooking of meat or fish. Pol κ performs accurate and

reasonably efficient bypass over the dG-N2-BPDE and dG-

N2-IQ adducts. On the other hand, Pol η allows for an effi-

cient error-free bypass over dG-C8-IQ, dG-C8-ABA, or N-

[deoxyguanosine-8-yl]-1-aminopyrene (dG-C8-AP). dG-

C8-AP is an aminopyrene adduct formed by the diesel

exhaust-derived air pollutant 1-nitropyrene (31-35). An

inefficient and error-prone bypass over dG-C8-IQ or dG-

C8-AP is performed by Pol κ and ζ (31) and by Pol ι and κ

(34,35), respectively. Pol κ enables an efficient and error-

free bypass, whereas Pol ι allows for an inefficient and

error-prone bypass over dG-C8-ABA (32,33). Unlike the

dG-N2 adducts, the error-free and error-prone patterns of

TLS over dG-C8 adducts are complicated.

DEVELOPMENT OF A TLS ANALYSIS IN
MAMMALIAN CELLS (IN VIVO TLS ASSAY)

In vitro TLS assays may not accurately reflect cellular

responses to these adducts because these assays involve

limited components as described above. PCNA and replica-

tion protein A (RP-A) are essential for DNA replication in

the cell but are not included in in vitro assays. PCNA and

RP-A assist DNA polymerases to efficiently bypass adducts

in the assays (36). Therefore, cell-based TLS assays (in vivo

TLS assays) using shuttle vector plasmids with these

adducts have been established by several research groups.

Moriya and colleagues constructed a single-stranded

pM2-based plasmid that carries a ~15-mer oligonucleotide

with a site-specifically created single bulky adduct (37-39).

The plasmid has a replication origin of simian virus 40

(SV40) and replicates in simian COS-7 cells. They also

observed error-prone and error-free TLS over the adducts

with various endogenous reactive oxygen species (38,40).

Yasui et al. (41) investigated TLS over the acetylaminofluo-

rene (AAF) adducts, dG-N2-AAF and dG-C8-AAF, by a

similar method and found that a single dG-N2-AAF adduct

reduces replication efficiency more than dG-C8-AAF does.

Both adducts promote G to T transversion, with dG-N2-

AAF being less mutagenic than dG-C8-AAF (41).

Livneh and colleagues (42,43) and Basu and colleagues

(31,44-46) used another in vivo TLS assay. They con-

structed hetero-duplex gap-lesion plasmids using two types

of plasmids of different lengths. A site-specifically created

single bulky adduct is located in a single-strand gap region

(~16 nucleotides). The gap region is filled by TLS after the

plasmids are introduced into human cells. They studied

TLS over various kinds of bulky adducts in human cells.

Basu and colleagues found that Pol η, κ, ι, and ζ and Rev1

each plays a role in TLS over dG-C8-ABA in human cells

in which TLS polymerases were knocked down by siRNA
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(46). Pol η and κ are considered the major contributors to

error-prone TLS over dG-C8-ABA. Rev1 is also important

for mutagenesis but may perform a noncatalytic function by

physically interacting with the other two TLS polymerases.

In contrast, pol ζ appears to be involved in the error-free

bypass of the adduct.

IN VIVO TLS REPORTER ASSAY SYSTEM

Our method for the in vivo TLS analysis is based on that

originally developed for studies on TLS in Escherichia coli

(47,48). The constructed shuttle vector plasmid is com-

posed of a lacZ mutation marker gene, ColE1 replication

origin, ampicillin resistance gene (marker), an SV40 repli-

cation origin, and the T antigen gene, and the plasmid can

replicate in human and E. coli cells (48). In the plasmid

lacZ gene, a bulky adduct is created site-specifically on one

DNA strand. The other DNA strand without the bulky

adduct has a two-base bulge, and thus is two bases longer

than the strand with the adduct (Fig. 2). When the DNA

strand with the adduct replicates in a human cell, the pro-

genitor plasmids extracted from the cells form blue E. coli

colonies on agar plates containing ampicillin, 5-bromo-4-

chloro-3-indolyl-β-D-galactopyranoside (X-gal), and iso-

propyl-β-D-thiogalactopyranoside (IPTG). When the other

DNA strand without the adduct replicates in the cell, the

progenitor plasmids yield white E. coli colonies on the plates.

The proportion of blue colonies among all colonies from

the plasmids with adducts is divided by the proportion of

those resulting from the plasmids without the adducts; the

resulting number represents the rate of TLS over the adducts.

Via sequencing of the lacZ gene in the plasmids extracted

from the blue colonies, the frequency and types of mutations

caused by the adducts can be elucidated. In these assays,

SV40-transformed cells derived from a patient with xero-

derma pigmentosum complementation group A (XPA) are

used because XPA cells lack the nucleotide excision repair

system and cannot remove bulky adducts from plasmids.

Fig. 2. Methods for the construction of site-specifically dG-C8-ABP-adducted plasmids (A) and the in vivo TLS reporter assay (B). To
construct NBA-adducted plasmids, CCTTCCG*TCTCCC is used for dG-N2-ABA and dG-C8-ABA, and CCTTCCA*TCTCCC is applied for dA-
N6-ABA (G* and A* are ABA-adducted bases).
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MUTATIONS ARISING FROM DIFFERENT 
ADDUCTS INDUCED BY NITROBENZANTHRONE 

IN HUMAN CELLS

TLS over three major NBA adducts, dG-N2-ABA, dG-

C8-ABA, and dA-N6-ABA, in XPA cells was analyzed with

our in vivo TLS reporter assay system (9). The assay

showed that dG-C8-ABA strongly blocks plasmid replica-

tion, while dG-N2-ABA and dA-N6-ABA block replication

moderately (Fig. 3). Mutations occur more frequently

during TLS over dG-C8-ABA than during TLS over dG-

N2-ABA or dA-N6-ABA. The types of induced mutations

are G to T transversion at dG-N2-ABA, G to A and T base

substitutions at dG-C8-ABA, and A to G transition at dA-

N6-ABA. NBA yields dG-C8-ABA more abundantly in

cells, and dG-C8-ABA blocks DNA replication and causes

mutations more effectively than the other adducts do; there-

fore, dG-C8-ABA may be the DNA damage that causes NBA

mutagenesis and/or carcinogenesis most frequently (9).

In contrast to human cells, the rate of TLS over dG-N2-

ABA is markedly reduced when the adducted plasmid is

propagated in E. coli, even under SOS-induced conditions,

and dG-N2-ABA induces G to T mutations. Other ABA

adducts are bypassed in a less mutagenic manner (49).

These findings reveal host species differences in the ability

to bypass these adducts.

MUTATIONS ARISING FROM AMINOBIPHENYL-
GUANINE ADDUCTS IN DIFFERENT DNA 

SEQUENCES

TLS over dG-C8-ABP in different DNA sequences has

Fig. 3. Rates of TLS over different NBA adducts (A), and frequencies of mutations of the adducted bases (B). The NBA adducts, dG-N2-
ABA and dG-C8-ABA are formed in CCTTCCG*TCTCCC, while dA-N6-ABA is formed in CCTTCCA*TCTCCC (G* and A* are adducted
bases).

Fig. 4. Rates of TLS over ABP adducts formed on guanine in different sequences (A), and frequencies of mutations of the adducted
bases (B) in XPA cells and those overexpressing Pol η. dG-C8-ABP is formed in CCG*GAGGC and CCGGAG*GCC (G* is the adducted
base), which are codon 248 and 249 sequences, respectively, of the human p53 tumor suppressor gene.
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been examined in our in vivo TLS reporter assay system.

ABP is attached to the C8-guanine of CCG*GAGGC and

CCGGAG*GCC (G* is the adducted base), which repre-

sent codon 248 and 249 sequences of the human p53 tumor

suppressor gene, respectively. Codons 248 and 249 are a

mutation hot spot and cold spot of the p53 gene, respec-

tively, in bladder cancer, whereas codon 248 is a hot spot of

ABP adduct formation (14).

The dG-C8-ABP of codon 248 inserted into the lacZ gene

strongly blocks plasmid replication, whereas that of codon

249 blocks replication moderately in human XPA cells (Fig.

4). Mutations are more frequently induced in codon 248

than in codon 249. The major induced mutation is G to T

transversion (50). These findings indicate that the effi-

ciency of TLS over dG-C8-ABP is affected by the sur-

rounding sequences. The mutation distribution in the p53

gene in ABP-induced bladder cancer may be affected by

TLS efficiency over the adducts as well as the efficiency of

adduct formation in the p53 sequence.

In our in vivo TLS reporter assay, Pol η overexpression

forced by the transfection of Pol η expression plasmids into

XPA cells potentiates DNA replication block and mutation

induction at dG-C8-ABP in codon 248 of the p53 gene (Fig.

4), and induces G to A transition as well as G to T transver-

sion at the adduct (50). This finding suggests that Pol η is

involved in error-prone TLS over dG-C8-ABP in codon 248

of the p53 gene in human cells.

CONCLUSIONS

Aryl hydrocarbons such as NBA, ABP, AAF, BaP, and

NP are metabolically activated to reactive forms in certain

mammalian cells and preferentially bind covalently to the

N2 or C8 position of guanine, thus forming a bulky DNA

adduct. Such adducts are subjected to TLS to avoid cell

death. TLS is performed by Pol η, κ, ι, and ζ and Rev1 in

an error-free or error-prone manner in the cell. Regarding

the NBA adducts (dG-N2-ABA and dG-C8-ABA), the in

vivo gap-lesion TLS assay suggests that Pol η and κ are the

major contributors to error-prone TLS over dG-C8-ABA,

whereas Pol ζ seems to participate in error-free bypass over

the adduct (46). Our in vivo TLS reporter assay indicates

that dG-N2-ABA blocks DNA replication less than dG-C8-

ABA does and is less error-prone than dG-C8-ABA in

human XPA cells. dG-C8-ABA mainly causes G to T trans-

version (9). The research on TLS polymerases involved in

error-free or error-prone bypass over dG-N2-ABA and dG-

C8-ABA is in progress in TLS polymerase-deficient cells

created by a genome-editing method. Our preliminary find-

ings suggest that dG-N2-ABA is mainly bypassed by Pol κ

in an error-free manner, whereas dG-C8-ABA is bypassed

by Pol η in an error-free manner, but by Pol κ in an error-

prone manner.

The stronger contribution of the C8 guanine adduct to the

replication block and error-prone TLS than that of the N2

guanine adduct may not be a universal phenomenon. dG-

N2-IQ blocks DNA replication more strongly than dG-C8-

IQ does. Pol η is mainly involved in the bypass over dG-N2-

IQ and dG-C8-IQ in an error-prone and error-free manner,

respectively (30,31). dG-C8-AAF blocks DNA replication

slightly more strongly than dG-N2-AAF does, and the

bypass of dG-C8-AAF is more error-prone than that of dG-

N2-AAF (41). dG-C8-AAF allows for a higher frequency of

nucleotide misincorporation than dG-N2-AAF does when

Pol η and κ are employed in in vitro TLS assays (41). The

inconsistency of the TLS efficiency over C8 guanine adducts

may be due to differences in the adducted molecules, assay

systems, and host mammalian cells used in three laboratories.

According to our in vivo reporter assay of TLS over dG-

C8-ABP, it is important to note that TLS efficiency and

error-proneness are affected by the surrounding DNA

sequences of the adduct (50). Elucidation of the general

mechanisms determining the efficiency, error-proneness,

and participating polymerases of TLS over these adducts

represents the next step in the research into TLS. These

studies will clarify the mechanisms underlying aryl hydro-

carbon mutagenesis and carcinogenesis.
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