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Objectives: A subset of non-functioning pituitary macroadenomas (NFPAs) may exhibit
early progression/recurrence (P/R) after surgical resection. The purpose of this study was
to apply radiomics in predicting P/R in NFPAs.

Methods: Only patients who had undergone preoperative MRI and postoperative MRI
follow-ups for more than 1 year were included in this study. From September 2010 to
December 2017, 50 eligible patients diagnosed with pathologically confirmed NFPAs
were identified. Preoperative coronal T2WI and contrast-enhanced (CE) T1WI imaging
were analyzed by computer algorithms. For each imaging sequence, 32 first-order
features and 75 texture features were extracted. Support vector machine (SVM)
classifier was utilized to evaluate the importance of extracted parameters, and the most
significant three parameters were used to build the prediction model. The SVM score was
calculated based on the three selected features.

Results: Twenty-eight patients exhibited P/R (28/50, 56%) after surgery. The median
follow-up time was 38 months, and the median time to P/R was 20 months. Visual
disturbance, hypopituitarism, extrasellar extension, compression of the third ventricle, large
tumor height and volume, failed optic chiasmatic decompression, and high SVM score were
more frequently encountered in the P/R group (p < 0.05). In multivariate Cox hazards
analysis, symptoms of sex hormones, hypopituitarism, and SVM score were high risk
factors for P/R (p < 0.05) with hazard ratios of 10.71, 2.68, and 6.88. The three selected
radiomics features were T1 surface-to-volume radio, T1 GLCM-informational measure of
correlation, and T2 NGTDM-coarseness. The radiomics predictive model shows 25 true
positive, 16 true negative, 6 false positive, and 3 false negative cases, with an accuracy of
82% and AUC of 0.78 in differentiating P/R from non-P/R NFPAs. For SVM score, optimal
cut-off value of 0.537 and AUC of 0.87 were obtained for differentiation of P/R. Higher SVM
scores were associated with shorter progression-free survival (p < 0.001).

Conclusions:Our preliminary results showed that objective and quantitative MR radiomic
features can be extracted from NFPAs. Pending more studies and evidence to support the
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findings, radiomics analysis of preoperative MRI may have the potential to offer valuable
information in treatment planning for NFPAs.
Keywords: radiomics, MRI, pituitary, macroadenoma, recurrence
INTRODUCTION

Pituitary adenomas constitute 10–15% of all intracranial tumors
(1), the majority being non-functioning pituitary adenomas (2, 3).
The most common presentation is the macroadenoma, which is
defined as a tumor larger than 10 mm in size. Non-functioning
pituitary macroadenomas (NFPAs) may cause bitemporal
hemianopia resulting from optic chiasm compression due to
mass effect. Hypopituitarism is observed in some patients due to
tumor compression of normal pituitary glandular tissue.
According to 2017 WHO classification system, pituitary tumors
are formally classified as adenoma, carcinoma, or blastoma (4).
Although more than 90% of NFPAs are diagnosed as benign
tumors, 25–55% of these tumors may undergo early progression/
recurrence (P/R) after surgical resection (5–8). Gross-total
resection (GTR) via a transsphenoidal approach (TSA) is the
optimal method of treatment for NFPAs in current clinical
practice. However, complete resection is often difficult to achieve
for large solid tumor with extrasellar extension (9). Although
adjuvant radiotherapy (RT) is implemented in some institutions in
attempts to minimize postoperative P/R in NFPAs, this approach
may result in progressive pituitary insufficiency and other long-
term complications (10).

Conventional MR imaging findings such as cavernous sinus
invasion, tumor size, and absence of tumor apoplexy have been
reported as important parameters related to P/R in NFPAs.
However, the abovementioned parameters are subjective
to significant inter-observer variation (11, 12). Radiomics
analysis is recently emerging as a comprehensive quantitative
method for the evaluation of various clinical diseases (13–15).
The extracted imaging features have been shown to reveal
visually imperceptible information extending beyond radiology
to histopathology. Several studies even suggest that radiomics
may be able to provide valuable predictors regarding diagnosis,
prognosis, and thus aid in therapeutic planning in brain tumors
(13, 16–18).

In regard to the application in NFPAs, radiomics has been
used in the evaluation of tumor subtypes, consistency, ki-67
proliferation indices, and cavernous sinus invasion (18–22), but
rarely for the prediction of clinical outcomes (23). The purpose
of this study was to investigate the role of radiomics features
extracted from segmented tumor sampling for the prediction of
P/R in NFPAs.
MATERIALS AND METHODS

Ethics Statement
This study was approved by our Institutional Review Board (IRB
no. 10902-009). Written consent was waived because the
2

retrospective nature of this project does not influence the
health-care of the included patients. All patients’ medical
records and imaging documentations were anonymized and
de-identified prior to analysis.

Patient Selection
The inclusion criteria of this study were patients diagnosed with
benign NFPAs by pathological confirmation, complete and good
imaging quality of preoperative brain MRIs, and postoperative
follow-up MRIs more than 1 year after treatment. Patients with
clinical, biochemical, and histopathological evidence of hormone
hypersecretion were excluded. According to studies by Brochier
et al. (11) and Hong et al. (24), diagnosis of prolactinoma is
considered unlikely if the prolactin levels were below 100 mg/L, a
conclusion thereafter confirmed by immunocytochemical
studies. Patients who received postoperative adjuvant RT
before P/R were also excluded. From September 2010 to
December 2017, 50 patients (29 men, 21 women, age 19–80
years; median age, 52 years) were identified for this study in
accordance with the abovementioned inclusion and exclusion
criteria. Forty-eight patients underwent surgery performed by
TSA, and craniotomy was performed in two patients due to large
tumor sizes. The median follow-up duration for all patients was
38 months (range from 12 to 115 months). In 28 patients with
P/R, the median time to P/R was 20 months (range from 6 to 67
months). Clinical and biochemical data were also obtained from
medical records.

Extent of Resection and Progression/
Recurrence
The extent of surgical resection was determined by review of
postoperative MRI by a neuroradiologist (C-CK) and a
neurosurgeon (S-WL). According to published literature (25),
GTR was defined as lesion resection with a residual tumor
volume of less than 10% of its original size. In contrast,
subtotal tumor resection (STR) was defined as the presence of
residual lesion more than 10% of its original volume. For
determining P/R in NFPAs, pretreatment and postoperative MR
images were evaluated by two experienced neuroradiologists (C-CK
with 6 years of experience and T-YC with 18 years of experience),
both of whom were blinded to the clinical and imaging outcomes of
the studied population. P/R was defined as tumor recurrence after
GTR or enlargement of residual tumor after STR observed on
postoperative contrast-enhanced (CE) T1WI. The threshold of P/R
was defined as a more than 2-mm increase in size of residual tumor
in at least one dimension when compared with postoperative MRI
studies (11, 26). Inter-observer reliability in the determination of
P/R was obtained via a Cohen k value of 0.9. In equivocal cases,
judgment was made via consensus. On preoperative MR images,
cavernous sinus invasion (Knosp classification) (27) and extrasellar
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extension (Hardy’s classification) (28) were determined on coronal
T2WI and CE T1WI.

Imaging Acquisition
Preoperative brain MRI images were acquired with a 1.5-T
(Siemens, MAGNETOM Avanto) (n = 19), 1.5-T (GE
Healthcare, Signa HDxt) (n = 17), or a 3-T (GE Healthcare,
Discovery MR750) (n = 14) MR scanner equipped with eight-
channel head coils in each machine. Scanning protocols include
axial and sagittal spin echo T1-weighted imaging (T1WI), axial
and coronal fast spin echo T2- weighted imaging (T2WI), axial
fluid attenuated inversion recovery (FLAIR), and axial T2*-
weighted gradient-recalled echo (GRE). Dynamic contrast-
enhanced (CE) coronal T1WI images with a small field of view
through the pituitary gland as well as coronal and sagittal CE
T1WI with fat saturation were performed after intravenous
administration of 0.1 mmol/kg of body weight of gadobutrol or
gadoterate meglumine. Detailed imaging parameters in the MR
scanners were described in Supplementary File 1.

Tumor Segmentation
Because both T2WI and CE T1WI are associated with cavernous
sinus invasion, histopathologic subtypes, tumor consistency, and
therapeutic response in pituitary tumors (18, 19, 21, 29–31), they
were analyzed in our study. Figure 1 shows the flowchart in the
process of analysis. Tumor segmentation was performed on
coronal CE T1WI with MATLAB 2018b software (32). In
image pre-processing, the slices were resampled to isotropic
3D rendering. Then the pixel intensities inside the 3D
rendered ROIs were normalized to mean of 0 and standard
deviation of 1. For each lesion, the operator places an initial
rectangular region of interest (ROI) on the image to locate the
tumor as well as select the beginning and ending slices
containing the lesion. Subsequently, the fuzzy c-mean (FCM)
clustering algorithm was applied to segment the lesion ROI on
each image slice (33). In cases of under- or over-segmentation,
manual correction was performed. After segmentation/
correction was performed, the ROIs from all imaging slices
Frontiers in Oncology | www.frontiersin.org 3
containing the particular tumor were combined. The 3D
connected-component labeling was then applied to remove
scattered voxels not connected to the main lesion. The hole-
filling algorithm was applied to include all voxels contained
within the main ROI labeled as non-lesion. The segmented
tumor mask was transferred onto corresponding coronal T2WI
by using affine transformation with linear interpolation. This
process was conducted by FMRIB’s Linear Image Registration
Tool (FLIRT) (34).

Texture Feature Extraction and Selection
Within segmented tumor on CE T1WI and T2WI, 107 imaging
features, including 32 first order features and 75 textural features
were extracted on each modality by Python 3.75 software (35)
(Figure 1). Filters were not used in the feature extraction process.
Because some small NFPAs may be inseparable from
surrounding normal pituitary tissue, boundary pixels of tumor
masks on each slice were removed by binary erosion to ensure
only tumorous tissues were included in the ROI (32). Lengths of
0.25 and 0.5 cm were used to determine the outer shells of the
boundary pixels to be removed. Therefore, three tumor ROIs
were obtained: original masks, original mask with 0.25 cm
erosion, and original mask with 0.5 cm erosion. For each of
the abovementioned tumor ROIs, a total of 214 features were
extracted from CE T1WI and T2WI.

To evaluate the importance of these features in the
differentiation between patients with and without P/R, the
sequential feature selection process was implemented via
constructing multiple support vector machine (SVM) classifiers
by MATLAB 2018b software (32). In this process, SVM with
Gaussian kernel was used as the objective function to test the
performance of models built with a subset of features (36, 37). In
the beginning, an empty candidate set was presented, and
features were sequentially added. The 10-fold cross validation
method was applied to test the model performance (38). For each
iteration, the training process was repeated 1,000 times to
explore the robustness of each feature. At the conclusion of
each iteration, the feature which results in the best performance
FIGURE 1 | Flowchart of the analytical process for prediction of progression/recurrence (P/R) in non-functioning pituitary macroadenomas (NFPAs). The NFPA (red
outline) is segmented on coronal contrast-enhanced (CE) T1WI and then mapped to the coronal T2WI. On each set of images, a total of 107 imaging features,
including 32 first order features and 75 textural features, are extracted. The most important three features are selected by sequential feature selection and support
vector machine (SVM) classifiers to build the prediction model. A 10-fold cross validation method is applied to test the model performance.
December 2020 | Volume 10 | Article 590083
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was added into the candidate set. In this instance, we use 10−6 as
the termination tolerance for the objective function value. Once
the addition of features no longer meets the criterion, cessation
of the selection process ensues.

Besides, the SVM score was calculated for each patient based
on the selected features as described below.

f xð Þ =  o
N

n=1
wnynG(xn, x) + b

where x was the input features, N was the length of support
vector. yn and xn were the entries of the supporting vector. Wn
was the parameter and b was the bias. G(xn, x) was the Gaussian
kernel function which indicated the dot product in the predictor
space between x and the support vectors (33). Here,

G(xn,   x) = e− ∥ xn−x ∥
2

Statistical Analysis
Statistical analyses were performed using SPSS for Windows
(V.24.0, IBM, Chicago, IL, USA). For the evaluation of clinical
parameters and conventional MR imaging, Chi-square (or Fisher
exact test) and Mann-Whitney U tests were performed for
categorical and continuous data, respectively. The true positive
(TP), true negative (TN), false positive (FP), false negative (FN),
accuracy, and area under the receiver operating characteristic
curve (ROC) curve (AUC) in prediction models of different
tumor masks were calculated. ROC analysis of SVM scores was
performed to obtain the optimal cut-off value. Further, Kaplan-
Meier analysis based on cut-off value of SVM score was used to
evaluate the progression-free survival (PFS), and log-rank test
was used to assess the significance. Cox proportional
hazard model with univariate and multivariate analysis was
performed to determine independent predictors of P/R.
Variables with a p < 0.05 in univariate analysis were brought
forward to the multivariate analysis. For multivariate analyses
and all other statistical analyses, p < 0.05 were considered
statistically significant.
RESULTS

Clinical Data and Conventional MRI
Findings
The clinical data and conventional MRI findings were
summarized in Table 1. P/R was diagnosed in twenty-eight
(28/50, 56%) patients. No statistical difference was found
between the extent of tumor resection and P/R (p = 0.157).
Visual disturbance, hypopituitarism, extrasellar extension,
compression of the 3rd ventricle, large tumor height and
volume, and high SVM score were more frequently observed in
the P/R group (p < 0.05) (Figure 2). In multivariate Cox
proportional hazards analysis (Table 2), symptoms of sex
hormones, hypopituitarism, and SVM score were high risk
factors for P/R (p < 0.05) with hazard ratios of 10.71, 2.68,
and 6.88.
Frontiers in Oncology | www.frontiersin.org 4
Radiomics Approach for Prediction of P/R
In radiomics analyses, the most important three parameters
selected by the final SVM model for the prediction of P/R
were: T1 surface-to-volume radio, T1 GLCM-informational
measure of correlation, and T2 NGTDM-coarseness, and all
show significant differences (Mann-Whitney U test) (Figure 3).
The reproducibility of ROI-based radiomics feature was good
between two readers, and the intra-class correlation coefficients
TABLE 1 | The clinical data and conventional MR imaging of non-functioning
pituitary macroadenomas (NFPAs) with and without progression/recurrence (P/R).

P/R Non-P/R p

Number of patients 28 22
Sex 0.111
Male 19 (67.9%) 10 (45.5%)
Female 9 (32.1%) 12 (54.5%)
Age (y) 53.5 (44, 63) 42 (23.5, 60.5) 0.089
Clinical symptoms
Visual disturbance 26 (92.9%) 13 (59.1%) 0.006*
Headache 8 (28.6%) 11 (50%) 0.121
Symptoms of sex
hormones (decreased
libido, sexual
dysfunction, and/or
amenorrhea/
oligomenorrhea)

5 (17.9%) 1 (4.5%) 0.211

Incidental 2 (7.1%) 4 (18.2%) 0.385
Hypopituitarism 0.047*
No 12 (42.9%) 17 (77.3%)
Single 8 (28.6%) 3 (13.6%)
Multiple 8 (28.6%) 2 (9.1%)
Hyperprolactinemia 10 (35.7%) 6 (27.3%) 0.525
Extent of surgical
resection

0.157

Gross-total resection
(GTR)

3 (10.7%) 6 (27.3%)

Gross-total resection
(STR)

25 (89.3%) 16 (72.7%)

Successful
chiasmatic
decompression

9 (32.1%) 17 (77.3%) 0.002*

Cavernous sinus
invasion
(Knosp classification)

0.077

Grade 1–2 18 (64.3%) 19 (86.4%)
Grade 3–4 10 (35.7%) 3 (13.6%)
Extrasellar extension
(Hardy’s
classification)

0.045*

Grade 1–2 17 (60.7%) 19 (86.4%)
Grade 3–4 11 (39.3%) 3 (13.6%)
Compression of optic
chiasm

27 (96.4%) 17 (77.3%) 0.075

Compression of the
third ventricle

21 (75%) 9 (40.9%) 0.015*

Hydrocephalus 2 (7.1%) 1 (4.5%) 1
Giant (>40 mm) 9 (32.1%) 2 (9.1%) 0.085
Maximum tumor
height (mm)

35.5 (27.5, 43.5) 18 (10, 26) <0.001*

Tumor volume (cm3) 12.3 (4.4, 20.1) 2.7 (1.2, 8) <0.001*
SVM score 0.999 (0.960, 1.040) 0.030 (−0.241, 0.301) <0.001*
December 202
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(ICCs) of the three imaging features were 0.90, 0.80, and
0.87 respectively.

The SVM classification results by the original mask shows 25
TP, 16 TN, 6 FP, and 3 FN cases (Figure 4) with accuracy of 82%
and AUC of 0.78 (Table 3). The optimal cut-off value of SVM
score for differentiation of P/R was 0.537, with AUC of 0.87
(Figure 5). When tumor progression trends were compared,
patients with high SVM score (more than the cut-off value of
0.537) were found to exhibit shorter PSF (p < 0.001) (Figure 5).
DISCUSSION

In this study, we developed a radiomics model to predict P/R in
NFPAs. Three tumor ROIs, including the original mask and
mask with binary erosions, were used. Three features were
selected by SVM algorithm to build the final predication
model: two from CE T1WI and one from T2WI. The overall
accuracy was 82% with AUC of 0.78, and there was no significant
Frontiers in Oncology | www.frontiersin.org 5
difference amongst the three tumor ROIs methods. This study
also calculated SVM score for prediction of P/R in NFPAs, and
patients with higher SVM score were found to exhibit shorter
PSF. In multivariate Cox hazards analysis, symptoms of sex
hormones, hypopituitarism, and SVM score were high risk
factors of P/R in NFPAs.

Although more than 90% of NFPAs are benign according to the
2017WHO classification system (4), 25–55%may exhibit early P/R
within 5 years after surgical resection (5–8). The Ki-67 index,
mitotic count, and tumor invasion are all associated with aggressive
clinical behavior in NFPAs (4). However, the invasive growth of
NFPAs is not clearly defined in the WHO criteria, and it is usually
underestimated if the corresponding information fromMR imaging
is not taken into consideration (8). A meta-analysis including 143
studies by Roelfsema et al. (8) showed that postoperative hormone
concentration is an important predictor for P/R in functioning
pituitary adenomas, but no specific factor is found for NFPAs.

Recently, low apparent diffusion coefficient (ADC) on
diffusion-weight MR imaging (DWI), indicating a higher
FIGURE 2 | A 55-year-old male patient with left hemianopia and pathologically confirmed NFPA. (A) Coronal CE T1WI shows an enhancing sellar tumor (red outline)
with upward suprasellar extension and bilateral cavernous sinus invasion, causing compression of the optic chiasm and the third ventricle (arrow indicates area of
optic chiasm and third ventricle). (B) The tumor (red outline) is segmented on coronal CE T1WI (A) and then mapped to the coronal T2WI (B). (C) Improvement of
blurred vision after subtotal tumor resection via transsphenoidal approach is clinically documented, and the maximum height of the residual tumor (arrowheads)
measured from coronal CE T1WI is 38 mm. (D) Recurrent visual deterioration with enlargement of the residual tumor (curved arrow) with maximum height up to
48 mm is observed 19 months after surgical resection.
December 2020 | Volume 10 | Article 590083
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TABLE 2 | Cox proportional hazards analysis for P/R.

Univariate Analysis Multivariate Analysis

HR (95% CI) for P/R p HR (95% CI) for P/R p

Sex (fraction male) 1.980 (0.861, 4.551) 0.108
Age (years) 1.020 (0.996, 1.045) 0.098
Visual disturbance 3.378 (0.797, 14.311) 0.098
Headache 0.825 (0.361, 1.889) 0.649
Symptoms of sex hormones 5.792 (2.000, 16.777) 0.001* 10.713 (2.884, 39.800) < 0.001*
Incidental 0.642 (0.152, 2.721) 0.548
Hypopituitarism 2.772 (1.27, 6.052) 0.01* 2.680 (1.121, 6.49) 0.027*
Hyperprolactinemia 1.162 (0.504, 2.679) 0.724
Non-GTR 1.311 (0.389, 4.418) 0.662
Successful chiasmatic decompression 0.400 (0.180, 0.888) 0.024* 1.012 (0.404, 2.537) 0.979
Cavernous sinus invasion (Knosp grades 3–4) 1.460 (0.647, 3.295) 0.363
Extrasellar extension (Hardy’s grade 3–4) 1.728 (0.792, 3.768) 0.169
Compression of optic chiasm 3.354 (0.454, 24.766) 0.236
Compression of the third ventricle 1.769 (0.74, 4.228) 0.199
Hydrocephalus 2.117 (0.483, 9.275) 0.32
Giant NFPA (>40 mm) 2.964 (1.277, 6.883) 0.011* 2.061 (0.562, 7.560) 0.276
Maximum tumor height (mm) 1.164 (1.046, 1.296) 0.005* 1.060 (0.889, 1.264) 0.518
Tumor volume (cm3) 1.031 (1.011, 1.051) 0.002* 0.988 (0.954, 1.024) 0.506
SVM score 10.037 (2.252, 44.740) 0.002* 6.879 (1.328, 35.621) 0.022*
Frontiers in Oncology | www.frontiersin.org
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*Statistical difference (p < 0.05).
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FIGURE 3 | Box plot of (A) T1 surface-to-volume ratio, (B) T1 GLCM-informational measure of correlation, (C) T2 NGTDM-coarseness, and (D) SVM score for
prediction of P/R in NFPAs. Statistically significant differences (p < 0.05) (Mann-Whitney U test) in the selected features and SVM score are observed. Boxes indicate
the interquartile range (IQR), and whiskers indicate the range. The horizontal line represents the median in each box. Circles represent outliers, which are defined as
distances greater than 1.5 times the IQR below the first quartile or above the third quartile. Stars represent extreme values, defined as distances greater than three
times the IQR below the first quartile.
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cellular density, is reported to be associated with tumor
progression in NFPAs (26, 39). However, the ADC values may
be affected by susceptibility artifacts from blood products
because of apoplexy or necrosis; therefore, they could only be
measured for solid NFPAs without hemorrhage or cystic changes
(9, 26, 40). The radiomics analysis can be applied to the whole
tumor to obtain reproducible, objective, and quantitative data
from different imaging sequences, thus providing a more
comprehensive method in the approach of various acquired
information (13–15). For application of radiomics in pituitary
tumors, Saha et al. (41) reported a review article including 16
studies from the past 10 years (2009–2019). Ten of these studies
were undertaken from 2018 to 2019, most of which utilized
single-centered, retrospective data, semi-automatic pipelines,
and binary classifications as in our study. Zhang et al. (19)
Frontiers in Oncology | www.frontiersin.org 7
applied preoperative radiomics to distinguish null cell adenomas
from other subtypes in NFPAs with AUC of 0.8 to 0.83. Rui et al.
(18), Zeynalova et al. (31), and Cuocolo et al. (42) used
preoperative radiomics texture and histogram analysis to
predict consistency in pituitary macroadenomas with AUCs of
0.836, 0.71, and 0.99 respectively. Fan et al. (20, 29) and Kocak
et al. (30) used radiomics to predict response to radiotherapy and
somatostatin analogues in acromegaly with AUCs of 0.96 and
0.845 respectively. Niu et al. (21) used radiomics to predict
cavernous sinus invasion in NFPAs with AUC of 0.826 to
0.852. An SVM or radiomics score is a novel concept in
clinical applications. An individualized SVM (radiomics) score
could be calculated based on selected features (43–45). Xu et al.
(43) used SVM score to preoperative lymph node metastasis in
intrahepatic cholangiocarcinoma, with AUC of 0.87. Liu et al.
(44) reported excellent performance in SVM score for prediction
of treatment response in locally advanced rectal cancer, with
AUC of 0.98. Park et al. (45) reported radiomics score improved
the performance in MR prognostic model for glioblastoma.
Zheng et al. (46) reported radiomics score is an independent
prognostic factor for the postoperative outcome in solitary
hepatocellular carcinoma. These studies suggest that radiomics
FIGURE 4 | Examples of NFPAs (red outline) on coronal CE T1WI showing (A) true positive (TP), (B) true negative (TN), (C) false positive (FP), and (D) false negative
(FN) results in the prediction model. (A) In the TP group, larger tumor sizes with more surrounding bone invasion are observed. (B) In contrast, smaller tumor sizes
without bone invasion are found in most TN cases. (C) Most FP cases showed relatively homogeneous contrast enhancement without apoplexy or cystic change.
(D) Two of the three FN cases exhibit macrocystic components or apoplexy.
TABLE 3 | Performance in prediction models with and without binary erosions.

TP TN FP FN Accuracy AUC

Original mask 25 16 6 3 82% 0.78
With 0.25 cm erosion 24 16 6 4 80% 0.80
With 0.5 cm erosion 24 17 5 4 82% 0.79
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features might be a useful tool in predicting recurrences in
NFPAs, but no reports regarding this concept have been
published as of yet.

To the best of our knowledge, preoperative radiomics
approach for prediction of P/R in NFPAs is rarely reported.
The SVM algorithm was utilized for feature selection and
classification in this study. Three selected features were T1
surface-to-volume ratio, T1 GLCM-informational measure of
correlation, and T2 NGTDM-coarseness. The surface-to-volume
ratio is a shape index related to tumor infiltration. T1 GLCM-
information measure of correlation is a texture feature related to
the joint probability occurrence of the pixel pairs entropy. If the
distribution of the intensities is more homogeneous, the value of
this feature can be higher. T2 NGTDM-coarseness is an inverse
measure of the level of the spatial rate of change in intensity. A
higher value indicates a lower spatial change rate and a locally
more uniform texture (47). In this study, three ROI methods
were implemented, including the original tumor mask and two
masks with differential erosion of the boundary pixels. The goal
was to evaluate whether the potential inclusion of normal
pituitary glandular tissue and other surrounding, non-
tumorous structures would affect the prediction. The obtained
results, however, turned out to be similar. One possible reason
was that the eroded pixels were minimal compared to the whole
tumor mask, thus accounting for the minimal overall effects on
produced results.

In recent years, study of computer-extracted imaging
radiomic features has become an active research field.
However, the robustness and reproducibility of the selected
quantitative imaging features need to be extensively studied
before their clinical applications. Factors affecting the
robustness of radiomic approach are modality dependent. So
far only few studies have investigated the robustness of radiomic
features in MRI (48–51). How different imaging sequences and
imaging parameters will affect the reproducibility of radiomic
features is still not clearly known. A recent phantom study noted
that remarkable differences exist among different MRI sequences
in the number of robust and reproducible features (52).
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Nevertheless, more than 30% (15 of 45) features still showed
excellent robustness across all sequences and demonstrate
excellent reproducibility. It was supposed that these 15 features
can reliably be applied for the design of radiomics signatures
within clinical studies. Among these features, the shape-related
feature was noted to be robust. Another study of repeatability
and reproducibility of MRI-based radiomic features also showed
that shape features emerged as the most stable features among all
the selected features (53). It was suggested that radiomics
extracted from T1W and T2W imaging should be used with
caution, and only robust and reproducible features should be
selected for building a radiomics signature (52). However, it was
also true that through fully automatic image segmentation as our
study did, the effect of operators’ dependent bias of radiomic
features can be reduced (52).

There were 41 true and 9 false predictions using the model
developed with the original tumor mask. For most TP and FN
cases, large tumor sizes with heterogeneous enhancement and
surrounding bone invasion were observed. In contrast, small
tumor sizes without bone invasion were found in most TN cases.
Homogeneous contrast enhancement without apoplexy or cystic
change was observed in most FP cases. Based on our results,
macrocystic components or apoplexy may be an important
factor leading to FN. Further studies involving a larger sample
size is necessary to establish a better understanding regarding
factors related to true and false predictions.

It is known that the extent of tumor resection is an important
determining factor affecting recurrence rates in NFPAs (11).
Although no statistical difference is demonstrated between GTR
and P/R in our study, it may be due to the relatively small sample
size. In our study, tumor recurrence was present in three patients
despite having undergone GTR. In contrast, stable disease was
observed in 16 patients after receiving STR only. Since most
NFPAs are benign tumors, preoperative prediction of P/R in
NFPAs offers clinically valuable information regarding treatment
options. On the other hand, a significant correlation between the
number of surgical resections and complication rates in NFPAs
is reported (54). Anterior pituitary insufficiency and diabetes
A B

FIGURE 5 | Receiver operating characteristic (ROC) and Kaplan-Meier survival curves of SVM score. (A) ROC curve of SVM score for prediction of P/R in NFPAs,
with optimal cut-off value of 0.537 and AUC of 0.87. (B) Kaplan-Meier survival curves showing significant difference (p < 0.05) (Log-tank test) in overall trend of
progression-free survival based on cut-off value of SVM score.
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insipidus are the most commonly encountered postoperative
complications in NFPAs with occurrence rates of 19.4 and 17.8%
respectively (54). For patients with high possibilities of tumor
recurrence, aggressive resection combined with postoperative
adjuvant RT and close MR imaging follow-up should be
considered. In contrast, for patients with lower possibilities of
disease recurrence, the aim of surgery would be to relieve clinical
symptoms by decreasing tumor mass effects. Optimal surgical
planning for low risk patients could reduce potential
complications of endocrine disorders while maintaining a good
treatment outcome.

It is known that postoperative adjuvant RT offers excellent
tumor control in 96% of patients with non-secreting adenomas
(55). However, whether postoperative RT is beneficial for
patients with low possibility of recurrence is controversial
because RT may increase risks of complications such as visual
deterioration, hypopituitarism, cerebrovascular accident, and
dementia in NFPAs (55, 56). Because adjuvant RT may affect
the independent predictive value of the preoperative MR
radiomics analysis for P/R, patients who have received
adjuvant RT before P/R were excluded from our study.

The study had several limitations. Selection bias may exist due
to its retrospective nature. All MR images were acquired at a
single site with a single protocol, and lack of external validation.
Future testing with multi-institutional data and varying imaging
protocols is necessary to determine whether the trained classifier
is generalizable. Due to the relatively small sample size, only a
few imaging features can be selected to build the classification
model in order to avoid over-fitting. More advanced statistical
analysis methods that can take all clinical and imaging factors
into account need to be considered in the future. When more
cases become available, other machine learning strategies, such
as a fully automatic convolutional neural network able to
perform end-to-end learning may be applied to improve the
performance of prediction.
CONCLUSIONS

In summary, our preliminary study of MR radiomics analyses
based on CE T1WI and T2WI in preoperative MRI was able to
achieve an accuracy of 82% and AUC of 0.78 in predicting
recurrence in NFPAs. For SVM score based on selective features,
an AUC of 0.87 was obtained in differentiation of P/R. The
features extracted based on automatic segmentation and imaging
registration were objective and quantitative. Because the
Frontiers in Oncology | www.frontiersin.org 9
robustness and reproducibility of MR radiomic features may be
affected by imaging sequences and imaging parameters, more
studies in this field are needed to know which reproducible
radiomic features can be consistently used across imaging
sequences and different institutions. The results in our study
offer useful clinical information to aid in the preoperative as well
as postoperative planning in the management of NFPAs, such as
the extent of surgical resection, implementation of postoperative
adjuvant RT, and the time interval of MR imaging follow-up.
Nevertheless, this approach still needs to be validated with a
larger-scale study and long-term follow-up.
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