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Utilization of machine learning for prediction of
post-traumatic stress: a re-examination of cortisol in the
prediction and pathways to non-remitting PTSD
IR Galatzer-Levy1,2, S Ma3, A Statnikov4, R Yehuda5 and AY Shalev1,2

To date, studies of biological risk factors have revealed inconsistent relationships with subsequent post-traumatic stress disorder
(PTSD). The inconsistent signal may reflect the use of data analytic tools that are ill equipped for modeling the complex interactions
between biological and environmental factors that underlay post-traumatic psychopathology. Further, using symptom-based
diagnostic status as the group outcome overlooks the inherent heterogeneity of PTSD, potentially contributing to failures to
replicate. To examine the potential yield of novel analytic tools, we reanalyzed data from a large longitudinal study of individuals
identified following trauma in the general emergency room (ER) that failed to find a linear association between cortisol response to
traumatic events and subsequent PTSD. First, latent growth mixture modeling empirically identified trajectories of post-traumatic
symptoms, which then were used as the study outcome. Next, support vector machines with feature selection identified sets of
features with stable predictive accuracy and built robust classifiers of trajectory membership (area under the receiver operator
characteristic curve (AUC) = 0.82 (95% confidence interval (CI) = 0.80–0.85)) that combined clinical, neuroendocrine,
psychophysiological and demographic information. Finally, graph induction algorithms revealed a unique path from childhood
trauma via lower cortisol during ER admission, to non-remitting PTSD. Traditional general linear modeling methods then confirmed
the newly revealed association, thereby delineating a specific target population for early endocrine interventions. Advanced
computational approaches offer innovative ways for uncovering clinically significant, non-shared biological signals in
heterogeneous samples.
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INTRODUCTION
Risk factors for emerging psychopathology may vary between
individuals. Post-traumatic stress disorder (PTSD) represents a
good example of this principle as diverse risk factors, associated
with the development of the disorder and are not shared by all
individuals affected.1,2 In addition, biological risk factors (for
example, genetics, epigenetic and neuroendocrine) with demon-
strated associations with PTSD often failed to replicate.3

Such inconsistencies, however, may not necessarily reflect a
weak or absent relationship between biological factors and
responses to trauma. Other putative sources of inconsistencies
include inadequate computational modeling, biological hetero-
geneity of PTSD, the disorder’s multicausal etiology and the
reliance on categorical outcome measures (for example, diagnos-
tic categories).
The reliance on general linear models constitutes a barrier to

replication because these models are not designed to examine
complex interactions between variables of various distributional
patterns, identify factors that concern a subpopulation and infer
complex predictive relationships. Offering remedy to those,
machine learning (ML) predictive modeling is increasingly used
to develop algorithms that classify individuals with varying,

unequally distributed risk factors (for example, in predicting the
course of malignancies from tissue biomarkers4).
Early prediction and the identification of early intervention

targets are of significant interest, under the assumption that
mechanisms underlying the development of the disorder can be
manipulated to prevent its development. Pathways to PTSD,
however, involve distinct genetic, endocrine, demographic and
environmental factors that are not shared by all PTSD patients,
suggesting that efficient early treatment may have to address
individual-specific pathogenic pathways.1,5–9 Graph induction
models, also known as network models, offer new ways to
identify individual paths to illness. Graph induction algorithms are
variants of unsupervised ML that identify and map a network of
connections within complex multicausal matrices10–12 and derive
specific causal paths within these networks. The use of classifica-
tion models and graph models both may provide unique and
equally important information as classification models focus on
the identification of sets of features that provide the strongest
classification accuracy but may obfuscate upstream features that
are mechanistically important.13 Conversely, graph models can
identify mechanistically important that may not be identified in
classification models because they do not contribute to prediction
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over and above features that are more proximal to the outcome.
By conducting both sets of analyses, both the predictive accuracy
and the mechanistic role of the endocrine response to trauma can
be identified.
The selection of outcome is of equal importance in any research

related to the development of PTSD. Psychiatric research
traditionally relies on end point diagnosis cued to the Diagnostic
and Statistical Manual of Mental Disorders (DSM) or International
Classification of Disease systems of classification. Diagnostic
categories, however, suffer from significant underlying
heterogeneity,14 ambiguous distributional properties15 and lim-
ited empirical accuracy for predictive models.16 To palliate this
shortcoming, latent growth mixture modeling (LGMM) and allied
methods have emerged as an empirically driven alternative
method for identifying healthy and pathological responses to
traumatic events.17–22 LGMM identifies individuals’ clustering into
symptom progression trajectories and classifies participants
belonging to these trajectories based on the posterior probability
of class membership.23 Relying on early PTSD symptoms
templates or categories (for example, acute stress disorder) as
predictors similarly constrain predictive models, whereas empiri-
cally derived predictive features (including PTSD symptoms but
also other informing antecedents) have been shown to better
predict PTSD and PTSD symptom trajectories.16

In the current investigation, we apply supervised and unsu-
pervised ML methods to examine the relationship between
background, environmental and neuroendocrine risk factors and
PTSD development over 5 months that follow trauma exposure.
Specifically, we apply LGMM trajectory identification, supervised
ML to infer predictive features related to these trajectories and
graph induction algorithms to examine causal paths to data from
a large longitudinal study of the neuroendocrine response to
traumatic event,24,25 that previously failed to demonstrate group-
wide association between ER endocrine markers and PTSD status
5 months later using classical general linear model statistics.

MATERIALS AND METHODS
Participants
As previously described,24,25 adult survivors of potentially traumatic were
evaluated during their emergency room (ER) admission following the
traumatic incident and re-evaluated 10 days, 1 month and 5 months later.
Subjects who completed their ER evaluation and at least two additional
evaluations were included in the current study (n=152; for further
participant, recruitment and retention information see Supplementary
Information).

Instruments
Assessment of trauma exposure. Characteristics evaluated during ER
admission include exposure to death and injury of strangers or relatives
(dichotomous yes/no answers), perceived threat during the event,
subjective severity of the incident, subjective distress during the incident
and negative perception of one’s own responses (single item for each,
scored 0 (not at all) to 4 (extreme)).

Personal information. Information acquired from ER records and the
10-day interviews included age, gender, trauma type, body mass index,
heart rate (HR), blood pressure (BP), hour of admission and length of ER
stay (ER records; HR and BP were evaluated upon ER admission,
re-evaluated upon obtaining subject’s consent and averaged) and
education level (years of schooling), income, prior military service, past
trauma history, smoking habits (yes/no; number smoked per day) and
psychiatric treatment upon study enrollment (yes/no; 10 days records).

Neuroendocrine assessment. Blood and saliva samples were collected in
the ER, and on the morning of each follow-up assessment (10 days,
1 month, 5 months). Assays performed included plasma cortisol,
norepinephrine (NE) and adrenocorticotropic hormone (ACTH), lympho-
cytes’ glucocorticoid-receptor density, saliva cortisol and, during ER
admission only, urine cortisol and epinephrine, based on 4-h urine

collection during ER admission. For a full description of biological sample
collection, storage and assays (see Supplementary Material and Videlock
et al.24 and Shalev et al.25).

Diagnostic and psychometric instruments. The Clinician-Administered
Scale26 evaluated DSM-IV PTSD symptom severity and diagnostic status
at 1 and 5 months.
The Structured Clinical Interview for DSM-IV27 Global Assessment of

Functioning (GAF; single item; range 1-100) was administered at 1 and
5 months).
The Impact of Events Scale—Revised28 measured PTSD severity at

10 days, 1 month and 5 months. Subscales of intrusions, avoidance and
hyperarousal were derived following the instrument’s specifications.28

The Beck Depression Inventory (BDI29) and the State-Trait Anxiety Inventory30

evaluated depression and anxiety (10 days, 1 month and 5 months).
The Peritraumatic Dissociative Experience Questionnaire31 administered at

10 days evaluated dissociation symptoms upon trauma exposure.
The Trauma History Questionnaire32 (1 month) evaluated lifetime

exposure to traumatic events. The Trauma History Questionnaire queries
exposure to each of 13 distinct traumatic events, and for each event, the
presence of fear, helplessness or horror (as per DSM-IV PTSD Criterion A: A
traumatic event). Two dichotomous variables are: (a) exposure to child-
hood trauma and (b) exposure to adult life trauma.

Data analytic procedures
Identification of trajectories of post-traumatic stress. LGMM28 was
employed to identify PTSD symptom severity trajectories (Impact of
Events Scale—Revised total scores) from 10 days to 5 months using MPlus
7.2.33 The best-fitting model was selected through a nested model
approach where progressive numbers of classes are fit until model fit
indices no longer favor additional classes following recommendations
from the literature34 (see Supplementary Information for statistical
selection criteria). In the current study, results were validated by specifying
500 random starting values, resulting in consistent replicating of the best
log likelihood value.35,36 To further guard against overfitting, the sample
was randomly split into two halves, and the best analytic procedure was
executed on both the random halves to determine whether the same
number of classes were recovered in both random splits. The split-half
cross-validation was conducted by comparing the Lo-Mendell Rubin
likelihood ratio Test (LMR-LRT) because of evidence from the literature that
it is an accurate statistic for class enumeration.37

Individuals were assigned to classes based on the highest posterior
probability of class membership in identified latent trajectories. Class
membership was used for analysis as the outcome variable in subsequent
ML predictive modeling and graph analyses. The predictive accuracy of
trajectories was compared to PTSD diagnostic status established through
clinician assessment using the CAPS.

Prediction of trajectory membership. First, data were transformed and
prepared for modeling (see Supplementary Materials for full description of
procedures). Next, multiple models were built with data from progressive
time points integrated to determine the accuracy of predicting trajectories.
Specifically, predictive models were constructed including (a) pre-trauma
exposure variables only (that is, demographics including age, gender, prior
trauma history and so on); (b) pre-trauma + ER data; (c) pre-trauma + ER +
1-week data; (d) pre-trauma + ER + 1-week data + 1 month data. All
models were also constructed on (1) clinical/demographic data alone; (2)
neuroendocrine and physiological data alone; (3) clinical/demographic and
neuroendocrine data together. Linear support vector machines (SVMs)
with default parameterizations (that is, C parameter = 1) were utilized as
the primary method to classify individuals into trajectories because prior
comparisons across ML methods demonstrated that linear SVMs
performed equivalently or outperformed other classification methods.16

Specifically, SVMs identify a linear hyperplane in high-dimensional space
(each predictor variable is a dimension) that accurately separates
the sample into two or more previously specified populations.38 For
completeness, we also compare the performance of five other ‘best in
class’ classification algorithms.38 The results of that comparison are
presented in Appendix A.39,40

SVM-based recursive feature elimination (RFE) was employed to select
the smallest subset of features that most accurately classifies the
outcome.39,40 Feature selection algorithms, such as RFE, are commonly
utilized in tandem with classification algorithms to reduce dimensionality
and to guard against overfitting.
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Prediction and classification accuracy are provided as the mean area
under the receiver operator characteristic curve (AUC) across cross-
validation runs (see below) with RFE feature selection. Accuracy without
RFE is presented in Appendix A. Results were cross-validated through
5× 10-fold cross-validation to guard against overfitting resulting in a mean
AUC across cross-validation runs. Cross-validation provides a method
of guarding against false discovery akin to corrections for multiple
comparisons, which is utilized in a null hypothesis-testing framework. As
ML methods are not based on a null hypothesis framework, guards against
overfitting are achieved by replication in random parts of the data (and
ultimately in independent data sets). AUC of 0.50–0.60 indicates prediction
at chance; 0.60–0.70: poor prediction; 0.70–0.80: fair prediction; 0.80–0.90:
good prediction; 0.90–1.0: excellent prediction41 (for a full description of
SVMs, RFE and cross-validation procedures see Supplementary Materials).
In addition, we examined sensitivity, specificity and positive predictive
validity (PPV) at different cutpoints (along with 95% confidence intervals
(CIs)) with and without the addition of feature types (clinical alone,
neuroendocrine alone, clinical and neuroendocrine combined). PPV was
calculated at different cutpoints corresponding to the precision-recall
curve, calculated as Precision¼ tp

tpþfp; Recall¼ tp
tpþfn, where tp = true positives,

fp = false positives and fn= false negatives.42

This provides more direct information about how the algorithm is
performing with response to detecting true-positive cases of non-
remitting PTSD.

Graph model of relationships between all study variables. A network
encompassing all probabilistically relevant features was identified (global
network) by inducing sets of adjacencies around each feature (local
network). This analysis was executed using the GLL-PC algorithm.12,43

Specifically, a network encompassing all non-redundant and statistically
relevant features was identified (global network) by inducing sets of
adjacencies around each feature (local network) using the GLL-PC
algorithm12,43 for local-to-global learning HITON-PC instantiated through
the Causal Explorer Toolkit44 in MATLAB R2914b,45 which identifies the
minimal set of variables associated with an outcome variable of interest
(target variable), conditioned on which all other variables are probabil-
istically independent. This approach has been shown to have favorable
properties for inductive analysis including a low false discovery rate.43

Edges are defined as lines that connect variables in a graph. Directed
edges signify the causal relationships between variables.46 The current
study only uses directed edges between variables that occur at different
times. Undirected edges, indicating a causal relationship of unknown
directionality, are utilized cross-sectionally. Data with ⩾ 30% missing values
for pairwise comparisons were dropped from analyses. Models were run

across 100 bootstrap draws and only edges that replicated in ⩾ 30% of
bootstrap draws were retained. We sought to induce the global network
encompassing all relationships between all available subject information to
accurately identify the local network around PTSD trajectory membership.

RESULTS
Symptom trajectory results
Progressive nested trajectory models with freely estimated
intercept and slope parameters were compared. A two-class
model demonstrated a large reduction in the information criteria
(AICreduction = 32.81; BICreduction = 23.48; SSABICreduction = 32.98), a
highly significant LMR-LRT (P⩽ 0.001), Vuong-Lo-Mendell-Rubin
likelihood ratio test (P⩽ 0.01) and Bayesian likelihood ratio test
(P⩽ 0.001) and good entropy (0.87). The addition of a third
class resulted in minor reductions in the information criteria
(AICreduction = 15.06; BICreduction = 5.72; SSABICreduction = 15.21), non-
significant LMR-LRT (P= 0.19) and Vuong-Lo-Mendell-Rubin like-
lihood ratio test (P= 0.21), while the Bayesian likelihood ratio test
remained highly significant (P⩽ 0.001). Entropy decreased slightly
(0.85). Next, solutions for the two random splits of the data were
estimated, demonstrating that in both random splits a two-class
solution best fit the data (Two Class solution for Random Split 1:
LMR-LRT P= 0.052; Three Class solution for Random Split 1: LMR-
LRT P= 0.33; Two Class solution for Random Split 2: LMR-LRT
P= 0.001; Three Class solution for Random Split 2: LMR-LRT
P= 0.11). On the basis of converging evidence, we retained the
two-class model (Figure 1).
The two identified trajectories included: Recovery (82.8% of the

sample) was characterized by an initial intercept at the 1-week
time point, approximating the clinical cutoff for PTSD diagnostic
status (Est= 32.38; s.e. = 2.07; P⩽ 0.001), a significant negative
slope over time (Est= − 3.83; s.e. = 0.36; P⩽ 0.001) and a high
average latent class probability for most likely latent class
membership (0.97), and non-remitters (17.2%) demonstrated an
initial intercept in the severe range (Est= 62.47; s.e. = 4.91;
P⩽ 0.001), a nonsignificant slope indicating no significant change
in PTSD scores over time (Est = 0.47; s.e. = 1.41; P= 0.74) and a high
latent class probability for most likely latent class membership
(0.92). Classes were compared on gender, age, depression, global

Figure 1. Latent growth mixture model identified trajectories of remitting and non-remitting PTSD. Two classes represented as the mean
trajectories with random effects around LGMM identified trajectories of remitting (82.8%) and non-remitting (17.2%) post-traumatic stress
based on repeated measures of the IES-R (n= 155). Gray lines represent individual observations. Colored lines represent the mean trajectory.
IES-R, Impact of Events Scale Revised; LGMM, latent growth mixture modeling; PTSD, post-traumatic stress disorder.
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functioning and PTSD severity measured with the CAPS using one-
way analysis of variance or χ2-test for categorical variables. Results
indicated that classes did not differ on demographics but non-
remitters demonstrated elevated PTSD and depression scores and
lower functioning scores at all time points (Table 1).

Predictive model results
Prediction of symptom trajectories. SVMs provided better than
chance predictive accuracy based on background information
alone (AUC= 0.64 (CI = 0.61–0.67)), good accuracy based on
background and ER variables (AUC= 0.82 (CI = 0.80–0.85)), good
based on data through 1 week (AUC= 0.88 (CI = 0.86–0.91)) and
excellent accuracy for data through 1 month (AUC= 0.93 (CI =
0.91–0.95)). Neuroendocrine and physiological features alone
provided the following predictive accuracy: ER alone (AUC= 0.67
(CI = 0.63–0.71)); ER + 1 week (AUC= 0.66 (CI = 0.61–0.70)); and
ER + 1 week + 1 month (AUC= 0.70 (CI = 0.67–0.74)). Clinical/
demographic variables alone provided the following predictive
accuracy: ER alone (AUC= 0.77 (CI = 0.72–0.80)); ER + 1 week +
1 month (AUC= 0.90 (CI = 0.88–0.92)). These results are confirmed
by examining sensitivity and specificity at different thresholds,
which demonstrates that at moderate sensitivity (0.70) all features
together from the ER provide relatively high specificity (0.75
(CI = 0.71–0.79)), while neuroendocrine features alone provide
weaker specificity (0.58 (CI = 0.53–0.64)) as do clinical features
alone (0.70 (CI = 0.63–0.77)). Combined features demonstrate
improved performance over clinical features alone and neuroen-
docrine features alone through 1 month (see Supplementary
Table 1). PPV corresponding to the precisio–recall curve revealed
that combined features at 1 month at 0.70 sensitivity provided the
strongest model (0.70 (CI = (0.62–0.77); for compete results see
Supplementary Table 2). Results indicate that neuroendocrine
information improves predictive ability from the ER but provides
only trivial predictive over directly observed clinical indicators
beyond the ER (Figure 2).
To determine the contribution of specific features within a

multivariate predictive model, we outputted a measure of the

percentage of times any given feature was selected through RFE
across 5 × 10-fold cross-validation runs. This was done for all of the
above models to determine features' stability as predictors in the
context of other sources of information. We define a stable feature
as one that is selected in ⩾ 55% for RFE runs. Importantly, feature
stability changed depending on what other features were in the
model (all sources of information together; biological alone;
clinical alone) and what time epochs were included in the model
(ER alone; +1 week; +1 month), indicating complex dependencies
between features. Features that were stable across all models
included prior trauma exposure and heightened sense of danger
and urinary cortisol collected in the ER.
For completeness, three additional sets of analyses were

conducted and are presented in Supplementary Material: (1) all
SVM-based predictive models were conducted using end point
PTSD diagnostic status to determine whether empirical trajec-
tories or diagnosis are more amendable to predictive modeling;
(2) predictive results for trajectories are compared to other
common classification algorithms for completeness (Supplemen-
tary Figure 1); (3) the stability of all features across all models
(Supplementary Figures 2–4). Results comparing different para-
meters (that is, linear compared to polynomial parameters) did not
improve fit, indicating that nonlinear models did not provide
better fit.

Graph analysis
The local graph, or direct connections, around a particular variable
(terms the target variable) makes the target variable statistically
independent of all other variables in the graph (see Figure 3a for
the local-to-global graph around PTSD non-remission). The graph
model reveals four features included in the local graph around
trajectory membership. Included are two features from the
5-month time epoch (PTSD symptom severity and the NE/cortisol
ratio measured in plasma. This indicates that these two features
are most closely associated with non-remission of PTSD. Depres-
sion was shown to be associated with trajectory membership
indirectly though PTSD severity.
Further features in the local graph around trajectory member-

ship included ER hourly urinary cortisol and avoidance sympto-
matology at 1 month. The connections to these features revealed
two key pathways to trajectory membership (see Figure 3b). Low
levels of ER urinary cortisol were dependent on self-reported
childhood trauma exposure. The second pathway through
avoidance symptomatology at 1 month was dependent on
avoidance at 1 week, indicating that this symptom cluster is
impactful early in the disorder development.
An examination of the larger graph reveals that the emergence

of avoidance symptomatology was dependent on individual’s
subjective assessment of the severity of the trauma, which in turn
was dependent on increased salivary cortisol, the NE/cortisol ratio
measured in plasma, injury severity and multiple subjective
assessments of the event. This pathway was further shown to
be associated with increased pulse, HR and plasma NE levels, and
was less likely to be dependent on childhood trauma. Increased
plasma NE was found to be negatively associated with gluco-
corticoid receptor cell receptor density, indicating that regulation
of the hypothalamic pituitary axis is relevant for individuals on this
pathway as well as those on the other pathway. The two pathways
intersect through ER hourly urinary NE. Together, results indicate
that factors across time epochs have an impact on the
development and maintenance of PTSD.

Post hoc confirmatory analysis
To corroborate the identified graph relationship through tradi-
tional methods, we first compared the mean differences between
the two classes (remitting/non-remitting) through independent
samples t-test, demonstrating significant differences in ER cortisol

Table 1. Comparison of individuals in LGMM identified symptom
trajectory classes on clinical variables at 1 and 5 months

Class demographics/
symptoms

Remitting mean
(s.d.)

Non-remitting mean
(s.d.)

Demographics
Age 30.75 (10.71) 32.07 (12.67)*

Gender (male) 59.12% 50.00%*

1 Month
BDI 6.00 (5.98) 17.80 (12.24)
GAF 79.99 (12.46) 62.21 (12.36)
PTSD total 19.51 (15.73) 58.22 (29.12)

5 Months
BDI 4.81 (5.54) 19.16 (13.43)
GAF 79.99 (12.46) 62.21 (12.36)
PTSD total 12.67 (15.53) 62.67 (30.57)

Abbreviations: BDI, Beck Depression Inventory; CAPS IV, Clinical Assess-
ment of Posttraumatic Stress IV; DSM, Diagnostic and Statistical Manual of
Mental Disorders; GAF, Global Assessment of Functioning; LGMM, latent
growth mixture modeling; PTSD, post-traumatic stress disorder; SCID,
Structured Clinical Interview for DSM-IV. Note: Depression was measured
using the BDI-II. PTSD symptom frequency and intensity were measured
using the CAPS IV cued to DSM-IV criteria; GAF is based on the SCID. All
comparisons were conducted using one-way analysis of variance with the
exception of the frequency of gender, which was assessed using χ2. All
comparisons were significant at the Po0.001 level with the exception of
those which did not approach significance, which are marked *.
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Figure 2. Classification results based on mean AUC for support vector machines with recursive feature elimination across 5 × 10-fold cross-
validation. (a) Classification accuracy based on AUCs for (1) neuroendocrine features alone; (2) clinical and demographic features alone; (3)
neuroendocrine, clinical and demographic features together. Each time point represents the AUC inclusive of features from the previous time
point. (b) Means and s.d.'s of AUCs across 5 × 10-fold cross-validation runs. AUC, area under the receiver operator characteristic curve.

Figure 3. Causal graph around non-remitting PTSD trajectory membership derived using local-to-global learning algorithm. Note: see full
description of features in methods section. (a) In graph, red lines represent negative relationships and blue lines represent positive
relationships. The graph represents the local network surrounding the target variable PTSD Trajectory, identified using the HITON-PC
algorithm for local-to-global learning. The local network represents the set of variables that renders all other variables in the model statistically
independent of the target variable. The local network includes 4-h Urinary Cortisol, avoidance symptoms at 1 month, NE/cortisol plasma ratio
and PTSD severity at 5 months. Expanding the network reveals that trajectory membership is associated with depression via PTSD severity.
Further, two pathways to non-remitting post-traumatic stress are identified. (b) Path 1 indicates that individuals who do not report childhood
trauma experience high sympathetic arousal and negative appraisals in the emergency room leading to the emergence of avoidance
symptomatology at 1 week and 1 month, leading to non-remitting PTSD trajectory membership. Path 2 indicates that report of childhood
trauma has a causal effect on PTSD non-remission through low urinary cortisol response in the emergency room. The two pathways are
connected through 4-h Urinary NE. NE, norepinephrine; PTSD, post-traumatic stress disorder.
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by class (t (1,96) =− 3.23; Po0.002; mean (s.d.) remitting = 5.82
(4.79); mean (s.d.)non-remitting = 12.31(14.51)). We then examined
differences in ER urinary cortisol by childhood trauma as a mean
(s.d.) ECT = 4.81 (4.78); mean (s.d.)non-ECT = 7.49 (7.94)). Finally,
χ2-test of independence demonstrated a significant relationship
between early childhood trauma and non-remitting trajectory
membership (χ2 (1,165) = 4.70; Po0.05). Finally, logistic regression
with class membership as the dependent variable and early
childhood trauma and ER cortisol as independent variables
revealed a significant overall model (χ2 (2,96) = 7.92; Po0.05), a
nonsignificant effect of early childhood trauma (Wald = 0.66;
P= 0.41) and a significant effect of ER urinary cortisol (Wald =
5.57; P= 0.02). These findings confirm that the relationship
between childhood trauma and trajectory membership is fully
mediated by the ER cortisol.
Finally, as both predictive and graph models revealed a roll for

hourly cortisol measured in the ER, we examined the univariate
classification accuracy of these variables for differentiating
identified trajectories by calculating the AUC for hourly cortisol
alone. Results revealed that this variable alone does not classify
trajectory membership better than chance (AUC= 0.58), indicating
that measurements of cortisol in the ER alone will not provide
adequate classification accuracy to identify those at risk.

DISCUSSION
The current findings demonstrate that the neuroendocrine
response contributes to an accurate predictive signal of PTSD
trajectory of response to trauma. Further, cortisol provides a stable
predictive signal when measured in conjunction with other related
neuroendocrine and clinical sources of information. This indicates
that the neuroendocrine response to trauma is an important
biomarker panel to capture for predictive tools.
Network analyses revealed that decreased levels of cortisol was

associated with increased risk for PTSD non-remission. As this
measurement is an average over 4 h after exposure, this result can
be interpreted to have reduced elevation in response to the
trauma rather than lower diurnal levels. The reduced cortisol
response in the ER was dependent on report of early childhood
trauma exposure. This finding is consistent with evidence from
animal models that early life abuse produces a blunted cortisol
response to trauma3 and findings that a blunted cortisol response
to trauma is predictive of abnormal stress responses.21 Further,
this finding points to genomic and molecular mechanisms for
further investigation as abnormal cortisol responses to trauma and
PTSD are associated multiple genetic, epigenetic and proteomic
elements including FKBP5 among others,47 many of which can
serve as accessible therapeutic targets in emergency medical
contexts including military personnel deployed to war zones.
A second general pathway was identified that was probabil-

istically less likely to be associated with childhood trauma. This
pathway consisted of a general sense of heightened arousal and
danger in response to the trauma. This response influenced the
development of avoidance symptoms and ultimately PTSD non-
remission. Interestingly, this pathway was associated with elevated
salivary cortisol, indicating that cortisol levels may confer
differential risk for individuals on different pathways with distinct
background risk. This possibly explains contradictory findings
regarding cortisol response to trauma and risk for PTSD as results
show that the same marker has different effects based on how it is
measured as well as the population it is related to.
Both network and classification algorithms indicate that the

interaction between multiple individual factors confers risk for
non-remission. Classification models consistently selected multiple
features to build an accurate classifier, indicating complex
dependencies between features in classifying trajectory member-
ship. Network models further provided evidence of complex
dependencies and interactions between variables such as the

identified interaction between childhood trauma and low cortisol
in the ER integrating to increase the propensity for non-remission.
Knowledge of these pathways may be directly relevant to clinical
care of individuals identified following trauma in the general
medical ER. Specifically, cortisol-based interventions have been
explored as a potential method to prevent the development of
PTSD.48 The current results indicate that such interventions may
only be relevant to a subset of individuals, particularly those who
report early childhood trauma, indicating that such interventions
may need to be targeted to particular subpopulations to be
effective.
It is important to note that ML-based network models are an

inherently exploratory data analytic method, and as such might be
seen as ‘hypotheses generating’. While such an approach is
informative in situations where complex relationships cannot be
proposed and tested a priori, such an approach also presents with
inherent limitations as a high number of relationships are
estimated simultaneously introducing a non-trivial probability of
false discovery. To overcome this in the current study, the key
relationships of interest were confirmed in a more rigorous null
hypothesis framework through the use of logistic regression.
While this improves confidence in the findings, both the graph
and logistic regression results are bound to the current sample
and will require further validation in independent samples.
Limitations to implementing systematic neuroendocrine assess-

ment following trauma exposure are its cost, the small increment
in predicting PTSD over initial symptom severity measure and its
yet unknown sensitivity and specificity. As such, this work does
not sustain a use of early neuroendocrine responses as risk
indicators, but rather as a way to identify likely candidates for early
neuroendocrine interventions and to understand current
intervention-limited effect size in unselected aggregates.
Despite these limitations, this work identifies the substantive

role of cortisol and the broader neuroendocrine response in
predictive modeling of post-traumatic stress responses. Further,
this work identifies subpopulations for which the cortisol response
following trauma is most relevant. Together, results indicate that
the neuroendocrine response to trauma should be both utilized as
a biomarker in predictive tools and should be considered as a
target for intervention that is most relevant to a subpopulation.
Further, this work provides a methodology that is relevant across
psychiatry and other behavioral sciences that transcend the
limitations of commonly utilized data analytic tools to match the
complexity of the current state of theory in these fields.
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APPENDIX A
Probability of each feature being selected as information from
progressive time points is integrated based on all available
information

Probability of feature being selected

Features Pre-
ER

ER Through
1 week

Through
1 month

Through
5 months

Background
#cigarettes

0.7 0.5 0.18 0.14

Adult trauma 0.34 0.2 0.24 0.28
Age 0.76 0.22 0.14 0.12
Car accident 0.5 0.18 0.14 0.46
Child trauma 0.68 0.26 0.16 0.2
Education 0.46 0.18 0.16 0.18
Gender 0.34 0.32 0.2 0.4
Holocaust 0.56 0.42 0.16 0.04
Income 0.76 0.32 0.16 0.22
Military service 0.26 0.2 0.4 0.28
Other trauma 0.66 0.84 0.76 0.84
Psych treatment 0.52 0.56 0.58 0.56
Smoking 0.58 0.62 0.42 0.4
A1 ER 0.16 0.28 0.3
A2 ER 0.68 0.74 0.78
Appraisal ER 0.92 0.78 0.88
Arrival time ER 0.38 0.3 0.3
Blood time ER 0.2 0.24 0.18
Blood pressure ER 0.14 0.2 0.12
Danger ER 0.4 0.52 0.36
Distress ER 0.14 0.16 0.26
GR cell ER 0.12 0.22 0.1
Heart rate ER 0.48 0.14 0.16
Lymphocytes ER 0.48 0.48 0.52
NE/cort plasma
ratio ER

0.12 0.14 0.2

Subjective sever-
ity ER

0.54 0.46 0.48

Plasma ACTH ER 0.18 0.36 0.24
Plasma Cort ER 0.66 0.58 0.72
Plasma NE ER 0.18 0.12 0.08
Pulse ER 0.32 0.58 0.62
Reaction ER 0.62 0.6 0.78
Saliva Cort ER 0.16 0.22 0.32
Severity ER 0.34 0.16 0.16
Time from trauma
ER

0.22 0.38 0.34

Urine Cort ER 0.4 0.42 0.54
12-h urine Cort ER 0.72 0.58 0.34
Urine NE ER 0.2 0.1 0.08
12-h NE ER 0.14 0.12 0.12
Arousal W1 0.7 0.44
Ascort W1 0.24 0.14
Avoidance W1 0.22 0.22
Blood time W1 0.36 0.28
Bscort W1 0.34 0.44
Cscort W1 0.32 0.28
Depression W1 0.92 0.7

Dscort W1 0.12 0.04
Exposure W1 0.22 0.24
GR cell W1 0.26 0.28
Intensity W1 0.12 0.22
Intrusion W1 0.44 0.3
Lymphocytes W1 0.54 0.48
NE/Cort plasma
ratio W1

0.34 0.12

PDEQ W1 0.46 0.22
PEDS W1 0.14 0.12
Plasma ACTH W1 0.22 0.26
Plasma Cort W1 0.12 0.14
Plasma NE W1 0.2 0.24
PTSD score W1 0.26 0.08
Reaction W1 0.14 0.12
Saliva Cort W1 0.2 0.1
State Anx W1 0.18 0.08
Support W1 0.62 0.52
Trait Anx W1 0.16 0.08
Urine Cort W1 0.12 0.06
12-h urine Cort
W1

0.3 0.2

Urine NE W1 0.38 0.34
12 Hour Urine NE
W1

0.14 0.1

Arousal M1 0.34
Avoidance M1 0.16
Blood time M1 0.04
Depression M1 0.62
GR cell M1 0.16
GAF M1 0.92
Intrusion M1 0.38
Lymphocytes M1 0.38
NE/Cort plasma
ratio M1

0.38

Plasma ACTH M1 0.22
Plasma Cort M1 0.06
Plasma NE M1 0.56
PTSD criteria M1 0.92
PTSD score M1 0.42
Reaction M1 0.2
Saliva Cort M1 0.36
State Anx M1 0.1
Support M1 0.24
Trait Anx M1 0.14
Urine Cort M1 0.1
12-h Urine Cort
M1

0.08

Urine NE M1 0.28
12-h Urine NE M1 0.06
Arousal M5 0.04
PTSD Score M5 1

Probability of feature being selected

Features Pre-
ER

ER Through
1 week

Through
1 month

Through
5 months
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